1 Topologies

Euclidean

Discrete

Indiscrete

Particular point
Cofinite

Cocountable

Gate

Subspace

Topologist's sine

 curve$$
X=\{(x, \sin (1 / x) \mid 0<x \leq 1\}
$$

$$
\begin{gathered}
y=[-1,1] \\
x=(0,1]
\end{gathered}
$$

$$
x-10,1
$$

Quotient spaces
$q: X \rightarrow X / \sim$ is defined by $q(x)=[x]$; then

$$
\mathcal{T}_{q}=\left\{U \subseteq X / \sim \mid q^{-1}(U) \in \mathcal{T}\right\}
$$

Polyhedron $|K|$ of a complex K has the subspace topology on \mathbb{R}^{n}

Hawaiian earring Circle of radius $1 / n$ with centre $(1 / n, 0)$:

$$
R_{n}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\,\left(x-\frac{1}{n}\right)^{2}+y^{2}=\frac{1}{n^{2}}\right.\right\}
$$

2 Theorems and results

Ex 31. Compositions are continuous
Ex 36. Arbitrary intersections/finite unions of closed sets are closed
Ex 53. $(a, b) \times(c, d)$ are a basis for \mathbb{R}^{2}
Ex 57. Can provide infinitude of prime numbers using $S(a, b)=\{a+k b \mid k \in \mathbb{Z}\}$ as a basis of a topology
Ex 59. Homeomorphism is an equivalence relation
Ex $62 . \mathbb{R} \cong(0,1)$ under usual topology (asymptotic function)
Ex 67. X Hausdorff $\Longrightarrow Y \subseteq X$ Hausdorff
Ex 68. Discrete top: Hausdorff; indiscrete, pp not Hausdorff
Ex 92. Conn. cpts of \mathbb{Q} : sets of size 1
Ex 102. Union of finitely many compact sets is compact
Ex 128/129/130. Prod. top: $X \times Y$:

connected	$\Longleftrightarrow X, Y$ connected	$(+$ Thm127 $)$
compact	$\Longleftrightarrow X, Y$ compact	$(+124 / 125:$ Tychonoff $)$
Hausdorff	$\Longleftrightarrow X, Y$ Hausdorff	

Ex 131. $[0,1) \times[0,1) \cong[0,1] \times[0,1)$: Start by projecting square out to disc
Ex 143. $X / \sim \nRightarrow X$ connected
Thm 4. Monotone convergence: increasing sequence bounded above converges
Thm 5. LUBs: non-empty set of real numbers bounded above has a least upper bound
Thm 6. Bolzano-Weierstrass every bounded sequence has a convergent subsequence [BolzanoWeierstrass property: infinite subset of a compact space must have a limit point]

Thm 7. Intermediate value theorem (becomes connectedness)
Thm 8. continuous function on closed bounded interval is bounded and attains its bounds (becomes compactness)

Thm 108. X compact, $f: X \rightarrow \mathbb{R}$ cts: f is bounded and attains its bound
Lemma 46. A closed $\Longleftrightarrow A$ contains all its limit points
Cor. 47. Closure $\bar{A}=A \cup\{$ limit points $\}$
Thm 52. : basis if:

1. every $x \in X$ is in some $B \in \mathcal{B}$
2. for each pair $B_{1}, B_{2} \in \mathcal{B}$ and each point $x \in B_{1} \cap B_{2}$: there is some $B_{3} \in \mathcal{B}$ with $x \in B_{3} \subseteq B_{1} \cap B_{2}$

Lemma 71. $f: X \rightarrow Y X$ Hausdorff $\Leftarrow Y$ Hausdorff
Thm 81. Connected
\Longleftrightarrow only clopen subsets are the inevitable \Longleftrightarrow no surjective cts functions $X \rightarrow Y$ where Y is a discrete topology $|Y|>1(e g\{0,1\})$

Thm 82. Given an index set I s.t. for all $i \in I, A_{i} \subseteq X$ is connected, if there is a point in the intersection $\bigcap A_{i}: \bigcup A_{i}$ is connected

