1 Topologies

Euclidean	$B(x,r) = \{y \in \mathbb{R}^n : x-y < r\}$
	U is open if for every $x \in U$, there is some $\epsilon > 0$ with $B(x, \epsilon) \subset U$
Discrete	Open sets are all subsets of X
Indiscrete	(Trivial) Open sets are $\{\emptyset, X\}$
Particular point	based at x : set is open if it contains x
Cofinite	"finite complement": open sets $U \subseteq X$ have $X \setminus U$ finite
Cocountable	analogous
Gate	- X is functions from $[0,1]$ to \mathbb{R}
	- U is open if all the functions in it are "sufficiently close" at some finite set
	of gates.
Subspace	of (X, \mathcal{T}) : given a space $Y \subseteq X$, $V = U \cap Y$ is open if U is open
Topologist's sine	
curve	$Y = \{(0 \ u) -1 \le u \le 1\} \qquad \qquad u = [-1 \ 1]$
	$X = \{(x, \sin(1/x)) 0 < x \le 1\}$ $y = \{(x, \sin(1/x)) 0 < x \le 1\}$ $y = \{(0, 1)\}$

Quotient spaces $q: X \to X/ \sim$ is defined by q(x) = [x]; then

$$\mathcal{T}_q = \{ U \subseteq X / \sim | q^{-1}(U) \in \mathcal{T} \}$$

Polyhedron

|K| of a complex K has the subspace topology on \mathbb{R}^n

Hawaiian earring

Circle of radius 1/n with centre (1/n, 0):

$$R_{n} = \{(x, y) \in \mathbb{R}^{2} | \left(x - \frac{1}{n}\right)^{2} + y^{2} = \frac{1}{n^{2}} \}$$

2 Theorems and results

Ex 31. Compositions are continuous

Ex 36. Arbitrary intersections/finite unions of closed sets are closed

Ex 53. $(a,b) \times (c,d)$ are a basis for \mathbb{R}^2

Ex 57. Can provide infinitude of prime numbers using $S(a,b) = \{a+kb | k \in \mathbb{Z}\}$ as a basis of a topology

Ex 59. Homeomorphism is an equivalence relation

Ex 62. $\mathbb{R} \cong (0, 1)$ under usual topology (asymptotic function)

Ex 67. X Hausdorff $\implies Y \subseteq X$ Hausdorff

Ex 68. Discrete top: Hausdorff; indiscrete, pp not Hausdorff

Ex 92. Conn. cpts of \mathbb{Q} : sets of size 1

Ex 102. Union of finitely many compact sets is compact

Ex 128/129/130. Prod. top: *X* × *Y*:

 $\begin{array}{rcl} \text{connected} & \Longleftrightarrow X, Y \text{ connected} & (+ \text{Thm127}) \\ \text{compact} & \Longleftrightarrow X, Y \text{ compact} & (+ 124/125: \text{Tychonoff}) \\ \text{Hausdorff} & \Longleftrightarrow X, Y \text{Hausdorff} & \end{array}$

Ex 131. $[0,1) \times [0,1) \cong [0,1] \times [0,1)$: Start by projecting square out to disc

Ex 143. $X/ \sim \Rightarrow X$ connected

Thm 4. Monotone convergence: increasing sequence bounded above converges

Thm 5. LUBs: non-empty set of real numbers bounded above has a least upper bound

Thm 6. Bolzano-Weierstrass every bounded sequence has a convergent subsequence [Bolzano-Weierstrass property: infinite subset of a compact space must have a limit point]

Thm 7. Intermediate value theorem (becomes connectedness)

Thm 8. continuous function on closed bounded interval is bounded and attains its bounds (*becomes compactness*)

Thm 108. X compact, $f: X \to \mathbb{R}$ cts: f is bounded and attains its bound

Lemma 46. A closed \iff A contains all its limit points

Cor. 47. Closure $\overline{A} = A \cup \{\text{limit points}\}$

Thm 52. : basis if:

