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Abstract

BIRKBECK, UNIVERSITY OF LONDON

ABSTRACT OF DISSERTATION submitted by Mair Allen-Williams and entitled Dancing

braids.

Date of Submission: 30 August 2024

This project investigates the use of the annular braid for modelling Scottish Country Dancing.

SCD dances are written for a fixed number of dancers and typically have a framework of simple

figures associated with the home positions of a “dance set”. Topological braids are used to

model the dancers’ trajectories, abstracting away much of the irrelevant detail. In light of the

shape of a dance set, the project focuses on the annular, or “Maypole”, braid, and explores

various features of these and their relationship to the Artin braid. Braids model interactions

between strands, thus this approach captures information about how dancers interact with

each other; use of the Maypole braid also makes it possible to explore interactions with the

Maypole (rotations around the centre of the dance set). However, the equivalence relation

associated with braid isotopy creates does not correspond well to a dancer’s experience, where

the flow and sequencing of the dance figures are key to the feel of the dance. For the same

reason, although the visual structure of a braid plotted from trajectory data does make certain

symmetries evident, these are not captured in the braid algebra. After a brief detour into the

idea of devising dances such that their braid closure has some interesting property, the project

concludes by briefly introducing groupoids as an alternative model with potential both to capture

the flow of a dance and to explore local symmetries.
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In these days the angel of topology and the devil of abstract algebra

fight for the soul of each individual mathematical domain.

— HERMANN WEYL

1 — Introduction

Scottish Country Dancing (SCD) is a popular dance style in the UK and indeed around the

world. It is beloved partly for the strong framework that underpins every dance: a temporal

and geometric structure that gives the dance its shape and flow. The temporal dimension of

this scaffolding is established by the solid musical framework – eight-bar phrases with a foot-

tapping regular beat guide dancers through the dance. The other dimension is buttressed by

the form of the dance set (fig. 2.1): every dance starts and ends in a fixed configuration of

“home positions” called a set; the gravitational pull of this shape can be felt throughout the

ebb and flow of the dance. Within this musical and geometric scaffolding, dances are built

from a limited collection of standard figures. Yet SCD is also a source of endless challenge –

even the most skilled dancers can find new dances to explore, in which the interest lies precisely

in the kaleidoscope of patterns that are formed and reshaped within the constraints of this

framework. It is thus perhaps not surprising that many technical and mathematical minds are

to be found at SCD clubs and events – SCD clearly has a strong mathematical structure.

This project explores the use of a mathematical abstraction to expose the bones of this structure

and so to seek insights about SCD and about mathematics. The model we will use is the braid1

– an object that is rooted in topology and which turns out to have interesting group-theoretic

properties. In Chapter 2, we introduce the braid as a topological and group-theoretic object,

and identify the annular, or “Maypole”, braid as a suitable model for SCD. The annular braid

is less well known than its older sister, the Artin braid, and so we take some time in Chapter 3

to explore its relationship to the Artin braid. Chapter 4 illustrates the model with a selection

of dance figures and dances, before we continue in Chapter 5 to explore some of the properties

of braids, what they can tell us about a dance, and also the deficiencies of the braid model. In

Chapter 6, we offer a taster of two future directions for using related models to analyse and

potentially devise dances: firstly, looking at braid closures and thinking about devising dances

that have certain properties; secondly, extending the braid group model into a groupoid.

1Credit is due to Roger Picken (Instituto Superior Técnico, Lisbon) for the initial suggestion that braids could

be used to model SCD dances, and several interesting conversations during the project.
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2 — Braids: definitions

2.1 SCD terminology

Fig. 2.1: A dance set

Before diving into the mathematical theory, we will need some

basic SCD terminology for talking about dances. To dance an

SCD dance, pairs of dancers, or couples, form into a dance set;

dance sets have a specified shape such as “3 couples longwise”

or “4 couples square”. The former, shown in fig. 2.1, is the most

common and we will typically use it for our examples, but we will

see examples of three differently shaped sets in the dances in

Ch. 4. One partner in each couple dances the lady’s role and

one the man’s role; we will talk of the “ladies” and the “men”.

A dance consists of a sequence of dance figures, which are defined paths for some or all of the

dancers in the set, where the degree of precision is the positions that the dancers should be in

at the end of each musical bar. In addition, when moving dancers pass one another in a figure,

the instructions will specify whether they pass by the right (their right shoulders are nearest)

or by the left. The instructions will also specify when (and how) dancers should take hands,

and may also include movements on the spot. We will be neglecting these latter two points

for this project, and focusing on the dancers’ trajectories and the fact that these are specified

only to the granularity of once per bar. The rest of this chapter introduces the mathematical

definitions we will need for our abstraction of these dance paths.

2.2 Geometric braids

A geometric braid can be pictured as a collection of n strands suspended between two discs

subject to three conditions on the strands, given in fig. 2.2b. We can also consider the strands

as a set of n arcs fj : [0, 1]→ R2:

{fj(zi)|j = 1, . . . n} = {(xi , yi)} (Exactly n distinct elements: braid conditions 1 & 2)

{fj(0)} = {fj(1)} (Setwise equality of start and end points: braid condition 3)

7



Chapter 2. Braids: definitions 8

(a) Model of a geometric braid

A geometric braid meets the following con-

ditions on its strands:

1. No doubling back

2. No collisions

3. The set of start positions on the disc

is equal (setwise) to the set of end

positions

(b) Geometric braid conditions

Fig. 2.2: Geometric braids

There is a natural mapping from the paths of a set of moving particles (or dancers) onto a

geometric braid, taking the z axis to represent time (fig. 2.2a). Typically, we normalise the

z axis so that the braid is considered to travel from z = 0 → 1. That this natural mapping
meets conditions 1 and 2 is evident: no doubling back implies no time travel, and no collisions

is a physical necessity. Condition 3 allows us to concatenate two braids into a longer braid

(fig. 2.3a). Notice that the condition is setwise: we do not require each strand to return to its

original starting point. If we label the strands in some way and assign an ordering to them at

z = 0, e.g. according to their x coordinate, the permutation of this ordering at z = 1 is called

the permutation of the braid. Braids with identity permutation (i.e. each strand ends in its

original (x, y) position) are called pure braids.

We also define the notions of strand homotopy and braid isotopy: two strands each starting

at the same point s and ending at the same point t are homotopic if it is possible to “pull” or

“slide” one of them into the position of the other without affecting any other strands; there

is an isotopy between two braids if one can be transformed into the other by moving strands

continuously without violating the geometric braid conditions at any stage. Intuitively, this

means that if we take our braid, fix the start and end points of each strand, and shake the

braid about in any way we can (providing we do not break any strands or introduce any doubling

back), the result will be an isotopic braid (fig. 2.3b).

For two braids β1 = {s1, . . . , sn} and β2 = {t1, . . . , tn} to be isotopic, there must exist homo-
topies between n pairs of strands (si , tj). We say that two braids are equivalent if there is an

isotopy between them and will write β1 ≃ β2 or simply β1 = β2.

2.2. Geometric braids
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(a) Concatenation of two braids: we

imagine removing the centre plates to

create one long braid.

≃

(b) Braid isotopy: the blue strand (centre at the top) may make a wide or

tight loop around the other strands

(c) This braid is isotopic to the

identity: all the strands can eas-

ily be pulled straight

(d) Right: the mirror image of a

braid is its inverse

Fig. 2.3: Braid properties: concatenation, isotopy, inverses

2.2.1 The geometric braid group

Using this notion of equivalence (isotopy), we can show that the geometric braids with n strands

form a group GBn, for fixed n ∈ N. The group operation is concatenation of braids (fig. 2.3a).
We fix a set of n start positions S, and note that any braid β with n strands is isotopic to some

braid βS whose start and end positions are S (achieved by extending the strands to the nearest

point in S); we can therefore fix S to be a line of points equally spaced along a diameter of a

disc, and take β = βS.

Given this, the requirements for a group are met as follows:

1. Identity: We refer to the braid in which all the strands hang straight down from their

starting points as the identity braid, which we can write as 1 (fig. 2.3c).

2. Inverses: The inverse of a geometric braid β is a braid β′ which, when concatenated with

β, results in a braid which is isotopic to the identity. We can take β′ to be the mirror

2.2. Geometric braids
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image of β about the plane z = 1; it is easy to see that ββ′ = 1 (fig. 2.3d).

3. Closure: Let α, β be two braids and γ = αβ their concatenation. Since α, β are braids,

γ must satisfy braid conditions 1, 2. Furthermore, since we have the fixed start and end

positions S for α, β, we have that the start positions of γ are also S, as are the end

positions, and so condition 3 is also met: γ is a braid with n strands.

4. Associativity: Follows immediately from the definition of concatenation.

The function π : GBn → Sn which takes a braid to its permutation is a group homomorphism;

its kernel is the group of pure braids Pn ◁ GBn.

2.3 Algebraic braids: the Artin braid group

We have defined a natural mapping from a dance figure to a geometric braid and shown that

these braids form a group. However, these geometric objects can be unwieldy to work with.

We introduce a new braid group, the algebraic braid group, which has an efficient notation, and

show that it is in fact isomorphic to the geometric braid group.

An algebraic braid with n strands is defined by a braid diagram depicting (top-to-bottom1)

crossings of neighbouring strands, which may be left-over-right or right-over-left crossings. By

convention, we define crossings based on their leftmost strand, so a left-over-right crossing is

called an over-crossing and a right-over-left crossing is an under-crossing:

An algebraic braid Over-crossing: σ−1i

i

Under-crossing: σ−1i

i

A diagram like this is associated with a compact notation, as shown: if strand i (counting

from the leftmost strand = 1) crosses over strand i + 1 to its right, we write σi ; if it crosses

under, we write σ−1i . If we write down the sequence of σi , reading the braid left to right, top

to bottom, we obtain a string such as σ1σ
−1
2 σ−11 σ−13 , which we call the braid word. Just like

geometric braids, algebraic braids can be concatenated in the obvious way (fig. 2.4a), and just

like the geometric braids, they have an equivalence relation based on isotopy – as before, we

can understand this as fixing the ends of the braid, and giving it a shake or a tug to adjust the

strands (figs. 2.4b–2.4d). We can write this equivalence relation as relations on the braid word:

1We will sometimes draw braids rotated, i.e. left to right; the crossings should be understood mutatis mutandis.

2.3. Algebraic braids: the Artin braid group
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⊕

⇓

(a) Algebraic braids:

concatenation:

σ1σ2
⊕
σ1σ

−1
3

= σ1σ2σ1σ
−1
3

=⇒

“poke”

σiσ
−1
i = 1

(b) Identity

relation Id

σ−12 . . . σ3 σ−12 σ3σ1 σ3 σ−12 σ1σ3 σ3

= =

(c) Commuting equivalence relation Artin 1

=⇒

“slide”

σi+1σiσi+1 = σiσi+1σi

(d) Slide equivalence relation Artin 2

Fig. 2.4: Algebraic braid relations

σiσ
−1
i = 1 (Id)

σiσj = σjσi (|j − i | > 1) (Artin 1)

σiσi+1σi = σi+1σiσi+1 (Artin 2)

These are sometimes referred to as the Artin braid relations, introduced by Artin [Art47],

who demonstrates that these relations are sufficient to derive all braid equivalences based on

the notion of isotopy as defined above. It is easy to check that the algebraic braids form a

group under the equivalence relation, with concatenation as the group operation. This group

is called the Artin braid group, and we refer to it as Bn. It has been extensively studied (e.g.
[Deh21] [MK99] [BB05]) and is known to have a rich group structure. The Artin braid group

on n strands is generated by the n − 1 generators σ1, . . . , σn−1, subject to the relations given
above. (Note that this is not the only possible presentation: we will discuss another in 5.1).

2.3.1 Geometric ↔ algebraic braids

We would like to map the geometric braids representing a set of dancer trajectories onto Artin

braids, so that we can exploit the power of the algebraic structure and compact notation.

2.3. Algebraic braids: the Artin braid group
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Fig. 2.5: Dancer paths ↔ 3D braid ↔ algebraic braid
Diagram from Roger Picken (Instituto Superior Técnico, Lisbon)2

We will find that it is possible to do so without losing any relevant information (i.e., we can

guarantee to use the algebraic word to reconstruct a geometric braid that is isotopic to the

original geometric braid). The standard approach ([Thi22], [Cao+23], [DE17]) is to project

the 3-D geometric object onto a projection line, for example the x axis (fig. 2.5). We can see

this as placing an observer outside the area of action. Each time the observer sees two strands

change places on our projection line, we must look back at the geometric braid to determine

which strand is “in front” from the point of view of this observer and thus whether the crossing

is an over-crossing or under-crossing.

