1 Topologies

Euclidean

Discrete
Indiscrete
Particular point
Cofinite
Cocountable

Gate

Subspace

Topologist’s sine

curve

Quotient spaces

B(z,r) ={y e R": |jx —yl| <7}

U is open if for every x € U, there is some € > 0 with B(z,¢) C U

Open sets are all subsets of X

(Trivial) Open sets are {0, X }

based at x: set is open if it contains x

“finite complement”: open sets U C X have X \ U finite

analogous

- X is functions from [0, 1] to R
- U is open if all the functions in it are “sufficiently close” at some finite set

of gates.

of (X,7T): given aspace Y C X,V =UNY is open if U is open

Y={0y)-1<y<1} y=[-11]
X ={(z,sin(1/2)|0 < z < 1} x = (0,1]
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q: X — X/ ~ is defined by ¢(z) = [z]; then

T,={UC X/~ (U)eT}
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for every z,y € [0, 1]:
(x,y) ~ (x,y) (reflexive);
y € [0,1]:(0,y) ~ (1, ).

z € [0,1]:(z,0) ~ (1 — x,1)

(a) Klein bottle

[0,1] x [0, 1]/\~
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For z,y € [0,1] :

(x,y) ~ (z,9y). (reflexive)
(0,9) ~ (L,y)

(z,0) ~ (z,1).

(b) Torus

[0, 1} X [07 1]/ ~

x,y € [0,1]:
(z,y) ~ (x,y) (reflexive);
y €10,1]: (0,y) ~ (1,9).

(c) Mdbius

Polyhedron

| K| of a complex K has the subspace topology on R™

Hawaiian earring

Circle of radius 1/n with centre (1/n,0):




2 Theorems and results

Ex 31. Compositions are continuous

Ex 36. Arbitrary intersections/finite unions of closed sets are closed
Ex 53. (a,b) x (c,d) are a basis for R?

Ex 57. Can provide infinitude of prime numbers using S(a,b) = {a+kb|k € Z} as a basis of a topology
Ex 59. Homeomorphism is an equivalence relation

Ex 62. R = (0, 1) under usual topology (asymptotic function)

Ex 67. X Hausdorff = Y C X Hausdorff

Ex 68. Discrete top: Hausdorff; indiscrete, pp not Hausdorff

Ex 92. Conn. cpts of QQ: sets of size 1

Ex 102. Union of finitely many compact sets is compact

Ex 128/129/130. Prod. top: X x Y:

connected <= X,Y connected ( + Thm127)
compact <= X,Y compact ( + 124/125: Tychonoff)
Hausdorff <= X, YHausdorff

Ex 131. [0,1) x [0,1) = [0, 1] x [0,1): Start by projecting square out to disc
Ex 143. X/ ~ =~ X connected
Thm 4. Monotone convergence: increasing sequence bounded above converges

Thm 5. LUBs: non-empty set of real numbers bounded above has a least upper bound

Thm 6. ‘Bolzano—Weierstrass‘ every bounded sequence has a convergent subsequence [Bolzano-

Weierstrass property: infinite subset of a compact space must have a limit point|
Thm 7. Intermediate value theorem (becomes connectedness)

Thm 8. continuous function on closed bounded interval is bounded and attains its bounds (becomes

compactness)

Thm 108. X compact, f: X — R cts: f is bounded and attains its bound
Lemma 46. A closed < A contains all its limit points

Cor. 47. Closure A = A U {limit points}

Thm 52. : basis if:

1. every x € X is in some B € B
2. for each pair Bq, Bs € B and each point z € By N By: there is some B3 € B with x € B3 C B1 N By



Lemma 71. f: X — Y X Hausdorff « Y Hausdorff

Thm 81. Connected
<= only clopen subsets are the inevitable <= no surjective cts functions X — Y where Y is a

discrete topology |Y'| > 1 (eg {0,1})

Thm 82. Given an index set I s.t. for all ¢ € I, A; C X is connected, if there is a point in the

intersection () 4;: |J A; is connected

Thm 83. non-empty subset of R is connected <= interval

Thm 84. (subspace) A C X connected == A connected ( “closure of a connected space is connected”)
Thm 85. (f: X = Y) X connected = f(X) CY is connected

Thm 1.26. (f: X —Y) X compact = f(X) CY is compact

Thm 87. X path-connected = X connected

Thm 89. ( <= )Euclidean top/ R": U connected <= U path-conn

Thm 100 / 104 / 126.