Thm 83. non-empty subset of \mathbb{R} is connected \Longleftrightarrow interval
Thm 84. (subspace) $A \subset X$ connected $\Longrightarrow \bar{A}$ connected ("closure of a connected space is connected")
Thm 85. $(f: X \rightarrow Y) X$ connected $\Longrightarrow f(X) \subseteq Y$ is connected
Thm 1.26. $(f: X \rightarrow Y) X$ compact $\Longrightarrow f(X) \subseteq Y$ is compact
Thm 87. X path-connected $\Longrightarrow X$ connected
Thm 89. (\Longleftrightarrow) Euclidean top/ $\mathbb{R}^{n}: U$ connected $\Longleftrightarrow U$ path-conn
Thm 100 / 104 / 126. Heine-Borel
An interval / subset of $\mathbb{R} /$ subset of \mathbb{R}^{n} is compact \Longleftrightarrow closed and bounded
Thm 103. X compact, $Y \subseteq X$ closed: Y compact
Thm 105. X Hausdorff, $Y \subseteq X$ compact: Y closed (counterexample for Hausdorff: pp top $/\{x\}$)
Thm 108. X compact, $f: X \rightarrow \mathbb{R}$ cts: f is bounded and attains its bound
Thm 109. X compact, Y Hausdorff:
if $f: X \rightarrow Y$ is continuous and a bijection, then f^{-1} is also continuous
Thm 115. X non-empty, compact, Hausdorff, with no isolated points $\Longrightarrow X$ uncountable
Lemma 122. Projections (product top.) are cts
Lemma 123. $f: X \rightarrow Y_{1} \times Y_{2}$ is cts $\Longleftrightarrow p_{1} \circ f$ and $p_{2} \circ f$ are both cts
Thm 124 / 125. Tychonoff finite (bzw. arbitrary) products of compact spaces are compact (arbitrary only in Tychonoff topology, not box top)

Thm 127. X, Y connected $\Longrightarrow X \times Y$ connected
Thm 141. X compact and connected, $q: X \rightarrow X / \sim: X / \sim$ compact and connected
Thm 144. $q: X \rightarrow X / \sim, f: X / \sim \rightarrow Y: f$ cts $\Longleftrightarrow f \circ q$ cts
Note Internet. X Hausdorff $\nRightarrow X / \sim$ Hausdorff (bug-eyed line)
Thm 166. X, Y path connected: $\pi_{1}(X \times Y)=\pi_{1}(X) \times \pi_{1}(Y)$

Cor. 162. $\pi_{1}\left(X, x_{1}\right)$ is a group
Thm 165. π_{1} is a top. invariant
Eg 168. $X \subseteq \mathbb{R}^{n}$ convex is simply connected
Lemma 173. Weak Lebesgue $X \subseteq \mathbb{R}^{n}$ compact with open cover \mathcal{C} : there is some $l>0$ s.t. any subset of diameter $<l$ is contained in some $C \in \mathcal{C}$

Thm 174. Weak van Kampen $X=U \cup V ; U, V$ open, simply conn., $U \cap V$ path-conn: X is simply conn.

Lemma 182. Path-lifting : p a path in S^{1} beginning at $(1,0)$ has a unique \tilde{p} in \mathbb{R} beginning at $0 \in \mathbb{R}$, such that $c \circ \tilde{p}=p$

Lemma 183. Homotopy-lifting $F:[0,1] \times[0,1] \rightarrow S^{1}$ is a homotopy of paths with $F(0, s)=$ $F(1, s)=(1,0)$ there is a unique homotopy $\tilde{F}:[0,1] \times[0,1] \rightarrow \mathbb{R}$ with $c \circ \tilde{F}=F ; \tilde{F}(0, s)=0$ (for $s \in[0,1])$

Thm 184. Fundamental group of the circle $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$
Cor. 185. $S^{1} \not \neq S^{n}(n>1)$
Cor. 186. \mathbb{T}^{n} hypertorus: $\pi_{1}\left(\mathbb{T}^{n}\right)=\mathbb{Z}^{n}$
Cor. 187. $\mathbb{T}^{n} \not \not \mathbb{T}^{m}(m \neq n)$
Thm 189. Universal covering space if X is path-conn, locally path-conn, semi-locally simply conn, "there must be a connected covering space that acts as a covering of all the other connected covers" $=\underline{\text { Universal covering space }}$