We can show that, subject to a little finesse, this mapping is an isomorphism. Full details can

be found in standard introductory texts on the mathematics of braids. Here is a brief outline:

Let pi : GBn → Bn be the projection from a geometric braid g ∈ GBn to a word β in the Artin
braid group Bn, using i as the angle of the projection line (i = 0 as the x axis; i = π/2 as the
y axis). We need to show that:

• pi is a surjection

• pi is 1 : 1

• p(g1g2) = p(g1)p(g2), applying the respective group operations (concatenation).

It should be clear that pi is surjective, since it is easy to picture any braid word as a sequence

of crossings of real strings and thus as a geometric braid. Equally, it is easy to see that

the concatenation of two geometric braids will be represented by the concatenation of their

respective Artin braid words. Showing that pi is one-to-one requires the “finesse” mentioned

above. Specifically, we need to eliminate problems associated with coincident projections. A

single point on the z axis at which the projections of exactly two strands coincide corresponds

to a crossing in the Artin braid. The problems arise if three or more strands appear to coincide

at a single point (fig. 2.6a), or if two strands have coincident projections for a continuous

2Source: shared in an email communication

2.3. Algebraic braids: the Artin braid group
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(a) Three points with coincident projections (b) Coincident projection over a longer period

Fig. 2.6: Finessing the isomorphism pi : GB → Bn

sequence [z1, z2] of points along the z axis (fig. 2.6b). However, we recall that we are only

interested in our geometric braid up to isotopy, and that the geometric braid is a true braid,

i.e. none of the strands are physically colliding. We can therefore wiggle the strands a little to

obtain an isotopic geometric braid for which the problems do not arise. We refer the reader

to the standard braid literature (e.g. [MK99, Ch. 2]) for a more precise analysis. In practice,

given a set of trajectories generated from real motion data, rotating the projection line by a

fraction of a degree will generally eliminate such coincidences without affecting the algebraic

braid. Once such problems have been eliminated it becomes trivial to see that the morphism is

1 : 1 and thus an isomorphism.

Therefore, GBn ≃ Bn and we can easily justify working with the more convenient notation of
the algebraic braid group – we have the certainty that no information in the geometric braid

(as a topological object) is lost. We thus have expressions of a braid as a collection of arcs in

3-D space, as a braid diagram, and as a braid word. Next, we look briefly at a very different

way of representing a braid.

2.3.2 Curve diagrams

We have modelled a braid as a trajectory through 3-D space. Suppose that, instead, we think

of our dancers as moving – still on our flat (2-D) dance floor – in a very viscous fluid, so that

the fluid itself is swirled around as the dancers move. As well as looking at the motions of the

dancers themselves, we can look at how the fluid is affected by these motions (we continue

to work in two dimensions, assuming the particles of the fluid to be moving in parallel with

the plane of the dance floor). The formal basis of this model, used in topological dynamics

([Thi22], [Boy94]), is the theory of mapping class groups. Mapping class group theory requires

considerable technical background that is out of scope for this project, as our interest is solely

in the use of a curve diagram to visualise a dance as an action on its surroundings (the

hypothetical fluid). For further background on mapping class groups, formal definitions and a

technical treatment, we refer the reader to [FM12] or other standard textbooks.

2.3. Algebraic braids: the Artin braid group
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(a) Three dancers as punctures on

a disc, with a diameter curve

(b) Action on a curve segment as

one dancer starts to move

(c) Action on the curve after two

dancers have crossed

(d) Curve diagram for ⟲1,2; arrows in-
dicate dancers beginning on ⟳2,3

→

(e) Extending the curve diagram to ⟲1,2;⟳2,3

2 31

⟲1,2

⟲1,2; ⟳2,3

(f) Alternative curve sys-

tem, action ⟲1,2, action
⟲1,2⟳2,3

Fig. 2.7: Curve diagram representation of a braid3

For our purposes, it is sufficient to know that we can mark a judicially chosen set of curves on

the fluid, and map what happens to these as the dancers move. This is done as follows:

As before, we assume that our dancers are moving in a bounded space, and we let this be a disc.

Arrange the dancers along a diameter d of the disc, just as we did for a geometric braid. Plot

a curve c as a series of arcs along this diameter (fig. 2.7a). We now consider what happens to

these arcs as two neighbouring dancers change places by moving around each other (σi or σ
−1
i ).

In this model, we picture c as made of elastic, and each dancer to have one foot hooked into

this piece of elastic, so that as they travel, the elastic is tugged with them (figs 2.7(b)–(d)).

Taking away the dancers, but leaving small holes, or “punctures”, in the disc (which prevent

the elastic from springing back), and smoothing the curve (isotopy), we have the curve diagram

of the crossing, presented on the n-punctured disc Dn (fig. 2.7e).

As the dancers, or punctures, continue to move around each other, they will stretch the elastic

3Diagrams drawn with gimp, using Wikipedia’s stick figure http://en.wikipedia.org/wiki/Stick˙figure

2.3. Algebraic braids: the Artin braid group

http://en.wikipedia.org/wiki/Stick_figure
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x : σ−13 σ−14 σ−15 σ−15 σ−14 σ−13

y : σ−15 σ4σ
−1
3 σ2σ

−1
1 σ−11 σ−12 σ−13 σ−14 σ−15

Fig. 2.8: One dancer makes a loop around a line of standing dancers

into a longer and more convoluted curve (unless, of course, they start to perform inverse moves,

allowing the elastic to snap back into its original position). The result is the curve diagram for

the Artin braid representing the dance. NB: it is important to be clear that these curves on

the disc are not the arcs representing braid strands. This is an entirely different picture of a

braid. Nonetheless, it is possible to prove that, up to isotopy, there is exactly one curve diagram

corresponding to each Artin braid (up to equivalence). The curve diagram can be useful for

examining certain properties of the braid that are not evident from the braid word or Artin

diagram, as we will see in Sec. 5.1.2. We also note that the system of arcs along the diameter

is not unique, and other systems can be used (e.g. fig. 2.7f).

Since we have drawn our curve diagram as a sequence of actions corresponding to the crossings

in an Artin braid word, a curve diagram shares the property with the Artin braid that it cor-

responds to a specific choice of projection line for a given geometric braid. Although we have

shown in Sec. 2.3.1 that no information is lost in the “translation” from the geometric braid

to an Artin braid or curve diagram, the process of projection is not without certain issues.

2.3.3 Problematic projections

Clearly, the isomorphism GBn ≃ Bn is not unique, since different projection lines can result in
different Artin braids, as in the example in fig. 2.8. This is not a problem in itself, providing we

stick to the same choice of projection line throughout all our braid comparisons. Furthermore,

we can see that there must be a relationship between the algebraic braids generated by different

projections, since if I dance in front of someone as seen from one angle, and then dance behind

them, I must have danced past them as seen from the orthogonal viewpoint. Indeed, it is

possible to show that these braids are conjugate. To do this, we will need the notion of closure:

The closure of a geometric braid is the object that we obtain by connecting the strand in

position x at one end to the strand in position x at the other end, in such a way as to ensure we

add no new crossings. If we envisage the braid as living inside a cube or cylinder, the additional

2.3. Algebraic braids: the Artin braid group
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Fig. 2.9: L→R: A geometric braid of σ1σ−12 σ1; the closed algebraic braid and an isotopic link

strand sections are outside this volume (fig. 2.9). This object is called a link (one or more knot

components) and, like a geometric braid, we think of it as living in 3-D space. Links, also like

braids, are subject to an equivalence relation or isotopy in this space – that is, we can move

the strands of a link freely, providing we never cut them or disobey the laws of physics (e.g. by

allowing one strand to pass through another), and we will always have an equivalent link.

Given an algebraic braid diagram, we create its closure analogously by drawing strand sections

connecting the top and bottom points outside the braid diagram, without introducing additional

crossings. The resulting diagram is a projection of a three-dimensional link onto the page. This

link is the closure of the geometric braid and so the projection corresponds to the same (isotopic)

link regardless of the choice of projection line.

By considering the closure of a geometric braid, we can see that two n-strand algebraic braids

will have the same closure:

• If they are the same up to cyclic renumbering (but not reordering) of the strands – i.e.

up to rotation of the geometric braid;

• If they are conjugate: suppose that β,α are conjugate braids, with β = γαγ−1. In the

closure of β, we can envisage sliding γ−1 along the identity section of the strands used

to close the braid, so that the link looks like the closure of γ−1γα = α (fig. 2.10).

In fact, the second result is stronger: it is possible to show that if two n-strand braids have the

same closure, they must be conjugate (Markov’s Theorem: [MK99, Ch. 9]). Now, we stated

above that the closure is of the geometric braid and is independent of projection line, so that

two algebraic braids corresponding to the same geometric braid must have the same closure.

Therefore, by Markov’s Theorem, these braids must be conjugate. This is encouraging as it

2.3. Algebraic braids: the Artin braid group
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γ = σi . . .

β

γ−1 = . . . σ−1i ⇓
σ−1i

closure−−−−→

γ = σi . . .

β

σ−1i

γ−1 ⇑

Fig. 2.10: Sliding around a conjugate closure

suggests that even if the braids are not equivalent, there is nonetheless a strong relationship

between them.

The second problem with the projection line approach is that it poorly captures the “shape”

of a typical Scottish country dance – recall the shape of a typical dance set in fig. 2.1. If we

take our projection line to be either the x or the y axis, we will find that we repeatedly face the

difficulty of coincident tracks (since the dancers will intentionally be parallel along both axes,

at least at the beginning and end of the braid), as well as the problem when using real path

data that our braids are very sensitive to slight changes in positioning – see fig. 2.11.

The issue of small movements resulting in renumbering can be fixed by some form of “snap

to grid” where we define a fixed set of home positions, and at the beginning and end of the

(geometric) braid, artificially move each dancer to the nearest home position. This is necessary

in any case for geometric braid condition 3. We can also ease the difficulty by choosing the

projection angle to be at π/4, i.e. at a diagonal to the dance set. However, we still have figures

which act “around the set”, which a line projection captures rather poorly (for example, the

circle, fig. 2.13a, or the grand chain, fig. 2.13d); there are also many SCD figures that can be

danced “on the side” or “across the set”, which are intuitively the same for the dancers either

way. We would like such figures to have the same braid, at least up to cyclic renumbering of the

strands. These issues lead us to consider an alternative to the Artin braid: the annular braid.

2.3. Algebraic braids: the Artin braid group
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2

3
4

1
2

4
3

1

The dancers (the four stars) are not standing perfectly in line; we have the strand ordering given by

the red arrows←. Since an SCD dance is organised in couples, ideally we would like all the dancers
on the left to be even numbers and on the right odd, or vice versa. More worryingly, if the dancer

in the top right adjusts their position just a little bit, the numbering changes (blue arrows→). Due
to geometric braid condition 3, we will always “snap” the dancers to the nearest home position to

complete a braid; nonetheless, this sensitivity is a difficulty with the Artin projection.

Fig. 2.11: A difficulty of the Artin projection

2.4 Annular braids

Fig. 2.12

The shape of almost any SCD set is close to a square – or, topologi-

cally speaking, a circle. Altering the projection line for an Artin braid

is equivalent to moving an observer to a different location outside this

circle. However, it may actually seem sensible to position our hypo-

thetical observer at the centre of the set, and project the strands of

the geometric braid outward onto a unit circle. The resulting annular

braid is what we would get if we were to place a Maypole in the cen-

tre of the set (fig. 2.12) and clip a Maypole ribbon to each dancer’s

head, and is thus sometimes referred to as a Maypole braid [Ric09].

Like the Artin braid, an annular braid is a two-dimensional representation of a

three-dimensional object (the geometric braid), and the annular braids with n

strands form a group. However, while the Artin braid can be considered as a

set of strings hanging down from a line, the annular braid can be considered to

be a set of strings hanging down from a circle and must therefore be envisaged

as existing on a cylinder (right); we refer to the annular braid group as CBn.

The annular braid has an algebraic notation similar to the Artin braid, but while

the Artin braid on n strands had n − 1 generators, we now add σn, since the
nth strand is also able to cross with strand 1 to its right. We also need a new

generator for the case where the dancers all simultaneously step to the right or left: this is not

observed as a crossing from the Maypole’s viewpoint, but we cannot ignore it – for example,

2.4. Annular braids
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(a) The circle one way4 (b) Circle: Artin braid (c) Circle: annular braid

Dancers are labelled alternately

‘A’ and ‘B’; ‘A’ dancers

weave clockwise around the

loop and ‘B’ dancers weave

anticlockwise.

