
1 Topologies

Euclidean B(x, r) = {y ∈ Rn : ||x− y|| < r}

U is open if for every x ∈ U , there is some ε > 0 with B(x, ε) ⊂ U

Discrete Open sets are all subsets of X

Indiscrete (Trivial) Open sets are {∅, X}

Particular point based at x: set is open if it contains x

Cofinite “finite complement”: open sets U ⊆ X have X \ U finite

Cocountable analogous

Gate - X is functions from [0, 1] to R

- U is open if all the functions in it are “sufficiently close” at some finite set

of gates.

Subspace of (X, T ): given a space Y ⊆ X, V = U ∩ Y is open if U is open

Topologist’s sine

curve
Y = {(0, y)| − 1 ≤ y ≤ 1} y = [−1, 1]
X = {(x, sin(1/x)|0 < x ≤ 1} x = (0, 1]

Quotient spaces q : X → X/ ∼ is defined by q(x) = [x]; then

Tq = {U ⊆ X/ ∼ |q−1(U) ∈ T }
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[0, 1]× [0, 1]/ ∼:

for every x, y ∈ [0, 1]:

(x, y) ∼ (x, y) (reflexive);

y ∈ [0, 1]:(0, y) ∼ (1, y).

x ∈ [0, 1]:(x, 0) ∼ (1− x, 1)

(a) Klein bottle

[0, 1]× [0, 1]/ ∼:

For x, y ∈ [0, 1] :

(x, y) ∼ (x, y). (reflexive)

(0, y) ∼ (1, y)

(x, 0) ∼ (x, 1).

(b) Torus

[0, 1]× [0, 1]/ ∼:

x, y ∈ [0, 1]:

(x, y) ∼ (x, y) (reflexive);

y ∈ [0, 1] : (0, y) ∼ (1, y).

(c) Möbius

Polyhedron |K| of a complex K has the subspace topology on Rn

Hawaiian earring Circle of radius 1/n with centre (1/n, 0):

Rn = {(x, y) ∈ R2|
(
x− 1

n

)2

+ y2 =
1

n2
}
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2 Theorems and results

Ex 31. Compositions are continuous

Ex 36. Arbitrary intersections/finite unions of closed sets are closed

Ex 53. (a, b)× (c, d) are a basis for R2

Ex 57. Can provide infinitude of prime numbers using S(a, b) = {a+kb|k ∈ Z} as a basis of a topology

Ex 59. Homeomorphism is an equivalence relation

Ex 62. R ∼= (0, 1) under usual topology (asymptotic function)

Ex 67. X Hausdorff =⇒ Y ⊆ X Hausdorff

Ex 68. Discrete top: Hausdorff; indiscrete, pp not Hausdorff

Ex 92. Conn. cpts of Q: sets of size 1

Ex 102. Union of finitely many compact sets is compact

Ex 128/129/130. Prod. top: X × Y :

connected ⇐⇒ X,Y connected ( + Thm127)
compact ⇐⇒ X,Y compact ( + 124/125: Tychonoff)

Hausdorff ⇐⇒ X,YHausdorff

Ex 131. [0, 1)× [0, 1) ∼= [0, 1]× [0, 1): Start by projecting square out to disc

Ex 143. X/ ∼ 6=⇒ X connected

Thm 4. Monotone convergence: increasing sequence bounded above converges

Thm 5. LUBs: non-empty set of real numbers bounded above has a least upper bound

Thm 6. Bolzano-Weierstrass every bounded sequence has a convergent subsequence [Bolzano-

Weierstrass property: infinite subset of a compact space must have a limit point]

Thm 7. Intermediate value theorem (becomes connectedness)

Thm 8. continuous function on closed bounded interval is bounded and attains its bounds (becomes

compactness)

Thm 108. X compact, f : X → R cts: f is bounded and attains its bound

Lemma 46. A closed ⇐⇒ A contains all its limit points

Cor. 47. Closure A = A ∪ {limit points}

Thm 52. : basis if:

1. every x ∈ X is in some B ∈ B
2. for each pair B1, B2 ∈ B and each point x ∈ B1 ∩B2: there is some B3 ∈ B with x ∈ B3 ⊆ B1 ∩B2
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Lemma 71. f : X → Y X Hausdorff ⇐ Y Hausdorff

Thm 81. Connected

⇐⇒ only clopen subsets are the inevitable ⇐⇒ no surjective cts functions X → Y where Y is a

discrete topology |Y | > 1 (eg {0, 1})

Thm 82. Given an index set I s.t. for all i ∈ I, Ai ⊆ X is connected, if there is a point in the

intersection
⋂
Ai:

⋃
Ai is connected

Thm 83. non-empty subset of R is connected ⇐⇒ interval

Thm 84. (subspace) A ⊂ X connected =⇒ A connected (“closure of a connected space is connected”)

Thm 85. (f : X → Y ) X connected =⇒ f(X) ⊆ Y is connected

Thm 1.26. (f : X → Y ) X compact =⇒ f(X) ⊆ Y is compact

Thm 87. X path-connected =⇒ X connected

Thm 89. (⇐⇒ )Euclidean top/ Rn: U connected ⇐⇒ U path-conn

Thm 100 / 104 / 126. Heine-Borel

An interval / subset of R / subset of Rn is compact ⇐⇒ closed and bounded

Thm 103. X compact, Y ⊆ X closed: Y compact

Thm 105. X Hausdorff, Y ⊆ X compact: Y closed (counterexample for Hausdorff: pp top / {x})