1. every $x \in X$ is in some $B \in \mathcal{B}$ 2. for each pair $B_1, B_2 \in \mathcal{B}$ and each point $x \in B_1 \cap B_2$: there is some $B_3 \in \mathcal{B}$ with $x \in B_3 \subseteq B_1 \cap B_2$ **Lemma 71.** $f: X \to Y X$ Hausdorff $\leftarrow Y$ Hausdorff

Thm 81. Connected

 \iff only clopen subsets are the inevitable \iff no surjective cts functions $X \to Y$ where Y is a discrete topology |Y| > 1 (eg $\{0, 1\}$)

Thm 82. Given an index set I s.t. for all $i \in I, A_i \subseteq X$ is connected, if there is a point in the intersection $\bigcap A_i: \bigcup A_i$ is connected

Thm 83. non-empty subset of \mathbb{R} is connected \iff interval

Thm 84. (subspace) $A \subset X$ connected $\implies \overline{A}$ connected ("closure of a connected space is connected")

Thm 85. $(f: X \to Y) X$ connected $\implies f(X) \subseteq Y$ is connected

Thm 1.26. $(f: X \to Y) X$ compact $\implies f(X) \subseteq Y$ is compact

Thm 87. X path-connected \implies X connected

Thm 89. (\iff)Euclidean top/ \mathbb{R}^n : U connected \iff U path-conn

Thm 100 / 104 / 126. |Heine-Borel |

An interval / subset of \mathbb{R} / subset of \mathbb{R}^n is compact \iff closed and bounded

Thm 103. X compact, $Y \subseteq X$ closed: Y compact

Thm 105. X Hausdorff, $Y \subseteq X$ compact: Y closed (*counterexample for Hausdorff: pp top* / {x})

Thm 108. X compact, $f: X \to \mathbb{R}$ cts: f is bounded and attains its bound

Thm 109. X compact, Y Hausdorff:

if $f: X \to Y$ is continuous and a bijection, then f^{-1} is also continuous

Thm 115. X non-empty, compact, Hausdorff, with no isolated points \implies X uncountable

Lemma 122. Projections (product top.) are cts

Lemma 123. $f: X \to Y_1 \times Y_2$ is cts $\iff p_1 \circ f$ and $p_2 \circ f$ are both cts

Thm 124 / 125. Tychonoff finite (bzw. arbitrary) products of compact spaces are compact (arbitrary only in Tychonoff topology, not box top)

Thm 127. X, Y connected $\implies X \times Y$ connected

Thm 144. $q: X \to X/\sim, f: X/\sim \to Y: f \text{ cts} \iff f \circ q \text{ cts}$

Note Internet. X Hausdorff \implies X/ ~ Hausdorff (bug-eyed line)

Thm 166. X, Y path connected: $\pi_1(X \times Y) = \pi_1(X) \times \pi_1(Y)$

Cor. 162. $\pi_1(X, x_1)$ is a group

Thm 165. π_1 is a top. invariant

Eg 168. $X \subseteq \mathbb{R}^n$ convex is simply connected

Lemma 173. Weak Lebesgue $X \subseteq \mathbb{R}^n$ compact with open cover \mathcal{C} : there is some l > 0 s.t. any subset of diameter < l is contained in some $C \in \mathcal{C}$

Thm 174. Weak van Kampen $X = U \cup V$; U, V open, simply conn., $U \cap V$ path-conn: X is simply conn.

Lemma 182. Path-lifting : p a path in S^1 beginning at (1, 0) has a unique \tilde{p} in \mathbb{R} beginning at $0 \in \mathbb{R}$, such that $c \circ \tilde{p} = p$

Lemma 183. Homotopy-lifting $F : [0,1] \times [0,1] \rightarrow S^1$ is a homotopy of paths with F(0,s) = F(1,s) = (1,0) there is a unique homotopy $\tilde{F} : [0,1] \times [0,1] \rightarrow \mathbb{R}$ with $c \circ \tilde{F} = F; \tilde{F}(0,s) = 0$ (for $s \in [0,1]$)