(d) The grand chain (e) Grand chain: Artin braid (f) Grand chain: annular braid

Fig. 2.13: ”Round the set” figures and their Artin and annular braids

it can change the overall permutation of the braid. We call this a “twist” and designate the

generator τ for a step in the clockwise direction (fig. 2.14c).

We can draw a flat braid diagram on paper by “cutting open” the cylinder along any line parallel

to the z axis; the right and left sides of the diagram must be understood to be identified.

The equivalence relations on the crossings are just the same as for the Artin braid group,

except that we are now working mod n. Where we see a τ generator next to a sequence of

σ generators, we can “slide” the crossing or sequence of crossings along the twist (as in fig.

2.14d) and therefore we have that for any strand i , τσi = σi−1τ .

4Image source: http://www.freepik.com

2.4. Annular braids

http://www.freepik.com
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(a) A geometric braid with two

strands following one another

once around the centre

(b) The corresponding

annular braid ττ plotted on

a cylinder

τ τ−1

(c) The twist generator τ

=

(d) τσi = σi−1τ

Fig. 2.14: The “twist” generator τ

This leads us to the following presentation of the annular braid group CBn:

P = ⟨ σ1, . . . , σn, τ | σiσj = σjσi (|j − i | > 1) (A1)

σiσi+1σi = σi+1σiσi+1 (mod n) (A2)

τσi+1τ
−1 = σi ⟩ (mod n) (T1)

(2.1)

where A1 and A2 differ from the equivalent relations Artin 1 and Artin 2 only in the fact that

all calculations are understood to be mod n.

We can also draw curve diagrams (Sec. 2.3.2) for an annular braid, but we place our dancers

on an annulus rather than a disc – that is, the disc has a hole where the “Maypole” is – and the

“judicially chosen” system of curves must take this hole into account (we will see an example

in Ch. 5).

In the next chapter, we will show that there is an isomorphism between the Maypole braids on n

strands and a specific subgroup of the Artin braids on n+1 strands, and discuss this relationship

further, looking in particular at the Artin and annular braids generated by some dance figure or

geometric braid.

2.4. Annular braids
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(a) A geometric braid for

SCD figure Set and Ro-

tate1

(b) We can project the

braid onto a cylinder —

annular braid τσ1σ3τ

(c) We now contract the

cylinder into a strand (of

a geometric braid)

(d) We can project

this onto an Artin braid

σ1σ
2
4σ1σ3σ2σ3σ1σ4σ3σ2σ3

Fig. 3.1: Maypole braid as a geometric braid with an extra strand

The core result of this chapter is the isomorphism between the annular braid group and Dn+1,
the subgroup of the Artin braid group Bn+1 for which the (n+1)th strand also ends in position
n+1. To understand this viewpoint geometrically, we can consider the (hypothetical) Maypole

to be an additional, straight, strand in the geometric braid (as illustrated in fig. 3.1 – note

that different choices of strand numbering / ordering will yield conjugate Artin braids: as with

projection lines, the important thing is to make consistent choices).

The algebra in the next section formalises this picture. We will then look more closely at various

aspects of the annular braid: its closure; the positioning of the Maypole, and how this compares

to choosing the projection line of an Artin braid; how we can understand the extra information

that is carried in a Maypole braid (versus the Artin braid for the same set of trajectories, or dance

figure); we discuss briefly what happens if we “remove the Maypole”, imagining our observer as

a hook in the ceiling above the dancers; we also find the centres Z(Bn) and Z(CBn), as these
1We will see a description of this figure in Sec. 4.2.4

21



Chapter 3. Annular braids: a closer look 22

subgroups will prove important to our understanding of the groups. Here and in later chapters,

when giving general results where n = 1, 2, 3 may be special cases, we assume n > 3.

3.1 The Maypole braid group is isomorphic to Dn+1 < Bn+1
There is an isomorphism between the annular braid group on n strands and the subgroup Dn+1
of Bn+1 consisting of braids whose permutation always fixes strand n + 1. We now define this
isomorphism. Our approach differs slightly from the presentation of [KP02], [Cho48], but the

underlying principles are the same.

Taking the presentation P (eq. 2.1) of CBn, we define the isomorphism f as:

f : CBn → Dn+1 :





f (σki ) = σi i ∈ {1, . . . , n − 1}, k ∈ {+1,−1}

f (τ) = σ2nσn−1 . . . σ1

f (σkn) = f (τ
−1σk1τ) k ∈ {+1,−1} (application of relation T1)

f (β = αβ′) = f (α)f (β′) α ∈ {σki , τk}, k ∈ {+1,−1}, i = 1, . . . , n

The key relation here is f (τ): we can envisage this relation as hooking the last strand

“around the Maypole” (σ2n) and then across the “back” of the cylinder, while the

other strands move up (see left). It follows immediately from the definition that

f is well defined and there exists an (n + 1)-strand Artin braid α = f (β) for every

β ∈ CBn. To show that f is an isomorphism, we must show that:

1. f (β) = f (β′) ⇐⇒ β ≃ β′

2. f is onto: every braid in Dn+1 is equivalent to a braid in the image of f

For the first condition:

• Condition 1: ⇐ (β ≃ β′ =⇒ f (β) = f (β′)):

Observe that we can apply braid relation T1 to eliminate any σn in β, β
′. We can

therefore assume that if braid relations A1 or A2 apply, we can apply Artin 1 or Artin 2

to the corresponding elements of f (β), f (β′). Thus we need only consider the relation

T1. By definition of f , we have that f (σkn) = f (τ−1σk1τ). This leaves the case of

f (τ−1σki τ), i > 1. Fig. 3.2 gives a visual proof that f (τ
−1σki τ) = σi−1 = f (σi−1), so

the relation holds.

• Condition 1: ⇒ (f (β) = f (β′) =⇒ β ≃ β′):
We postpone proof of this until after the proof of Condition 2.

For the second condition, we aim to show that every braid in Dn+1 is equivalent to a braid
which satisfies the following properties:

3.1. The Maypole braid group is isomorphic to Dn+1 < Bn+1
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handle−−−−→
isotopy

σn

σn

⇓

⇑
σ−1n
σ−1n

A1

⇓ Id

Fig. 3.2: f (τσiτ
−1) = σ2nσn−1 . . . σ1σiσ

−1
1 . . . σ−1n−1σ

−2
n = σi−1 (1 < i < n)

• Any crossing σϵn (ϵ = ±1) is immediately followed by a crossing σϵn;

• Any crossing pair σ2n is directly followed by the sequence of crossings σn−1σn−2 . . . σ1.

We shall call this subbraid σ2nσn−1σn−2 . . . σ1 = γ;

• Similarly, any pair σ−2n is directly preceded by the sequence of crossings σ
−1
1 σ−12 . . . σ−1n−1.

Given an (n+1)-strand braid δ ∈ Dn+1 satisfying these properties, we can rewrite it as a word
in γ, γ−1, σi where i ∈ {1, . . . n − 1}. We then have g = f −1(δ) given directly by:

g : Dn+1 → CBn :





g(σki ) = σ
k
i i ∈ {1, . . . , n − 1}, k ∈ {+1,−1}

g(γ) = τ

f (δ = αδ′) = f (α)f (δ′) α ∈ {σi , γ}, i = 1, . . . , n − 1

(3.1)

Notice that it is sufficient to show that we can write every braid δ ∈ Dn+1 as an equivalent braid
meeting just the first condition. We can then achieve the second two conditions by inserting

sections equivalent to the identity as necessary (i.e. if s = σiσj . . . is the required sequence, we

insert ss−1 or s−1s). Geometrically, we can see this as pulling strand n+1 straight; intuitively,

it seems clear that we should always be able to pull one strand straight. To show this fact

algebraically, we will take a brief detour into Artin’s solution to the word problem.

3.1.1 Artin braid combing

An important question for any group is the word problem: given two words in the group, are

they equivalent under the group relations? In [Art47], Artin gives an algorithm for solving the

word problem in Bn by writing α = β′β−1 in a normal form, such that it is immediately possible
to see whether α ≃ 1 (and thus β′ ≃ β). More efficient approaches to the word problem have
since been found (see e.g. [BB05]), but Artin’s algorithm for writing α into a normal form

remains of interest.

3.1. The Maypole braid group is isomorphic to Dn+1 < Bn+1
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(a) The braid (σ−12 σ1)
3 and its combed form σ1σ2σ2σ

−1
1 σ

−1
1 σ

−1
2 σ

−1
2 σ1

a1 a2 a3

(b) The braid (σ2σ3σ1)
4 and its (much longer) combed form

Fig. 3.3: Combed forms of the “canonical” braids with 3 and 4 strands

In the word problem, if α = β′β−1 has a non-identity permutation, then we know immediately

that β ̸≃ β′. The combing algorithm, designed to solve the word problem, is thus defined for
pure braids. Suppose we wish to comb some braid λ that is not a pure braid: let γ be the

braid such that λ′ = λγ has identity permutation, where γ is the permutation braid given by

crossing strand 1 (i.e. the strand whose initial position was 1) behind all strands to the left of it

until it is in position 1, then strand 2 similarly, and so recursively. We will comb the pure braid

λ′ and then compose it with γ−1 to obtain a combed normal form for λ = λ′γ−1 = λγγ−1.

To comb a pure braid α, we begin from the leftmost strand. Our goal is to use Artin’s braid

relations to write α = a1α1 where a1 is a subbraid in which every crossing involves the strand

that was initially in position 1, and α1 does not involve this strand at all. Since we have arranged

that α is a pure braid, strand 1 will be in position 1 at the end of the subbraid a1, and we now

repeat the exercise for α1 (ignoring strand 1). We continue recursively until we have the braid

α = a1a2 . . . an−1: after applying Id, this is now a combed braid – see fig. 3.3.

Artin [Art47] demonstrates that every braid has a combed form (we can always “push down” the

crossings not involving the strand of interest at each step), and that it is possible to compute it

algorithmically (we can guarantee never to get stuck in a loop3). Appendix A gives the derived

relations used in the algorithm.

3.1.2 Completing the proof that f is an isomorphism

Notice that in combed normal form, the (n + 1)th strand never crosses to below position n,

and every crossing σkn bringing this strand into position n is immediately followed by another

3NB: Care is necessary when choosing how to apply the Artin relations – the author’s first attempts at imple-

menting Artin combing programmatically repeatedly got stuck in loops!

3.1. The Maypole braid group is isomorphic to Dn+1 < Bn+1
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σkn . Thus, given a braid δ ∈ Dn+1, we can find its combed form δn = δ, which will immediately
meet the first condition specified above. We insert identity subbraids as described previously to

yield δ′n = δn = δ in a form where we can apply g = f
−1. Therefore, f is onto.

Finally, we return to condition 1: f (β) = f (β′) =⇒ β ≃ β′. Since a combed braid is in

normal form, there is a unique combed braid δ such that f (β) = δ = f (β′). Therefore, β =

f −1(f (β)) = f −1(δ) = f −1(f (β′)) = β′. This completes the proof that f is an isomorphism.

We can now show the following: suppose that δ is an annular braid whose permutation has no

1-cycles, e.g. τ (for n > 1); let β ∈ Bn+1 = f (δ) and β′ = σnβσ−1n . Since δ does not fix any
strand, we have that β does not fix strand n, thus β′ sends strand (n + 1)

σn−→ n
β−→ s

σ−1n−−→ s

where s ̸= n, and so β′ ̸= Dn+1. Hence Dn+1 is not a normal subgroup of Bn+1.

3.2 Closure of a Maypole braid

We will also make use of the closures of annular braids. Consider the annular pure 2-braid

ττ (fig. 2.14). If we consider this as a geometric braid and connect the ends of each strand

(fig. 3.4b) to form the closure, we obtain the simple Hopf link shown in fig. 3.4c, which is (by

construction) the same link as we would obtain for the closure of any projection of this braid

to an Artin braid. Although there are no crossings in the annular braid (only the τ generators),

the link has two crossings. This may seem a reasonable definition for the closure of the annular

braid. However, it ignores the additional information carried in an annular braid, namely the

position of the annulus, or Maypole, in relation to the strands. An alternative is the approach

implied (although not explicitly defined) in braidlab [TB19]: to treat the Maypole as a strand

in the closure. Fig. 3.6 shows the annular braid σ1σ2σ1 and its closure including a Maypole

strand at the core of the cylinder. Notice that now, the closure is precisely the closure of the

isomorphic (n+1)-strand Artin braid (fig. 3.6, right) – this follows from the construction of the

isomorphism f . Furthermore, although we mentioned that f is not unique, this closure must

be the same under any rotation of f (since it is defined from the geometric braid).