Eg 198. Triangulate S^{2} : radial projection from e.g. tetrahedron
Page 77. Complexes are compact (by Heine-Borel as they are closed and bounded)
Lemma 211. Vertices of a simplex \Longleftrightarrow intersection of open stars is non-empty
Lemma 213. K an n-dimensional complex:

$$
m\left(K^{1}\right) \leq \frac{n}{n+1} m(K)
$$

Thm 214. Simplicial Approximation Theorem: there is one for K^{n}, n high enough
Page 86. Equivalence classes of edge loops form a group with operation traversing one path then the other: $E(K, v)$

Thm 225. $E(k, v) \cong \pi_{1}(|K|, v)$
Thm 226. $G(K, L) \cong E(K, v)$
where $G(K, L)$ for a complex K and path-conn, simply conn. subcomplex L with all vertices of K is defined by

- $g_{i j}$ is a generator: $v_{i} v_{j}$ span a simplex
- $g_{i j}=e: v_{i} v_{j}$ span a simplex of the conn. subspace L
- $g_{i j} g_{j k}=g_{i j}: v_{i} v_{j} v_{k}$ span a simplex

Thm 232. Van Kampen Only if we have to
Lemma 234. $\partial_{q+1} \circ \partial_{q}=0$
Page 94. $\operatorname{im}\left(\partial_{q+1}\right) \unlhd \operatorname{ker}\left(\partial_{q}\right)$
Thm 236. First homology group $H_{1}(K)=\pi_{1}(K) /\left[\pi_{1}(K), \pi_{1}(K)\right.$: abelianisation of π_{1}
Cor. 237. $\left(H_{1}=\pi_{1}()\right.$ if $\pi_{1}()$ abelian $)$ a) $H_{1}(X)=0 \Leftarrow X$ simply connected - b) $H_{1}\left(\mathbb{T}^{2}=\mathbb{Z} \oplus \mathbb{Z}-\right.$ c) $H_{1}\left(S^{1}\right)=\mathbb{Z}$
d) $H_{1}(K B)=\mathbb{Z}_{2} \oplus \mathbb{Z}$

Lemma 238. $H_{n}\left(S^{n}\right)=\mathbb{Z} ; H_{m}\left(S^{n}\right)=0(n>0, m \neq n)$
Thm 239. For K, L complexes, any cts function $f:|K| \rightarrow|L|$ induces a group homomorphism $f_{n *}: H_{n}(|K|) \rightarrow H_{n}(|L|)$

Thm 230. For K, L, M complexes and f the identity map on $|K|$, each $f_{n *}$ is the identity; if $f:|K| \rightarrow|L|$ and $g:|L| \rightarrow|M|$ cts, $(g \circ f)_{n *}=g_{n *} \circ f_{n *}$

Thm 241. For K, L complexes and two homotopic functions $f, g:|K| \rightarrow|L|$:

$$
f_{n *}=g_{n *}: H_{n}(K) \rightarrow H_{n}(L)
$$

Cor. 242. $S^{n} \cong S^{m} \Longleftrightarrow m=n$
Thm 243. Borsuk-Ulam If $g: S^{n} \rightarrow \mathbb{R}^{n}$ is cts, there is some $x \in S^{n}$ with $g(x)=g(-x)$
Cor. 244. For every $n \geq 0, S^{n} \neq \subseteq \mathbb{R}^{n}$
Cor. 245. $R^{m} \cong R^{n} \Longleftrightarrow m=n$
Cor. 246. Ham sandwich Given three closed convex sets $A_{1}, A_{2}, A_{3} \subset \mathbb{R}^{3}$: there is a hyperplane of \mathbb{R}^{3} that simultaneously bisects each of them

Lemma 249. $n \geq 2: \pi_{n}\left(X, x_{0}\right)$ is abelian
Lemma 250. X path-conn, $x_{0}, x_{y} \in X: \pi_{n}\left(X, x_{0}\right) \cong \pi_{n}\left(X, y_{0}\right)$
Lemma 251. X, Y path-conn: $\pi_{n}(X \times Y) \cong \pi_{n}(X) \times \pi_{n}(Y)$