An interval / subset of R / subset of R™ is compact <= closed and bounded

Thm 103. X compact, Y C X closed: Y compact
Thm 105. X Hausdorff, Y C X compact: Y closed (counterezample for Hausdorff: pp top / {x})
Thm 108. X compact, f: X — R cts: f is bounded and attains its bound

Thm 109. X compact, Y Hausdorft:

if f: X — Y is continuous and a bijection, then f~! is also continuous

Thm 115. X non-empty, compact, Hausdorff, with no isolated points = X uncountable
Lemma 122. Projections (product top.) are cts

Lemma 123. f: X - Y] X Ys iscts <= p;1 o f and ps o f are both cts

Thm 124 / 125. Tychonoff finite (bzw. arbitrary) products of compact spaces are compact (arbitrary
only in Tychonoff topology, not box top)

Thm 127. XY connected = X X Y connected

Thm 141. X compact and connected, ¢ : X — X/ ~: X/ ~ compact and connected
Thm 144, ¢: X - X/ ~, f: X/ ~—=Y: fcts <= fogqcts

Note Internet. X Hausdorff =~ X/ ~ Hausdorff (bug-eyed line)

Thm 166. XY path connected: (X xY) =71 (X) x m(Y)



Cor. 162. 7;(X,x1) is a group
Thm 165. 7 is a top. invariant

Eg 168. X C R" convex is simply connected

Lemma 173. ‘Weak Lebesgue‘ X C R"™ compact with open cover C: there is some [ > 0 s.t. any

subset of diameter < [ is contained in some C € C

Thm 174. ‘Weak van Kampen‘ X =UUV; U,V open, simply conn., U NV path-conn:

X is simply conn.

Lemma 182. Path-lifting : p a path in S! beginning at (1,0) has a unique  in R beginning at 0 € R,
such that cop=p

Lemma 183. Homotopy-lifting F : [0,1] x [0,1] — S! is a homotopy of paths with F(0,s) =
F(1,s) = (1,0) there is a unique homotopy F : [0,1] x [0,1] — R with co F' = F;F(0,s) = 0 (for
s €10,1])

Thm 184. Fundamental group of the circle 71 (S?) = Z
Cor. 185. S* £ S™(n > 1)
Cor. 186. T" hypertorus: 71 (T") = Z"

Cor. 187. T" 2 T™(m # n)

Thm 189. ’Universal covering space‘ if X is path-conn, locally path-conn, semi-locally simply conn,

“there must be a connected covering space that acts as a covering of all the other connected covers”

= Universal covering space

Eg 198. Triangulate S?: radial projection from e.g. tetrahedron
Page 77. Complexes are compact (by Heine-Borel as they are closed and bounded)
Lemma 211. Vertices of a simplex <= intersection of open stars is non-empty

Lemma 213. K an n-dimensional complex:

n
KhY< —m(K

m(K") < (k)

Thm 214. Simplicial Approximation Theorem: there is one for K™, n high enough

Page 86. Equivalence classes of edge loops form a group with operation traversing one path then the

other: E(K,v)



Thm 225. E(k,v) = m(|K|,v)

Thm 226. G(K,L) = E(K,v)
where G(K, L) for a complex K and path-conn, simply conn. subcomplex L with all vertices of K is

defined by
® g;j is a generator: v;v; span a simplex
® g;j = e: v;vj span a simplex of the conn. subspace L

® Gijgjk = Gij: Vivjv span a simplex
Thm 232. Van Kampen Only if we have to
Lemma 234. 0,1100, =0
Page 94. im(0,11) < ker(9,)
Thm 236. First homology group Hi(K) = 71 (K)/[r1(K),71(K): abelianisation of m

Cor. 237. (H; = m() if m1() abelian) a) H1(X) = 0 <= X simply connected — b) H1(T? = ZPZ - c)
Hi(SYH =%
d) HI(KB) = Z: D Z

Lemma 238. H,(S") =Z; H,,(S™) =0(n > 0,m # n)

Thm 239. For K, L complexes, any cts function f : |K| — |L| induces a group homomorphism
o+ Ho(|K]) = Hn(|L])

Thm 230. For K, L, M complexes and f the identity map on | K|, each f,. is the identity;
if f:|K|—|Lland g:[L| = |M] cts, (g0 f)nx = gn« 0 frs

Thm 241. For K, L complexes and two homotopic functions f,g : |K| — |L|:
frx = gnx + Ho(K) — Hy(L)
Cor. 242, S" = S™ <<= m=n
Thm 243. If g : S™ — R™ is cts, there is some x € S" with g(z) = g(—=x)
Cor. 244. For every n > 0, S™ 2C R"

Cor. 245. R = R" < m=mn

Cor. 246. ‘Ham sandwich‘ Given three closed convex sets A1, Ay, A3 C R3: there is a hyperplane of

R3 that simultaneously bisects each of them
Lemma 249. n > 2: 7,(X, x) is abelian
Lemma 250. X path-conn, zg, 2, € X: m,(X, 20) = m,(X, 30)

Lemma 251. XY path-conn: m,(X X Y) = m,(X) x mp(Y)
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