Which closure is “correct”? This depends on the question we hope to answer. In the second

case, the closure will always include a distinct link component (an unknot) associated with the

annulus, so that, for example, we will never have a closure with a single component. Among

other things, this means that while any knot or link can be represented as the closure of some

braid4 (e.g. [MK99]), only certain links (and no knots) can be represented as the closure of

an annular braid. Thus if our question is “what braid has this link as its closure?”, we may

prefer to ignore the Maypole. This also corresponds to our knowledge that there is no physical

Maypole or hole in the dance floor. On the other hand, the additional information carried in

4indeed, this fact originally motivated the study of braids

3.2. Closure of a Maypole braid
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(a) The 2-strand annular braid ττ :

each strand makes one full rotation

(b) Adding the closure to the

associated geometric braid

(c) Artin closure of ττ –

the Hopf link

Fig. 3.4: Artin closure of a braid

(a) The 1-strand annular braid τττ (b) Maypole closure of the braid (c) Link of the Maypole closure

Fig. 3.5: Maypole closure of a braid

the second type of closure may be relevant to other questions. Consider the case of a 1-strand

braid corresponding to k loops clockwise around the Maypole (fig. 3.5). Without the Maypole,

this braid closes to the unknot. However, if the Maypole is included in the closure, the closure

link will carry information about the net number of times the strands pass around the Maypole;

for some things, this may be useful. We will be clear when we are working with closures and

closure invariants whether we are using the “Artin” or the “Maypole” closure.

3.3 The centres of the braid groups

The centre of a group is often important to understanding the structure of the group. Garside

[Gar69] defines the fundamental braid for Artin groups as ∆, where ∆2 is given geometrically

as a 360◦ twist of the identity braid (fig. 3.7). For Bn, ∆2 can be written as (σ1 . . . σn−1)n;
for CBn, we have ∆2 = τn. It is well known [FM12] that the centre of Bn is generated by
∆2. Rather than reiterate the classical proof of this fact, let us consider the annular braid:

3.3. The centres of the braid groups
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Fig. 3.6: Left: the annular 2-strand braid σ1σ2σ1 shown on a cylinder, with a strand (or “Maypole”) in

the core; Centre: its closure; Right: the isomorphic Artin braid

(a) Model of a full twist (b) Full twist on a geometric braid

≃

(c) Algebraic braid: full twist:

RH diagram drawn as ∆.∆

Fig. 3.7: The full twist

Let ∆2γ be some geometric braid and consider its annular braid: if α is the annular braid

corresponding to γ, then we have τnα where n is the number of strands. By T1, we know that

τnατ−n = sn(α) where sk is the function that shifts each σ
ϵ
i in α to σ

ϵ
i−k (working mod n)

and leaves any τk unchanged. Hence τnα = sn(α)τ
n = s0(α)τ

n = ατn, and so τn ∈ Z(CBn);
furthermore the same argument applies to τnk for any integer k ̸= 0. Equally, it is clear that if
we have τm where n does not divide n, we will not in general have α = sm(α).

Now, suppose that Z(CBn) contains some element β such that βα = αβ for all α ∈ CBn, but
β ̸= τnk . By T1, we have β = β′τk where β′ has only σi generators, hence β′τkα = αβ′τk

and so α = τ−kβ′−1αβ′τk = s(−k)(β′−1αβ′), i.e. β′−1αβ′ is a rotation of α. But this implies

3.3. The centres of the braid groups
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(a) A simple two-strand

braid, and its closure

(b) Maypole position:

centre

(c) Maypole position:

off-centre (d) Links for these closures

Fig. 3.8: Moving the Maypole does not result in conjugate braids

that β′ = τk , which is impossible since β′ has no τ generators. Thus no such β can exist.

Finally, a note on conjugacy in the annular braid group more generally. It follows directly from

the braid relations A1 and T1 that any single generator σi ∈ CBn is conjugate to any other
single generator σj . In the Artin braid group, we have the same result, but for the case |j−i | = 1
there is no single-generator conjugating element. Now consider γτ = σiγ: since none of the

braid relations introduces or removes any τ±1, no γ can exist satisfying this equation, thus

τ is not conjugate to any single generator. More general results concerning conjugacy in the

braid groups have been the subject of much interest and although there are known solutions

to the “conjugacy problem” for the braid group, once thought to be of potential interest for

cryptographic schemes [Mah04], they are somewhat involved and beyond our scope here.

3.4 Positioning of the Maypole

In Sec. 2.3.1 we demonstrated the standard results that GBn ≃ Bn, and that the Artin braids
resulting from different projection angles for a particular geometric braid or dance figure are

conjugate. Just as we can take different projection lines for a geometric braid, we could position

the “Maypole” at different points on a surface (NB: this must be done before performing any

isotopies). However, while the choice of a projection line for the Artin braid may seem arbitrary,

in light of the shape of a dance set we do have a natural position for the Maypole, namely at

the centre of the action, i.e. the unweighted barycentre of the strand “home positions”.

Of course, a dance is not static, and the centre of activity often shifts from one end of the

dance set to the other; we can see this as the Maypole moving relative to the action, and

consider how the braid is affected. Firstly, moving the Maypole certainly does not generally

yield conjugate braids. We can see this by looking at a slight variant of our two-strand braid,

3.4. Positioning of the Maypole
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(a) (b) (c)

Left: Artin braid;

Below: annular braid

Top: a sequence of trajectories for two dancers in a square set;

Bottom left: the trajectories as a geometric braid with Maypole; right: the Artin and annular braids

Fig. 3.9: Image showing a sequence of turns with equivalent Artin braids, but distinct Maypole braids

fig. 3.8. By moving the Maypole, we change the Maypole closure. Thus by Markov’s Theorem,

the corresponding two braids cannot be conjugate. Indeed, conjugacy is given by rotating the

braid (i.e. cycling the strand numbers), just as in the Artin braids; this corresponds to changing

the position of the “Maypole strand” in the isomorphism.

What we can say is that the annular braid encodes information not just about the interaction

between strands, but also about how each strand interacts with the (position of) the Maypole.

Thus any crossing in the Artin braid may have been a crossing “in front of” or “behind” the

Maypole, or a loop around the Maypole (fig. 3.9); not only this, but also a strand section with

no other interactions may become a loop around the Maypole, as in the 1-strand braid in fig.

3.5. We will see examples of this in the circles and turns in Ch. 4, and we will be able to capture

this extra information using Maypole-specific invariants in Ch. 5.

We can now formally justify placing the Maypole at the centre of the set: let p be the path

traced by a strand (we consider a path as a series of t points sampled over the normalised

time period; by defining a finite grid of possible points, we have a finite set of such paths);

consider the Maypole as an observer of p; set m = 0 if the strand does not pass the Maypole,

m = 1 if it does (we assume > 1 passes to be separate braid sections, or for n = 1 we

3.4. Positioning of the Maypole
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Fig. 3.10: Two dance figures we might consider equivalent to dance

count loops instead). We aim to position the Maypole such that if all paths are equally likely,

the variable m gives us maximum information about the probable path p that was taken, i.e.

the mutual information I(p,m) = H(m) − H(m|p) is maximised. Since we have defined the
path distribution as fixed and uniform, this is done by maximising the entropy H(m), and it

is a standard result in information theory that maximum entropy is achieved by the uniform

distribution, P (m = 0) = P (m = 1) = 0.5, i.e. if the Maypole is passed by half of the (equally

likely) paths – thus at the centre of the set.

Arguably, this extra information is too much, since we know that the Artin braid group is

isomorphic to the geometric braid group, thus the Artin braids already capture the full notion

of isotopy. The two loops shown in fig. 3.10 might well be considered equivalent to dance.

We might therefore wonder if we could keep the all-round view of placing our observer at the

centre of the set, but leave the Maypole itself out of the model. We look briefly at this next.

3.5 Removing the Maypole

Suppose that instead of installing a Maypole on the dance floor, we imagine placing a swivel hook

in the ceiling, with ribbons attached to the hook and to the dancers. The dancers can dance

directly beneath the hook, with no fear of colliding with a Maypole. To model this as a group

Hn, we assume that each τ generator untwists itself, so that a half twist is indistinguishable
from a full twist is indistinguishable from the identity.

Since, in the usual annular braid group, the relation T1 enables us to write a braid β as β ≃ β′τk

where β′ has no τ generators and k ∈ Z, we have that CBn = Hn × Z; equivalently, Hn is
the quotient of CBn by the integers. These braids will differentiate between the three crossings
of fig. 3.9, but not the two loops of 3.10, yet they lose information about the permutation,

causing problems for composition of these braids (as in the example of a half circle). To preserve

permutations, we might only allow our hook to spin back by full turns, i.e. quotient CBn by the
relation τn = 1. Since we have τn = ∆2 = Z(CBn), this yields H′n = CBn/Z(CBn).

We will not consider this variant of the model further, but see e.g. [Haw12] for others who have

used this model to think about braids as dances.

3.5. Removing the Maypole



4 — Illustrations: braids and dances

We have already seen some examples in the introductory chapters. The goal of this section is

to give a brief flavour of the typical braids and dances that we see in SCD. We introduce a few

of the basic figures and then illustrate a selection of full dances.

4.1 Software

We were aware of various software which can work with Artin braids: SageMath [The22] is a

powerful python-based mathematical software with rich group-theoretical functionality, including

tools specific to the braid group and related Artin groups; SnapPy [Cul+24] is a useful tool for

working with links and braid closures – for example, it is possible to draw a link by hand and send

it to SageMath; braidlab [TB19] is a MATLAB package created for generating Artin braids

from path data, with functions for equality, braid invariants, etc; it also has partial functionality

for annular braids, but as it only supports the generator σn, not τ , and is not able to generate

annular braids from path data, we found these functions to be of limited use.

4.1.1 Our pipeline

To support our investigation of annular braids for modelling SCD, we wanted a pathway to

efficiently generate the braid for a given dance or figure. We implemented small scripts to

convert Bezier curve data from the gimp path tool into 3-D trajectory data which can be read

by braidlab, and extended this with MATLAB code to generate annular braids for the paths.

Since many SCD dances make use of standard figures, these only needed to be plotted once,

and could then be reused (possibly after rotation or reflection) in the braids for other dances.

To aid visualisation, since even braidlab does not have an intuitive way to view annular

braids, we extended the LATEX braids package [Sta22] to work with annular braids and added

MATLAB scripts to visualise these by popping up a temporary PDF file. For practical use,

we added commands to output braids in the formats understood by SageMath (vectors), the

LATEX braids package (in a TikZ pic), and the body of this LATEX document (σ-notation).

With these tools, we can efficiently plot the paths of a group of dancers in gimp, as in the

example in fig. 4.1a, and then generate Artin and annular braids, obtain properties of these
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(a) Plotting paths in gimp

(b) Script output: various projections of a set of paths; PDF with braid;

closure in SnaPpy

Fig. 4.1: Software pipeline

and their closures using braidlab and SageMath, plot the corresponding link in SnapPy, and

output a PDF popup with a LATEX visualisation (fig. 4.1). We also wrote code implementing

the isomorphism f and g = f −1 (using Artin combing), i.e. to convert between annular n-strand

and Artin (n+1)-strand braids, along with various auxiliary functions (to animate a set of paths,

remove a strand from a braid, double up a strand to model parallel tracks, calculate invariants,

etc.). Future work could investigate the use of motion tracking software trained on a suitable

dataset [Sun+22] to generate path data directly from a video of a dance. The relevant machine

learning models are interesting in themselves, but beyond the scope of this project.

With the aid of this pipeline, this chapter illustrates the braids for a selection of dance figures

and dances, to provide a flavour of the kinds of braids that are typical of SCD and highlight

some interesting properties.

4.2 Dance figures

4.2.1 Circles – right-hand star / left-hand star – chase

We have already seen the circle one way in fig. 2.13a. This figure, in which dancers face into

the circle and take hands, is a relatively rare figure in SCD (the circle round and back , which

has identity braid, is much more common), but other figures that have the same track are more

commonly danced – for example, the chase or right-hand / left-hand star in which dancers

face in the direction of travel. We will see a way of differentiating these in Sec. 5.2.5.