Thm 184. Fundamental group of the circle $\pi_1(S^1) = \mathbb{Z}$

Cor. 185. $S^1 \not\cong S^n(n > 1)$

Cor. 186. \mathbb{T}^n hypertorus: $\pi_1(\mathbb{T}^n) = \mathbb{Z}^n$

Cor. 187. $\mathbb{T}^n \ncong \mathbb{T}^m (m \neq n)$

Thm 189. Universal covering space if X is path-conn, locally path-conn, semi-locally simply conn, "there must be a connected covering space that acts as a covering of all the other connected covers" = Universal covering space

Eg 198. Triangulate S^2 : radial projection from e.g. tetrahedron

Page 77. Complexes are compact (by Heine-Borel as they are closed and bounded)

Lemma 211. Vertices of a simplex \iff intersection of open stars is non-empty

Lemma 213. K an n-dimensional complex:

$$m(K^1) \le \frac{n}{n+1}m(K)$$

Thm 214. Simplicial Approximation Theorem: there is one for K^n , n high enough

Page 86. Equivalence classes of edge loops form a group with operation traversing one path then the other: E(K, v)

Thm 225. $E(k, v) \cong \pi_1(|K|, v)$

Thm 226. $G(K, L) \cong E(K, v)$

where G(K, L) for a complex K and path-conn, simply conn. subcomplex L with all vertices of K is defined by

- g_{ij} is a generator: $v_i v_j$ span a simplex
- $g_{ij} = e: v_i v_j$ span a simplex of the conn. subspace L
- $g_{ij}g_{jk} = g_{ij}$: $v_iv_jv_k$ span a simplex

Thm 232. Van Kampen Only if we have to

Lemma 234. $\partial_{q+1} \circ \partial_q = 0$

Page 94. $\operatorname{im}(\partial_{q+1}) \trianglelefteq \operatorname{ker}(\partial_q)$

Thm 236. First homology group $H_1(K) = \pi_1(K)/[\pi_1(K), \pi_1(K)]$: abelianisation of π_1

Cor. 237. $(H_1 = \pi_1() \text{ if } \pi_1() \text{ abelian}) \text{ a}) H_1(X) = 0 \Leftrightarrow X \text{ simply connected } -\text{ b}) H_1(\mathbb{T}^2 = \mathbb{Z} \bigoplus \mathbb{Z} - \text{c})$ $H_1(S^1) = \mathbb{Z}$

d) $H_1(KB) = \mathbb{Z}_2 \bigoplus \mathbb{Z}$

Lemma 238. $H_n(S^n) = \mathbb{Z}; H_m(S^n) = 0 (n > 0, m \neq n)$

Thm 239. For K, L complexes, any cts function $f : |K| \to |L|$ induces a group homomorphism $f_{n*}: H_n(|K|) \to H_n(|L|)$

Thm 230. For K, L, M complexes and f the identity map on |K|, each f_{n*} is the identity; if $f : |K| \to |L|$ and $g : |L| \to |M|$ cts, $(g \circ f)_{n*} = g_{n*} \circ f_{n*}$

Thm 241. For K, L complexes and two homotopic functions $f, g: |K| \to |L|$:

$$f_{n*} = g_{n*} : H_n(K) \to H_n(L)$$

Cor. 242. $S^n \cong S^m \iff m = n$

Thm 243. Borsuk-Ulam If $g: S^n \to \mathbb{R}^n$ is cts, there is some $x \in S^n$ with g(x) = g(-x)

Cor. 244. For every $n \ge 0, S^n \not\cong \subseteq \mathbb{R}^n$

Cor. 245. $R^m \cong R^n \iff m = n$

Cor. 246. Ham sandwich Given three closed convex sets $A_1, A_2, A_3 \subset \mathbb{R}^3$: there is a hyperplane of \mathbb{R}^3 that simultaneously bisects each of them

Lemma 249. $n \ge 2$: $\pi_n(X, x_0)$ is abelian

Lemma 250. X path-conn, $x_0, x_y \in X$: $\pi_n(X, x_0) \cong \pi_n(X, y_0)$

Lemma 251. X, Y path-conn: $\pi_n(X \times Y) \cong \pi_n(X) \times \pi_n(Y)$