Thm 108. X compact, f : X → R cts: f is bounded and attains its bound

Thm 109. X compact, Y Hausdorff:

if f : X → Y is continuous and a bijection, then f−1 is also continuous

Thm 115. X non-empty, compact, Hausdorff, with no isolated points =⇒ X uncountable

Lemma 122. Projections (product top.) are cts

Lemma 123. f : X → Y1 × Y2 is cts ⇐⇒ p1 ◦ f and p2 ◦ f are both cts

Thm 124 / 125. Tychonoff finite (bzw. arbitrary) products of compact spaces are compact (arbitrary

only in Tychonoff topology, not box top)

Thm 127. X,Y connected =⇒ X × Y connected

Thm 141. X compact and connected, q : X → X/ ∼: X/ ∼ compact and connected

Thm 144. q : X → X/ ∼, f : X/ ∼→ Y : f cts ⇐⇒ f ◦ q cts

Note Internet. X Hausdorff 6=⇒ X/ ∼ Hausdorff (bug-eyed line)

Thm 166. X,Y path connected: π1(X × Y ) = π1(X)× π1(Y )
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Cor. 162. π1(X,x1) is a group

Thm 165. π1 is a top. invariant

Eg 168. X ⊆ Rn convex is simply connected

Lemma 173. Weak Lebesgue X ⊆ Rn compact with open cover C: there is some l > 0 s.t. any

subset of diameter < l is contained in some C ∈ C

Thm 174. Weak van Kampen X = U ∪ V ; U, V open, simply conn., U ∩ V path-conn:

X is simply conn.

Lemma 182. Path-lifting : p a path in S1 beginning at (1, 0) has a unique p̃ in R beginning at 0 ∈ R,

such that c ◦ p̃ = p

Lemma 183. Homotopy-lifting F : [0, 1] × [0, 1] → S1 is a homotopy of paths with F (0, s) =

F (1, s) = (1, 0) there is a unique homotopy F̃ : [0, 1] × [0, 1] → R with c ◦ F̃ = F ; F̃ (0, s) = 0 (for

s ∈ [0, 1])

Thm 184. Fundamental group of the circle π1(S
1) = Z

Cor. 185. S1 6∼= Sn(n > 1)

Cor. 186. Tn hypertorus: π1(Tn) = Zn

Cor. 187. Tn 6∼= Tm(m 6= n)

Thm 189. Universal covering space if X is path-conn, locally path-conn, semi-locally simply conn,

“there must be a connected covering space that acts as a covering of all the other connected covers”

= Universal covering space

Eg 198. Triangulate S2: radial projection from e.g. tetrahedron

Page 77. Complexes are compact (by Heine-Borel as they are closed and bounded)

Lemma 211. Vertices of a simplex ⇐⇒ intersection of open stars is non-empty

Lemma 213. K an n-dimensional complex:

m(K1) ≤ n

n+ 1
m(K)

Thm 214. Simplicial Approximation Theorem: there is one for Kn, n high enough

Page 86. Equivalence classes of edge loops form a group with operation traversing one path then the

other: E(K, v)
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Thm 225. E(k, v) ∼= π1(|K|, v)

Thm 226. G(K,L) ∼= E(K, v)

where G(K,L) for a complex K and path-conn, simply conn. subcomplex L with all vertices of K is

defined by

• gij is a generator: vivj span a simplex

• gij = e: vivj span a simplex of the conn. subspace L

• gijgjk = gij : vivjvk span a simplex

Thm 232. Van Kampen Only if we have to

Lemma 234. ∂q+1 ◦ ∂q = 0

Page 94. im(∂q+1) E ker(∂q)

Thm 236. First homology group H1(K) = π1(K)/[π1(K), π1(K): abelianisation of π1

Cor. 237. (H1 = π1() if π1() abelian) a) H1(X) = 0⇐ X simply connected – b) H1(T2 = Z
⊕

Z – c)

H1(S
1) = Z

d) H1(KB) = Z2
⊕

Z

Lemma 238. Hn(Sn) = Z; Hm(Sn) = 0(n > 0,m 6= n)

Thm 239. For K,L complexes, any cts function f : |K| → |L| induces a group homomorphism

fn∗ : Hn(|K|)→ Hn(|L|)

Thm 230. For K,L,M complexes and f the identity map on |K|, each fn∗ is the identity;

if f : |K| → |L| and g : |L| → |M | cts, (g ◦ f)n∗ = gn∗ ◦ fn∗

Thm 241. For K,L complexes and two homotopic functions f, g : |K| → |L|:

fn∗ = gn∗ : Hn(K)→ Hn(L)

Cor. 242. Sn ∼= Sm ⇐⇒ m = n

Thm 243. Borsuk-Ulam If g : Sn → Rn is cts, there is some x ∈ Sn with g(x) = g(−x)

Cor. 244. For every n ≥ 0, Sn 6∼=⊆ Rn

Cor. 245. Rm ∼= Rn ⇐⇒ m = n

Cor. 246. Ham sandwich Given three closed convex sets A1, A2, A3 ⊂ R3: there is a hyperplane of

R3 that simultaneously bisects each of them

Lemma 249. n ≥ 2: πn(X,x0) is abelian

Lemma 250. X path-conn, x0, xy ∈ X: πn(X,x0) ∼= πn(X, y0)

Lemma 251. X,Y path-conn: πn(X × Y ) ∼= πn(X)× πn(Y )
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