As well as the Maypole braid, we saw the Artin braid for the circular track; that is, the braid

obtained if the observer is outside the circle. SCD dances often have smaller circles not involving

4.2. Dance figures
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Reel of three: ’x’ marks

the Maypole position

=⇒

Parallel reels Mirror reels

(a) Reel of three and its braid

Couples 1, 3 turn RH:

(σ−16 σ3)
2

Couples 1, 3 turn LH:

(σ−16 σ3)
−2

Couples 1,2,and 3 turn RH:

(τσ−12 σ−11 σ2σ4σ
−1
5 σ−14 )

2

(b) Turn by the left, turn by the right, three couples turn

Fig. 4.2: Simple examples

all the dancers; depending on how energetic the dancers are, these circles may or may not go

round the Maypole, as in fig. 3.10; if they do not, their subbraid will look like an Artin braid. In

Pelorus Jack we will see a braid for the case where the dancers do loop around the Maypole.

In The Sausage Machine we will see a figure where right-hand / left-hand stars are danced in

parallel at the two ends of a rectangular dance set, and thus both “outside” the Maypole.

4.2.2 Reel of three – Extended reels – The grand chain

Reel of three The reel of three is danced by three dancers following the same figure-eight

path, starting at the three points on the axis of the eight. When viewed from the side, this

figure generates the “canonical” braid such as we might plait in someone’s hair (fig. 4.2a),

which is known to have various interesting properties. In a dance, the reel of three might be

danced “on the side” – so that the Artin y projection would generate the natural braid – or “on

the end” – so that the x projection would generate the natural braid, or even along a diagonal

(in which case either projection would generate the natural braid).

Since the reel of three is typically danced along one edge of the dance set, the Maypole observer

will be outside the figure and so the annular and Artin braids will generally be the same; the

advantages of the Maypole braid are that if two such reels are danced in parallel, they are clearly

distinct in the braid (fig. 4.2a), and that the braid is equally clear whether the reel is danced on

the sides or on the ends. Many variants on the reel of three appear in SCD. Firstly, notice that

the middle dancer starts from a four-way crossroads on the track – the direction in which

4.2. Dance figures
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Fig. 4.3: The reel or ”hey” of 5 dancers

they begin moving determines how the reel is danced. Thus there are four possible reels of

three, with braids (σ1σ
−1
2 )

±3, (σ−12 σ1)
±3; these four braids are conjugate, but not equivalent:

they form two pairs with translational and mirror image symmetry. Secondly, reels are often

danced in parallel or with two sides mirroring each other; one couple or all three couples may

progress through the reel as a unit; and so on. Fig. 4.2a shows parallel reels and mirror reels.

How might we achieve this “default” braid for n > 3 dancers? For the case n even, we have

already seen the grand chain and its annular braid in fig. 2.13d. The reel can also be danced

with an even number of dancers, and generates the canonical Artin braid as long as the observer,

or Maypole, remains outside the field of action. For the case n odd, we can obtain a “canonical”

Artin braid by extending the reel of three – a reel of five or more is rare in SCD, but sometimes

seen as a straight hey in other country dancing styles (fig. 4.3). It is not possible to create a

canonical annular braid with an odd number n of strands which is not also an Artin n-braid.

4.2.3 Turn by the right / Turn by the left

Two dancers extend their right (or left) hands towards each other and rotate once about the

axis created by their joined hands, moving in the direction of their free hand (clockwise for the

right-hand turn). These turns (fig. 4.2b) are very simple moves. Note, however, that if one of

the turns happens to take place “around” the Maypole, we will see a different (sub)braid: this

could happen in a dance if the lead couple has moved to central position, or if all three couples

in a three-couple dance are turning in parallel.

4.2.4 A progression figure: Set and rotate

An interesting element of SCD is called “progression”: at the end of the dance, couples are

in a different home position from the one they started in. The dance can then be danced

through again from the new positions. Fig. 3.1 represents one of the figures used to achieve

progression, the set and rotate for four dancers (two couples) in a square. The dancers on one

diagonal of the square will travel three-quarters of a square clockwise, while the dancers on the

other diagonal travel up and down their own sides three times. At the end of the figure, the

two couples have changed places (fig. 4.4a shows this path for the dancers starting on the left

– the ladies’ side). The annular braid for this figure is quite simple – we can see dancers 2 and
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4 dancing up and down the sides without progressing “around the Maypole”, while dancers 1

and 3 each follow three-quarters of a loop around the Maypole (fig. 4.4).

(a) Set and rotate: steps 1, 2, 3 for

two dancers

12 34

(b) Set and rotate annular braid (c) Set and rotate – closure

Fig. 4.4: Set and rotate

Here, although no single strand goes around the Maypole, the permutation means that the

Maypole closure has two, not four, components from the strands, each of which is entangled

with the Maypole (fig. 4.4c) – this tells us that, unlike the reel of three, there is nowhere we can

cut open the cylinder of the annular braid to obtain an Artin braid. This closure has chirality

– it is distinct from its mirror image, so the mirror image braid (in which the crossings are

left-handed and the travel is anticlockwise) is not conjugate to the usual set and rotate.

4.2.5 Other progression figures

It is not uncommon for SCD dances to achieve the progression by the simple expedient of having

dancers exchange places, as we will see in Pelorus Jack in the next section. Fig. 4.5 shows two

other popular “progression figures”: the allemande and the poussette. Unlike set and rotate,

each couple moves as a unit in both these figures. As in set and rotate, no individual completes

a loop around the Maypole, but it is nonetheless entangled in the Maypole closure.

12 34

Poussette

12 34

Allemande

The other couple • starts →
and also travels anticlockwise

Fig. 4.5: Two progression figures: the poussette and the allemande

In the next section, we look at the full braids for three dances, beginning with the ceilidh dance

The Sausage Machine.

4.2. Dance figures
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4.3 Dances1

4.3.1 The Sausage Machine: a simple dance for four couples

Phrase 1: Couple 1 dance down the outside of the

longways set, turn, go back

Phrase 2: Right-hand star at each end;

Left-hand star at each end

This entire block is an identity braid!

Most of the action in this braid is mirrored along the axis

between the two lines of dancers. However, in this phrase,

the split is between the two “ends” of the set, i.e. ro-

tated by 90◦ (left figure below) – this causes the braid to loop

around the Maypole, distinguishing it from an Artin braid

⟳ ⟳
⟲

⟳

Phrase 3: The sausage! End couple form an arch and

other couples dance through it and round back to place

This block is not an identity braid: in fact, it is equiva-

lent to two circles one way, one at each side of the set

(right figure above)

Phrase 4: Couple 1 dance down

inside of set and spin together

Each spin adds a twist between their strands, adding asym-

metry to the dance!

Progression: couples now in order C2–C3–C4–C1: repeat x4

1Instructions and videos for the dances can be found in the strathspey.org database

https://my.strathspey.org/dd/search/dance by searching the dance name.

4.3. Dances
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4.3.2 Pelorus Jack: a dolphin-themed dance for three couples

Phrase 1a: C1 swap places with each other, and then

with their neighbour: this swap creates the progression

Phrase 1b: Right-hand star (one way only)!

Phrases 2&3: dolphins: C1 dance a four-leaf clover

figure in tandem, switching lead on each leaf of the

clover (see figure); the other dancers weave through

the figure on the diagonals, alternating waiting and

moving

Phrase 4a: Left-hand star : balances right-hand star

from beginning

Phrase 4b: C1 swap places: balances swap at start

Progression: Couple ordering is now C2, C1, C3

(swap with neighbour in phrase 1 is not reversed here)

4.3. Dances
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4.3.3 Close up: the “clover” figure

Half of Pelorus Jack is taken up with the “four-leaf clover” figure. In this dance, the figure is

intended to represent a pair of dolphins playing – Pelorus Jack was a famous dolphin in Cook

Strait, New Zealand. Looking at the track for the two dolphins, or dancers, as they trace out

the figure, we can see that each of them makes a total of three loops around the Maypole:

moving between each of the four corners of the clover, they make a half-loop around it, and

the clover itself represents one complete loop. Were the dancers to cut the corners rather than

complete the half-loops around the Maypole, then the figure would only involve one complete

loop around the Maypole for each of the two dancers – and it would be anticlockwise!

Another popular dance, Mairi’s Wedding , features just such a figure, but with the difference

that rather than travel together like friendly dolphins, the newlyweds turn their backs on one

another and embark on the clover on opposite diagonals. As they move between leaves, they

turn left shoulders to each other. If this sounds rather unfriendly for a wedding dance – well,

there is an alternative, commonly dubbed Mairi’s Divorce! In this variant, the couple swing

around each other by the right, and thus loop around the Maypole like the dolphins of Pelorus

Jack . The next page shows a close up comparison of the three figures. In the braids, we can

clearly see the additional loops around the Maypole, and the four “dolphins leaping” crossings

of Pelorus Jack .

After that, we look at The Summer Assembly , a dance in a square set with no progression.

Like the “clover” figures, this dance has a middle figure with net clockwise rotation: all eight

dancers complete 1.5 rotations around the Maypole during bars 5&6. During the first four bars,

the ladies travel halfway clockwise and the men anticlockwise. Therefore, the net rotation in

the figure is 1 rotation for the men and 2 for the ladies (a total of 12 loops). This is the kind of

information that we obtain from braid invariants, which will be the subject of the next chapter.

4.3. Dances
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x x

Mairi’s Wedding: V Mairi’s Divorce: V Pelorus Jack: V

The Mairi’s Wedding braid travels anticlockwise, while the other two travel clockwise.

Look carefully at the track diagrams to see why.

Fig. 4.6: Comparison of the “clover” figures from three dances

4.3. Dances
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4.3.4 The Summer Assembly: an 88-bar dance in a square set

repeat from sides

. . .

Phrase 1&2: RH turn,

ladies move one place

clockwise; repeat

((σ1σ3σ5σ7)
−2τ)2)

Phrase 3&4: LH turn, men move one place anticlock-

wise; repeat. Everybody finds their partner!

Phrase 5a: End couples right-hand star (in middle)

Phrase 5b: Moving couples chase halfway in same

direction, now outside the standing couples

Phrase 6: Other couples repeat

Phrase 7&8: Women loop round partner to right, then

round neighbour to left; men repeat

(Sometimes called “tindering”: swipe right, swipe left. . . )

(σ1σ3σ5σ7)
2τ−1(σ1σ3σ5σ7)−2τ = (σ1σ3σ5σ7)2(σ2σ4σ6σ8)−2

Phrase 9: End couples change places (making an arch)

and back – we see one couple going inside the other cou-

ple in one direction, and outside in the other direction

Phrase 10 & 11: Side couples repeat; dance ends

with a circle round and back

4.3. Dances



5 — Invariants

Diagrams like those of the preceding section are a nice way to visually abstract information from

a set of trajectories, leaving only the elements that interest us. However, the true richness of

the braid model comes from the group equivalence relations. A braid invariant is a function

ψ : Bn → X (or ψ : CBn → X) for some set X, such that β1 ≃ β2 =⇒ ψ(β1) = ψ(β2). This

is a one-way implication; if the implication does hold in both directions, the invariant is said to

be faithful (or complete). Thus ψ : ψ(β) = 1 for all β ∈ Bn is an invariant, albeit not a very
interesting one, and not faithful. We have already seen the permutation function π : Bn → Sn:

this is a more useful unfaithful invariant.

In this section, we look at ways invariants can tell us something about the braid – about its

length or complexity, and about various “twistiness” properties – and consider how these might

relate to dances.

Calculating invariants An algorithm for determining an invariant might be defined on the

Artin braid word, or it might be based on a different representation of the braid, such as the

geometric braid or a knot diagram. When we look at the invariant for an annular braid β ∈ CBn,
our first question will be whether it makes sense to simply apply the algorithm to f (β) ∈ Bn+1; if
not, we briefly consider what we might do instead. Of course, for any Artin invariant ψ and any

β1, β2 ∈ CBn, we have that if β1 ≃ β2, then ψ(f (β1)) = ψ(f (β2)); i.e. the invariant property
holds. However, often we would expect of an annular braid invariant ψ that (say) ψ(σn) behaves

the same way as ψ(σi), which may not be the case if we consider the isomorphic Artin braid.

5.1 Length invariants

5.1.1 Word length

Minimum Artin word length A simple first invariant: the length of a braid usually refers

to the length of the shortest equivalent braid (in our usual σi generators) and has a natural

equivalent for the annular braid group. Here, transformation to the “isomorphic Artin” can yield

a different result. For example, the simple braids β1 = σ1, β2 = τ have the same minimum

word lengths, namely 1, but f (β1) has length 1 while f (β2) has length n + 1.
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Fig. 5.1: Pulling tight superimposed curve diagrams (taken from [Deh+08, p. 195])

Alternative presentations The “isomorphic Artin” and the presentation P of the annular
braid group can be considered as alternative presentations of CBn, giving us two different
length invariants; we could further use the relation T1 to define a new presentation of CBn
with just two generators s, t and hence obtain another invariant. There also exist quite different

presentations of the braid groups and related groups. For example, in the Coxeter presentation

of CBn, the relations are all symmetric1:

C = ⟨ s1, . . . , sn, t | A1, A2, Id

si t = tsi (i < n)

sntsnt = tsntsn ⟩

Normal forms Length of a minimal word is not the only way to measure the length of a

braid. An Artin-combed braid is in a normal form, and its length can also be considered an

invariant, since equivalent braids will have the same normal form. Other normal forms are based

on alternative presentations of the group: the Garside presentation is derived for Artin braids

from the half twist ∆ and the simple permutation braids Pi we used for Artin combing, and

leads to a normal form β = ∆rP where P is a word in the Pi ; this form was developed to solve

the braid conjugacy problem ([Gar69]). For annular braids, the Garside normal form is derived

from the Coxeter presentation, with fundamental word δ defined such that δ corresponds to a

full twist. Mosher normal form [Mos95] uses triangulations of the disc to construct a canonical

word for a braid seen as an action on the disc (Sec. 2.3.2).

5.1.2 Geometric complexity

An alternative way of “measuring” a braid is from its curve diagram (Sec. 2.3.2). Given two

curve diagrams, it is possible to superimpose them and perform an operation known in the trade

as “pulling tight” (fig. 5.1 – braid topologists simply won’t let bigons be bigons), such that if

two braids are equivalent, their curve diagrams will pull tight into the same curve. By pulling

tight a curve diagram against the identity, we obtain a canonical form of the curve, so that

properties of the curve diagram are invariants of the braid. One such property is the geometric

1
This is a presentation for the Coxeter group Bn+1, which has graph

[Cri99] gives a geometric proof that this group is isomorphic to CBn
•
1

•
2

•
n

•
n+1

4
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Curve system of n arcs on

the punctured annulus: our

innovation is to replace

the diameter with a closed

curve as “border”

τ σi

(a) Identity, action of τ and of single σi

σiσi+1 σiσ
−1
i+1

(b) Action of σiσi+1 and σiσ
−1
i+1

χ(1) = log
5

5
= 0 = χ(τ)

χ(σi) = log
7

5
≈ 0.34

χ(σiσi+1) = log
9

5
≈ 0.59

χ(σiσ
−1
i+1) = log

11

5
≈ 0.79

(c) Complexities for the curve diagrams shown.

As in the system of [DW07], χ(β) also depends on n.

Fig. 5.2: Our proposed system of integrated laminations for a punctured annulus:

the dotted line represents a “border”, which plays the role of the diameter in the system of [DW07]

complexity χ(β), defined for a canonical curve diagram based on a system of disjoint simple

arcs, as in fig. 2.7f, to be the log of the number of times the curve c intersects the central

diameter (the number of intersections grows exponentially with the braid [DW07]).

We recall that a curve diagram is a property of the algebraic, not the geometric, braid: different

projections of the same geometric braid can have different curve diagrams. This means that

the curve diagram for the Artin braid f (σn) and thus its geometric complexity are different

from those for, say, f (σ2). This result matches the implementation in braidlab, but does

not reflect our intuition that the two crossings are equivalent. Just as there are alternative

algebraic presentations, there are ways to construct and pull tight alternative systems of arcs and

curve diagrams for an arbitrary compact surface [DW07], [Mos95], and thus for the punctured

annulus; accordingly, we propose the system shown in fig. 5.2: in this system, χ(τk) = 0 for

all k (a τ does not involve any interaction between strands), while χ(σi) is the same for all

crossings σi (considered in isolation).

5.2 O what a tangled web we weave. . .

In general, dances that involve more weaving in and out will have higher complexity. Comparison

of the dances on the list at a recent event2 found those with more reels to have the highest

complexity. However, in light of the braid relations, in particular Id, we must realise the length

or complexity of a braid will not be directly related to properties such as the length in bars

of a dance, the difficulty, or the energy expended, and it is not always easy to see how these

2https://my.strathspey.org/dd/list/49594/ 5.2. O what a tangled web we weave. . .

https://my.strathspey.org/dd/list/49594/
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λ1,2 = −1 λ1,3 = −2 λ1,4 = 0

Σ(λi ,j) = −8 λ2,3 = −2 λ2,4 = −2

Projection angle: 0 λ3,4 = −1

λ1,2 = −4 λ1,3 = −1 λ1,4 = −1

Σ(λi ,j) = −8 λ2,3 = −1 λ2,4 = −1

Projection angle: π/2 λ3,4 = 0

Fig. 5.3: Linking numbers for half circle - set and rotate – half circle back

invariants might be interpreted on the dance floor. We now move on to invariants more explicitly

related to how the dancers interact with each other.

5.2.1 Linking number

The linking number λs1,s2(β) of two strands s1, s2 of an Artin braid is a measure of how often

they wind around each other. It is calculated from the braid diagram: we set λs1,s2 to 0, and then

walk down the braid. Each time s1 and s2 cross with some crossing σ
±1
i , we add the exponent of

the σi to λs1,s2 . The braid β
−1 has the same set of linking numbers (but negative) as the braid β,

but unless β is a pure braid, these will not correspond to the same strands (e.g. σ21σ2: strands 1,

2 have λ1,2 = 2; for the inverse σ
−1
2 σ−21 , it is strands 1, 3 that have λ1,3 = −2; see fig. below).

For the braid α = γβγ−1, even if γ is a pure braid, the set Λα = {λi ,j} will only equal
the set Λβ if β is also a pure braid. Thus two Artin projections (which we know to be

conjugate) of a progressive figure may have different sets of linking numbers: as an

example, fig. 5.3 shows the sets Λβ for two projections of the sequence half circle left

– set and rotate – half circle right .

We calculate linking numbers in just the same way for the annular braid, but the linking numbers

we obtain are different: for example, the circle one way (fig. 2.13a) has the full twist ∆2 as

its Artin braid, in which all the exponents are positive and all linking numbers are 2, while the

annular braid has no crossings and thus all linking numbers are 0.

A turn clockwise has linking number 2; anticlockwise -2. In phrases 1–4 of The Summer

Assembly , dancers move to new partners for each turn, yielding a set of positive linking numbers

and a set of negative linking numbers. By contrast, in phrases 7–8, every pair of dancers has

linking number 0, since the men loop to the left, cancelling out the ladies’ loops to the right.

When a dancer loops around the Maypole “inside” outer dancers, they will typically pass each

outer dancer once, adding ±1 to that linking number; thus looking again at The Summer

Assembly , we distinguish between the right-hand-star inside the standing dancers and the

chase outside by negative and positive linking numbers.

Linking number is also defined for the closure of a braid, based on the crossings between pairs of

components. Since taking the closure of an Artin braid does not introduce any new crossings,

the linking numbers between components of a pure Artin braid ρ will be identical to the linking

numbers between the corresponding strands of ρ. This applies only for pure braids: the two-

5.2. O what a tangled web we weave. . .
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strand braid σ1 has linking number λ1,2 = 1, but its closure is the unknot. For an annular braid

β ∈ CBn, we have seen that the Artin closure may add new crossings that are not in β and so,
for example, the closure of the circle one way braid will have a set of non-zero linking numbers,

corresponding to the difference between the annular and Artin braid linking numbers.

5.2.2 Writhe

Writhe is defined for an Artin braid as the sum of the linking numbers in the braid, i.e. the

sum of exponents in the braid word; thus the writhe of the full twist is n(n − 1). Writhe is a
geometric invariant of the braid and does not change on a choice of Artin projection. In fact, it

has a physical intuition: if we make a pipe-cleaner braid held between two planes, as in fig. 2.3,

fix one of the planes in place and free the other end, the braid will tend to try and untwist

itself3. The writhe is a measure of how enthusiastically it will do so. This intuition can help us

answer the question of how to calculate writhe for an annular braid β: the result should be the

same as for a corresponding n-strand Artin braid (not the (n+1)-strand f (β)). Therefore, we

need each τ to contribute n − 1 to the writhe.

For example, in the two “bookend” phrases of The Sausage Machine only the right-hand turns

contribute writhe, as they “twist up” these parts of the braids. The braid for the sausage phrase

is two full twists of four in opposite directions, which cancel out . The other phrases contribute

no writhe. Were we to look at the first half of phrase 2 in isolation, the two right-hand stars

would have a writhe of (3 ∗ 4) + (3 ∗ 4) – precisely the writhe of two full twists of four.

Similarly, in the first part of The Summer Assembly , as discussed, half the dancers accumulate

positive linking numbers and half negative; again, these cancel each other out in the writhe.

Phrase 5a has a full twist of four dancers: without the other dancers, ∆24 would have a writhe

of 12, and indeed this is the writhe of this section: each of the four inner dancers passes each

outer dancer once, “undoing” these dancers’ contributions to the four τ generators. In phrase

5b, we have a half twist of four dancers, now on the outside of the inner dancers, and 12∆
2
4 = 6

is added to the writhe. The dancers in the repeat (phrase 6) also travel clockwise, so that the

total writhe of these middle phrases is 36 – rather less than one full twist of eight dancers.

We look next at two new Maypole-specific invariants and their relation to existing invariants,

and define a modification of the braid model to use linking number in a new way.

5.2.3 Winding number

The winding number ξ(c) of a curve c about an axis is the net angle that a person standing at

that axis would turn if they were to follow the curve from its start to its end; thus a curve that

3The author has verified this empirically!

5.2. O what a tangled web we weave. . .



Chapter 5. Invariants 46

loops once around the axis has ξ(c) = 2π; if c loops back the other way, ξ(c) returns to zero,

whereas if it continues around a second time, ξ(c) will increase to 4π. While an Artin braid has

no obvious axis, an annular braid does have one: we can take the winding number of a strand

about the notional Maypole; this number will grow (or reduce) in steps of 2πn . To see that ξ is

an invariant of an annular braid, we need only show that it is invariant under the equivalence A2

(invariance is clear for A1 and T1). This equivalence affects a subbraid of 3 strands i , i+1, i+2,

thus with a width of 2 steps. The difference in position of each strand between the start and

end of this subbraid is the step contribution to the winding number of that strand. Since A2 is

a braid equivalence and thus preserves permutation, the ending positions of the strands in this

subbraid cannot be changed by applying A2, and so we have that ξ is an invariant.

The winding number ξs of a single strand s corresponds to the (net) number of rotations that s

makes about the Maypole. Thus in the full twist, every strand s has ξs = 2π. The lead couple

in the “clover” figure of Mairi’s Wedding couple each have ξ = −2π; in the Mairi’s Divorce

and Pelorus Jack figures, they each have ξ = 6π.

5.2.4 Net twist

Just as we summed linking number to obtain writhe, we can calculate the total winding number

over all strands. Since we have fixed home positions assumed to be 2πn apart, any generator σi

will result in a net change of 0 to the total winding number, which thus depends only on the τ

generators. We have already seen that we can always write a braid β as β′τk where β′ has no

τm; hence k is an invariant of the annular braid, which we can call net twist Tβ.

Net twist is related to the writhe: when wound up and let go, this τ part of the braid would

certainly spring back. However, it is a coarser measure, since a phrase like the right-hand-stars

in The Sausage Machine, which we saw to have the writhe of two full twists, has Tβ = 0. In

The Summer Assembly , only phrases 5&6 contribute to Tβ, and they each contribute +6τ

– demonstrating this invariant does not distinguish between four dancers dancing a full circle,

and eight dancers dancing a half circle; in combination with the braid permutation it would do.

5.2.5 Shoulder strands

We can use the linking number to create a new invariant spin for SCD: instead of one strand per

dancer, we associate a strand with each shoulder of each dancer; these strands will cross when

the dancer turns to face the opposite direction4. We add a constraint that pairs of strands

must always move together. It is clear from fig. 5.4 that this constraint means it will always be

possible to slide these “shoulder crossings” through the braid. This leads to a presentation of

this new group SBn with our usual τ, σi generators, plus a new set of generators ω1, . . . , ωn: an
4Idea thanks to Hugh Griffiths, PhD (University of Edinburgh)
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il ir jl jr

=

il ir jl jr

=

il ir jl jr

Fig. 5.4: Shoulder strands – equivalence relations

ωi generator represents the braid action in which the shoulders of dancer i twist 180 degrees.

S = ⟨ τ, σ1, . . . , σn, ω1, . . . , ωn | A1,A2, Id,T1

ωjσj = σjωj+1;ωjτ = τωj+1;ωiωj = ωjωi ⟩

Like linking number, a spin is associated with a strand, not a position. In fact, it is none other

than the linking number of the two “shoulder strands” associated with dancer i ! However, since

we can move ωi terms through the braid, we can rewrite the braid in the form βω
k1
1 . . . ω

kn
n , and

then read off the net spin of each strand immediately. Thus we have that SBn ≃ CBn×Zn.

L

R

R

L

θR < θL θR < θL

L

R

L

R

θR < θL θL < θR

(a) Shoulder strands: right-hand turn (top); do-si-do (bottom)

(b) Shoulder strands detect loop-

ing outside the Maypole: cast up

Fig. 5.5: Shoulder strand invariant: examples
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This model enables us to distinguish between a do-si-do and a turn (fig. 5.5a); between a circle

one way (facing in) and a full chase (facing direction of travel). We can also distinguish a

dancer looping outside the Maypole (fig. 5.5b). In the clover figure of Mairi’s Wedding , the

lead couple each build up spin on each quarter of the clover – loops made entirely outside the

Maypole. Thus the strand spins can help us answer questions like: is there a general tendency

towards turning in a clockwise or anticlockwise direction in a dance? Do some dancers spin

more than others? Do the spins of the partners in a couple cancel out?

We now have several measures of the loopiness in a dance: one dancer turning on their heel

has spin; one dancer looping around the Maypole has a winding number; two dancers turning

around one another have a linking number; all these numbers contribute to the writhe and the

net twist. These invariants can tell us about the balance of a dance – not only in terms of

its clockwise bias or right-handedness, but also by allowing us to compare linking and winding

numbers between dancers and couples.

5.3 Bar-hopping bewilders dancers

While we have succeeded in encapsulating some aspects of the dance in invariants such as net

twist and linking number, other aspects continue to elude us. How energetic is the dance? Does

the braid reflect the symmetries of the dance – reflective, translational, rotational? Essentially,

when we start to examine the use of braids and braid invariants as an abstraction of an SCD

dance, we realise that the braid relations do not well capture our notion of equivalence in a dance,

in light of the freedom they give us to entirely restructure and rearrange a braid. Invariants are

properties of the “whole dance”, without taking into account its flow, yet dancing the same or

similar moves in a different order generally feels like a different dance. The initial abstraction of

simplifying a three-dimensional dataset of dancer trajectories into a short string of generators

or diagrams like those in Sec. 4.3 is a useful way of compactly capturing information about

the dance while throwing away irrelevant information. However, much of our intuition about

the structure of a dance relies on its musical framework of bars, and the braid isotopies simply

do not reflect this. If, acknowledging this problem, we remove the Artin relations (and T1

from CBn), we are left with the free group on the generators – but even the identity relation is
unsatisfying to a dancer enthusiastically springing along a circle round and back5.

The next chapter outlines two different ideas for future study: firstly, we consider an alternative

way to use braids and their closures to explore dances; secondly, we introduce groupoids as a

generalisation of groups with potential for highlighting local properties and symmetries in SCD.

5Sometimes, a particularly energetic dancer will perform a full clockwise spin as the circle changes direction:

using shoulder strands in the free group, this would be sufficient to distinguish the circle from the identity!
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6 — New directions: closures and groupoids

6.1 Closures and devising dances

Calculating invariants of the braids for a collection of dances is one way of organising or com-

paring these dances. Another thing we can do is turn the question around, and ask which braids

have some interesting property, and how might these braids be danced. For example, we might

identify a set of dances whose braids are equivalent to the trivial braid, or whose braids all have

the same closure. Recall that every knot or link can be represented as the closure of some

Artin braid and there are known algorithms such as Vogel’s algorithm [Gol17] for constructing

such a braid. Here, we present a brief taster of this idea.

We will focus here on the Artin closure. Recall (Sec. 3.4) that we can transform any Artin

braid β into some annular braid with the same Artin closure by constructing a geometric braid

γ whose projection is β, choosing a central axis in γ, and projecting γ onto a cylinder. For a

link L to be the Maypole closure of an annular braid, L must have at least two components, at

least one of which is the unknot. The Artin braid β found by e.g. Vogel’s algorithm will then

have at least one strand that can be used as the “Maypole”, and we can use the isomorphism

g (after rotation if necessary) to find an annular braid α = g(β) with Maypole closure L.

6.1.1 The trivial braid and trivial knot

In light of the fact that in SCD we often see figures teamed with their inverses – a turn by the

right followed by a turn by the left , a right-hand star paired with a left-hand star , couples

mirroring each other, etc. – we might expect to be able to find dances whose braid is equivalent

to the trivial braid. However, we have mentioned that most SCD dances are progressive, which

means that they do not generally have identity permutation and therefore cannot have a trivial

braid. We might wonder whether k dance-throughs of the dance with braid β could become

trivial, i.e. whether βk = 1. If an element β of an infinite group has finite order, such that

βm = 1 for some m > 0, then β is called a torsion element of the group. However, the braid

groups are known to be torsion-free [BB05]: they have no such elements, and so we are done.

Some dances, typically square-set dances like The Summer Assembly , are only danced once

49
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(a) Knot closure of three-couple dance Miss Agnes

Lowden: 1 component with 55 crossings

(b) Knot closure of four-couple dance Sushi Rolls:

1 component with 65 crossings

Fig. 6.1: Knots of Miss Agnes Lowden and Sushi Rolls: both include visible reel-like figures

through and do have identity permutation. We noted that The Summer Assembly has an

overall clockwise rotation for all dancers – this tells us immediately that it cannot have a trivial

braid. A tendency towards clockwise movement and an overall bias towards right-hand turns

is something we saw in all three dances in Sec. 4.3 and is common in SCD. While we have

certainly not investigated all 600+ non-progressive dances in the Strathspey.org database,

we believe that this bias makes it unlikely that there will be a dance with the trivial braid.

We might instead consider taking the closure of the braid and asking if it is equivalent to

the trivial knot (the unknot). This can be the case only if the permutation of the braid is

an n-cycle, since otherwise the closure will have more than one component. Searching the

Strathspey.org database by permutation (“progression”), we found just two dances with

cyclic permutations: one six-person dance and one eight-person dance. We checked manually

and neither Sushi Rolls nor Miss Agnes Lowden has the trivial knot as its closure (fig. 6.1).

6.1.2 Borromean Rings

We have observed that the reel of three yields the “canonical” three-strand Artin braid. This

braid (σ1σ
−1
2 )

3 is not only familiar to all of us from hairdos and rag rugs: it has interesting

mathematical properties – among them, its closure (fig. 6.2a), a three-component link with the

property that although the rings cannot be separated without cutting, removal of any one of

the three leaves the other two components completely separate. This property arises because

pairs of crossings between any two components have the same direction (both under / both

over): the linking number of any two strands is 0. By building on the basic reel of three, we

can create dances with closure variants related to the Borromean Rings:

Repeated reel of three If a team of three dancers dances the same reel of three R twice

in a row, the link LR2 that they will generate is a double Borromean Rings (fig. 6.2b): while

the usual Borromean Rings have 6 crossings, LR2 has 12. If they dance the reel k times, the

6.1. Closures and devising dances
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resulting Borromean link will have 6k crossings. This occurs because each time the dancers

follow the track around, they build up additional crossings with the same dancers as before. Of

course, a dance consisting of consecutive reels of three would become rather tedious – but a

dance that begins with a reel of three, followed by an identity-braid phrase such as right-hand

star, left-hand star , followed by a second reel of three is conceivable.

Arbitrary numbers of dancers If two neighbouring dancers travel in parallel through the reel

of three, then the closure of the corresponding braid will have four components. If, however,

at the end of the reel of three, these two dancers swap places, the closure will have just one

component for both dancers (fig. 6.2c). Since both dancers crossed over and under with the

same partners, the link will still have the Borromean property. This corresponds to a fairly

natural dance – not unlike the “dolphins” of Pelorus Jack . Three couples dancing in tandem

is also a plausible SCD figure, and yields a related Borromean link. We can extend this idea

to construct dances whose braid closure has the Borromean property with any number > 3 of

dancers, by dividing the dancers into three teams. To close the link component of a team of

more than two dancers, we use the obvious permutation braid: the dancers circle back to place.

6.1.3 Brunnian links and braid index

The Borromean Rings can be generalised to Brunnian links, defined as any link of n loops

(unknots) with the property that removal of any one of the components leaves a trivial link

(i.e. the other components cease to be interconnected). These links have found some interest

in chemistry, e.g. [LM94] [BS12]. Above, we explained the Brunnian property for the reel of

three by the fact that all linking numbers are zero. The reel of n for n even does not have all

zero linking numbers and thus certainly cannot have the Brunnian property. What about for

n ≥ 3 odd, for which the reel of n does have all zero linking numbers? This tells us that any
group of three rings will be Brunnian, but not that the overall link (if n > 3) will be. For that,

we need a concept of “higher order linking numbers”; these are known as Milnor µ-invariants

[Mil54]. Specific links can be checked programmatically by software such as SnapPy.

Two related families of Brunnian links are shown in fig. 6.2, the “horseshoe” (6.2d) and the

“Bonio” (6.2e), with respectively eight and six crossings per component1,2. It should be clear

that an n-component Brunnian link must need at least n dancers. We can ask if it is possible

to dance, say, a braid whose closure is the n-Bonio chain with exactly n dancers. To answer

this question, we need the concept of braid index of a link: the minimum number of strands

that a braid must have for its closure to be a particular link. If a link L has braid index k and a

k-braid β, we can always construct m-braids m > k with closure L, for example by the simple

1Horseshoe chain diagram by David Eppstein – CC0, https://commons.wikimedia.org/w/index.php?curid=

101988462; Brunnian Bonio chain drawn with SnapPy
2A slight variant on the Horseshoe chain does not close the loop, but rather uses unknots at each end.

6.1. Closures and devising dances
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(a) The Borromean Rings

=

(b) Closure of 2 repeats of the reel of three,

and an isotopic form of this link

(c) Closure of reel of 3 with one tandem couple; three tandem couples; one triplet

(d) A six-component “horseshoe” chain (e) A five-component “Bonio” chain

Braid found by SageMath for the 5-Bonio link

(f) A simple Brunnian link and a corresponding braid (after application of Id)

Fig. 6.2: Borromean Rings and Brunnian links
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expedient of inserting a strand k + 1 and transforming β → βσ±1k . (This is called the first

Markov move [MK99, Ch. 9]). However, there is no known way to determine the braid index

of an arbitrary link. For the 5-Bonio chain, Vogel’s algorithm (provided by SageMath) yields

the 7-strand “Bonio braid” shown in fig. 6.2 (strands 1,2,7 form a cycle and are highlighted) –

but does not guarantee to find the minimum number of strands. The braid index can, however,

be bounded below using homology properties of the link [FW87], and it is possible to show that

7 is indeed the braid index of the 5-Bonio, and neither Brunnian chain (Bonio, horseshoe) of n

components can be danced with n dancers.

A third family of Brunnian links is shown in fig. 6.2f: a simple Brunnian link [GG07] does have

an obvious n-strand braid βsb (we cut open the circle, e.g. at the dashed line) – but it looks

rather dull to dance! Indeed, it looks rather like the Artin-combed version of a braid: this is

unsurprising since simple Brunnian links can be described by words corresponding directly to a

presentation A of the pure braid group used in [Art47] to prove the validity of Artin combing.

Danceability Similarly, the “Bonio braid” above looks remarkably dull for the strand-7 (pink)

dancer; furthermore seven is an unusual number of dancers. Due to the implementation of

the isomorphism g using Artin combing, the annular braid ∈ CB6 whose Maypole closure is the
5-Bonio looks even less interesting! The “Bonio braid” features (σ2)

3 repeatedly; energy could

perhaps be added to the dance by adding an eighth dancer and inserting some parallel sections

σ±k4 (in such a way that their inclusion is isotopic to the identity), and/or tugging at the strings

(σ2i → σi(σi+1 . . . σk)(σi+1 . . . σk)
−1σi), equivalent to a dancer dancing up the set and back).

In general, exploring how to transform an algorithmically generated braid into an equivalent

braid whose dance is more natural would make an interesting future direction – something akin

to “reverse Artin combing”. The braid invariant step number is the minimum number of rows

needed for a braid diagram [Tia19, Sec. 7.2]. For example, the grand chain of n dancers has

length n
2

2 and requires n rows. The length n braid σ1σ2 . . . σn also has step number n. We

speculate that, since parallelising crossings corresponds to more simultaneous activity, finding

the braid βs ≃ β with minimum rows may be a starting point to devising an interesting dance.

A related invariant is the k-danceability of a link [ASS24]: the number of dancers who would

be needed to dance along the path of a knot or link if the under-strand of each crossing must

always be traversed first. Research into the relationship between k-danceability and braid index,

and what this means for real dances, is ongoing. The authors of [ASS24] observe that some

knots may require a dancer to wait for some time at an over-crossing – thus the same issue

of finding a good dance arises, and there is certainly scope for investigation of the interplay

between braid index, danceability, and a “good” dance.

We look next at another model with potential for devising dances with certain properties.

6.1. Closures and devising dances
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(a) First half of The Flying Scotsman

(c) Braid of these tracks

(b) Annular projection of these

tracks (plotted on “opened-up”

cylinder)

Fig. 6.3: The Flying Scotsman

6.2 Groupoids

Fig. 6.4: The Petronella turn

is one way to transform lines of

3× 2 to lines of 2× 3

Fig. 6.3 shows the dancers’ crib diagram for the first two phrases

of The Flying Scotsman, along with the annular projection of the

trajectories and the corresponding braid. At the point when the

dancers are halfway through the first phrase, and again halfway

through the second phrase, all the dancers are crowded into one

half of the dance set. Were we to pause the dance here, and

insert parallel reels of three (fig. 4.2a), a crash would ensue

– geometric braid condition 3 is not met at all. Dancer 3, for

example (orange), appears in the braid to be moving throughout,

although in the crib and projection, she is stationary for half the

dance. The Flying Scotsman is no exception here. Many dances

use moves such as the Petronella turn (fig. 6.4) that rotate the

lines of dancers by 90◦ during a part of the dance. To some extent, these difficulties are already

mitigated by the choice to use the annular braid, since we can easily follow the dance around

the cylinder. However, an interesting alternative could be offered by the groupoid model. We

sketch the idea below, although the details must be left for a future project.

Essentially, a groupoid is a way to capture situations where the configuration at the end of an

action is different from the start. While in a braid, we assumed that each action (crossing)

started and ended from the same configuration (n points spaced evenly around a circle), in a

6.2. Groupoids
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(a) Possible dancer positions

braids β

3x2
...
...
...
...

braids β

2x3 :::

braids α

1x6 · · · · · ·· · · · · ·
: ·· :: ·· :

Petronella

Flying Scotsman

parallel reels

(b) Visualising a groupoid

Fig. 6.5: Example of a possible SCD groupoid

groupoid we can include actions such as the Petronella turn. As in a group, we require identity

actions to exist, and we require that every action must have an inverse. However, composition

is only possible if the respective configurations match.

6.2.1 Definitions

A groupoid comprises:

• A set of objects C

• A set of transformations T = {t : Ci → Cj | Ci , Cj ∈ C} (we call Ci and Cj the “start”
and “end” objects of t), such that the following hold:

– Identity: For each t : Ci → Cj , there exists e : Ci → Cj with e.t = t and t.e = t

– Inverses: Every t : Ci → Cj ∈ T has an inverse t−1 : Cj → Ci ∈ T

– Associativity: The product ti tj is only defined if the end object of ti is the same as

the start object of tj ; if ti tj and tj tk are both defined then (ti tj)tk = ti(tj tk)

If C contains only one object G, then all t ∈ T have G as their start and end object, and we
have a group. More generally, for any single object C ∈ C, the set Tc = {t : C → C | t ∈ T }
also generates a group. So the groupoid can be seen as a collection of groups and an explicit

relation between groups.

6.2.2 The SCD “dancer positions” groupoid

In fig. 6.5a, the stars represent the original home positions of the dancers in the most typ-

ical SCD set. The dots represent other potential dancer positions at the end of a bar, or

transformation. This gives rise to the following groupoid for the 3× 2 dance set:

6.2. Groupoids
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• An object C ∈ C is an unordered set of six distinct points on the grid.

• A transformation t ∈ T is one of the following:

– A crossing σi ,j : Cs → Cs , where i , j are neighbouring points in Cs : we define

“neighbouring” to mean that a straight line between i and j would not pass through

any other point in this object3;

– A move mi ,j : Cs → Ce , where i ∈ Cs , j ̸∈ Cs , and there is a straight line from i to

j that does not pass through any point in Cs . Ce = {j} ∪ (Cs \ {i});
– A pass pi ,j : Cs → Ce or qi ,j : Cs → Ce , where i ∈ Cs , j ̸∈ Cs , and there is a straight
line from i to j that passes through exactly one point in Cs . Ce = {j} ∪ (Cs \ {i});
pi ,j passes “behind” this point and qi .j “in front of” it.

• The inverse of any transformation ti ,j is given by t−1i ,j = tj,i .

Just as we defined SCD figures as strings of crossings, we can now define them as sequences

of transformations t. Any figure which corresponds to a true geometric braid is defined by

a sequence of σi ,j transformations. The figure at the beginning of The Flying Scotsman is

defined by a sequence of mi ,j and pi ,j , qi ,j : there are no crossings. We can see a dance as a

path between dancer configurations, with braid-like sections within each configuration.

6.2.3 The SCD “dancer directions” groupoid

In Sec. 5.2.5, we saw a way to model the spin of a solo dancer using pairs of strands. An

alternative way to model spin would be to extend the usual annular braid into a groupoid by

labelling each dancer’s strand with the direction the dancer is facing. This kind of model is

used in quantum computing, where particle interactions are represented by braids, and a spin

is associated with each strand to create a groupoid [Kau94] [Goo23]. In this model:

• An object S ∈ C is a binary (or q-ary) string of length n, whose ith coordinate gives the
direction that the strand in position i is facing (towards/away from the Maypole, or one

of q compass directions);

• A transformation σ : {1, . . . n} × Ci → Cj or τ : {1, . . . n} × Ci → Cj is equivalent to a

braid crossing σi or twist τ but incorporates a specification of dancer directions; thus the

crossing in a do-si-do is now distinct from the crossing in a right-hand turn.

Dancers can thus only perform the next action if they are facing the right way. One of the uses

of this model could be to look for good flow in a dance: in general, sharp turns are considered

awkward to dance. It would of course be possible to combine this groupoid with the previous

groupoid, so that an object is C × S.
3Note that this is a broader definition than the braid crossing, as it allows e.g. diagonal crossings
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Continuing the theme of extending the braid model by assigning properties to “strands”, we

could endow the braid model with fixed strand properties: the couple number (so each number

would be assigned to two “strands”), and/or the gender label. Models like this could enable us

to “typecheck” that at the end of the dance, all the ladies are back on the ladies’ side, albeit

possibly in a different order, or that at the start of the figure known as a ladies’ chain, the

“strands” performing the chain are indeed ladies.

6.2.4 Applications of groupoids for SCD

What else might we do with such a groupoid? One thing we could do is bring the idea of

“challenge dancing” and “challenge calling” from Square Dance to SCD! American Square

Dance shares with SCD the property of having structured dance sets and a library of dance

figures4 – in square dance known as calls – which are chained together to create a dance that

begins and ends in the home set formation. The definition of each call explicitly includes the

configuration of dancers – including which direction they are facing – at the start of the call

and the end of the call, thus each call triggers a transition between configurations and there

is a natural mapping to a groupoid. In challenge dancing, the dance is treated explicitly as a

mathematical puzzle to be solved on the fly [SH22]. We could also use the same techniques in

a more relaxed setting for devising or checking dances.

A second way we could use groupoids is to explore symmetries. A point that stands out in SCD,

when we look at the example dances in Sec. 4.3, attend a ball, or learn new dances in class,

is that there is a lot of symmetry – in particular, different kinds of symmetry. The Sausage

Machine has an axis of reflective symmetry along the set for most of the dance, but phrase

3 has translational symmetry across the set. In A Summer Assembly , we see translational

and reflective symmetry in phrases 1–4, and rotational symmetry in phrases 5&6. The second

phrase of The Flying Scotsman is a delayed mirror image of the first. Although we have found

invariants to analyse some aspects of a dance, we have not really identified how our model of

SCD can highlight these different forms of symmetry that appear in so many dances. Groupoids

have local orbit structures analogous to orbits within groups, which are excellent for describing

local symmetries [Wei96]. It is also possible to define equivalence relations on sequences of

transformations [IR19, Ch. 3–4], and use these to quotient the groupoid; this technique has

potential for exposing implicit symmetries.

While there was not scope in this project to explore this approach in any detail, we believe this

to be a promising avenue for future investigations into the mathematics of SCD.

4See https://www.tamtwirlers.org/taminations/ for an elegant overview

6.2. Groupoids

https://www.tamtwirlers.org/taminations/


7 — Discussion

7.1 Summary

This project began with the goal of investigating braids as a model for Scottish Country Danc-

ing, a dance style with regularities and symmetries that we believed would lend it well to

mathematical study. Part of the charm of braid theory is its reach into numerous mathematical

disciplines – topology, group theory, geometry, and beyond, and after introducing the theo-

retical background in Chapter 2, we used SCD as a source of examples to illuminate the less

well studied annular braid from several of these angles, including introducing novel and adapted

annular braid invariants (Chapters 3–5). In the course of the project we built on existing tools

to create a software framework to support our explorations. By the end of Chapter 5 we had

concluded that while the braid model can cast light on some elements of SCD, particularly

in terms of overall balance in interactions and loops, the importance of the temporal flow of

a dance makes braid isotopy inappropriate for many aspects. Finally, in Chapter 6 we dipped

briefly into the idea of devising dances with certain properties, before introducing an extension

to the braid model with promising possibilities.

7.2 Conclusions and future directions

The broad range of angles from which braids can be studied made this project something of a

whistle-stop tour. We hope to have emphasised the annular braid as worthy of further study

in its own right, particularly for applications involving trajectories of moving objects such as

robot path planning. We alluded to AI-trained motion tracking models as a quite different, but

also interesting, future direction for collecting such trajectories. In Sec. 6.1, we presented a

taster of the interaction between braids and links, leaving open the tantalising question of how

to make a braid “danceable”, and a possible relationship to the knot invariant k-danceability.

Finally, in Sec. 6.2, we outlined groupoids as algebraic objects that could extend the braid

group and speculated that this model could present an interesting direction for further study

into the maths of SCD, and in particular for exploring local symmetries. This latter direction

seems to us highly promising for future SCD mathematicians. We look forward to seeing more

SCD-related mathematical investigations in years to come.
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A — Artin relations

• Artin 2: σiσi+1σi = σi+1σiσi+1 =⇒

Three-step relations:

σϵi σ
ϵ
i+1σ

ϵ
i = σ

ϵ
i+1σ

ϵ
i σ
ϵ
i+1 (ϵ = ±1) (same sign) (A.1)
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δ
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−ϵ
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δ
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ϵ
i+1 (ϵ, δ = ±1) (one end differs) (A.2)

Two-step “chunk” relation:

σδki σ
ϵ
j = σ

ϵ
j σ
ϵ
i σ
δk
j σ

−ϵ
i (A.3)

Three-step relations:

• A.1 follows directly from Artin 2

• A.2:

σiσi+1σiσ
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−1
i σ−1i+1 = σi+1σiσi+1σ
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−1
i (by A.1 twice)
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A.2 follows by taking (A.2*)−1

Two-step “chunk” relation:

• k = 1: follows directly from three-step relations

• k > 1:

σδki σ
ϵ
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ϵ
i = σ

ϵ
i+1σ

ϵ
i σ
δk
i+1 (visual proof below)
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A.3 follows by combining A.3a and A.3b

61



Appendix A. Artin relations 62

σ2ki σi+1σi

=

k even:

σi+1σiσ
2k+1
i+1 σ2k+1i σi+1σi

=

k odd:

σi+1σiσ
2k+1
i+1

Larger “handle” relation:

σϵi βσ
δ
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′σϵn−1 . . . σ
ϵ
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ϵ
i σ
δ
i (δ, ϵ = ±1); σϵj ∈ β → σϵj−1 ∈ β′

Visual proof:

β = β′
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