(“Optimisation” theoretical vs “OR” practical)

Optimisation:
1. Identify problem (general)
2. Formulate (specific) & assess viability
Phase 1

3. Observe system (find out constraints etc)

4. Meet parties

5. Mathematical model e.g. LP

6. Preparations: check alg., pilot study, clean data, etc

Phase 2

7. S/w + s/w tests

8. Solve!

9. Check solutions Phase 2a
10. Sensitivity analysis // sub-optimal but more practical solutions?
11. Present results (present 3 options / “sell” one)
12. Implement chosen soln // evaluate // modifications needed?; Phase 3
13. Follow-up etc

#® Hard vs Soft: course focuses on “hard” but also need soft
")
@ Deterministic vs stochastic: course focuses on deterministic

#*® Goal (Hard, det): maximise objective function / subject to constraints

Choosing software: “crucial” to pick the right algorithm for large and/or complex problems.

Speed? Differentiability? Etc. Try different methods. Try different starting values. DON’T just

plug in default

Factors to consider:

Problem Software

problem size speed

structure price

requirements e.g. sensitivity analysis ease of use

For NLPs: starting point, vendor support, training
good algo important! (diff. etc?) compatibility

Linear Programming

1 Linear Programming Standard form LP:

Two wvariables: graphical max ¢! x s.t.
solutio A . . Ax S b,
ution varying z gives x>0

a family of parallel lines
~~ Standard form

e feasible: y is feasible if Ay < b and y > 0 and

e optimal: if it is feasible and maximises ¢’x;

e feasible region is set of all feasible vectors

e value of LP is maximum value for z = ¢I'x

® LP in standard form — three options: #* Solution (of LP) never in interior of feasible region

1. Infeasible — always at a vertex. But there can be a lot of

2. Feasible but unbounded (m + n)']

vertices. .. |up to
m!n!

3. Unique solution

*® Simplex: logical approach for moving between vertices

Algorithm 1 Simplex algorithm

Write in standard form
—> Convert to slack form (creates an “identity structure”)
—> Write as tableau
CHECK feasibility // preliminary pivots if necessary
LOOP:
(a) ID column with most negative value in bottom row
(b) ID row with min {RHS/entry} (only consider entries > 0) =
(c) PIVOT by adding multiples of the pivot row to each target row in turn
(NOT more general row ops)

UNTIL all bottom row coeffs are non-neg

General idea: if RHS > 0 and tableau has identity structure (“basic variables”), this corresponds to

a basic feasible solution. From feasible solution pivot to new, better, feasible solution.
Initial tableau may not correspond to a BFS: use preliminary pivots.

If: (1) row entries are all 0 and RHS # 0, or
(2) row entries are all negative and RHS is positive (or vice versa)]

= infeasible!

If: b.r. entry is negative but no plausible pivot

=— unbounded!

Simplex: beyond the basics

1.1 Simplex: beyond the basics

Degeneracy and cycling

Degeneracy: sequence of pivots transforms some b; to 0 <= some basic variable = 0
~2 Generally NBD

Cycling = degeneracy // Degeneracy # cycling
If cycling occurs (rare!): change pivot rule. If problem still not solved, perturbation method.
Initialisation

Recall “basic feasible solution” = Identity structure, with bottom coeffs zero; all RHS > 0. Can force
the ID structure (slacks) but may land up with -ve RHS (or converting to > 0, lose ID structure)

= nitialisation: two options covered:

1. Big M

maxxy + bxy...+ kx, - max r1 +bry... + kz,—MR
Include R in constraint ¢ where the usual slack variable comes up negative (for +ve RHS b;):

CH+...—8;...=+b; — CH+...—s;...+R=+b;

M assumed to be very large
R replaces s; as “basic variable”, but the R column has M on the bottom row, so pivot it out
(one step: subtract M times R row from bottom row)

~ Tableau now in BFS form: solve: if R ends up in the basis, no FS to original problem

2. Two-phase
1. Replace objective function with artificial variable R, to be minimised (s.t. constraints)
2. Simplex: if R = 0, no feasible solution; else, take solution with R as starting point for orig. problem.

(= delete R col, refill bottom row, now in BFS form)

\/ Big-M simpler
X But harder to implement by computer (“very big” x small number — FP errors etc.)

~2 two-phase more common

*® (Either) can be used to determine existence of FS

More cool stuff: Duality

1.2 More cool stuff: Duality

Primal < Dual ‘dual of eq. constraint — free V&I“
A & AT
1 primal variable : 1 dual constraint
(™ two constraints: two-variable dual = b o c
graphical solution possible!) < & 2 (constraints only; x > 0 —y > 0)
max <> min

Various results:

1. Dual of dual is original (proof: easy)

2. Weak duality: if y is feasible for the dual (=min) and x for the primal (=max), c’x < b’y
= value of objective function for any F'S to primal is lower bound for minimum value of dual
— if primal is feasible but unbounded, dual is not feasible
— if primal and dual both feasible, then they are both bounded

3. Could also have both infeasible (proof by e.g.)

4. Strong duality: if one problem has an optimum, so does the other and it’s the same (no proof)
~= (Corollary) Options: (1) Both feasible&bounded, with same optimal solution

(2) Feasible&unbounded // infeasible
(3) Both infeasible

5. Complementary slackness:

if constraint has strict inequality at optimum (slack var is non-zero, constraint is “slack”),
the matching variable of dual is zero

<= if variable is non-zero, then matching constraint is equality (proof by algebra)

[remember: always only as many non-zero vars as constraints]

~ can use to solve hard LPs where dual is easy

[solution already gives us optimum; equality constraints give us simultaneous equations|

‘Always sanity-check results!

1.2.1 Dual simplex
#® use when: all bottom row coefficients non-negative // RHS has some negative entries
*® typically for: updating a solution (new constraint, changes to parameters)

#® drive to make all RHS non-negative (then done)

Algorithm 2 Dual simplex
LOOP:

Pick row with most negative RHS
If all column entries in this row are > 0 — INFEASIBLE
Pick negative column entry for bottom-row/row ratio closest to 0 [analogous to regular]

= PIVOT

1.3 Sensitivity analysis

“Changes in production” [force value of a variable z; or slack s;]

(Works same whether forcing “units of ; to be made” (x; or “units of resource to be left over” (s;))

(a) x; not part of identity structure (not a “basic variable”):

~7 would be 0 in optimal solution;

e Take column for this var, multiply by required value, glue to RHS (subtract)
e RHS still > 0: still optimal, no change;
otherwise, may have to pivot to get RHS > 0 (e.g. dual simplex)

(b) z; in the identity structure (“basic variable”):

e Look at constraint line where x; = 1: other basic variables are 0 on this line, so equation works
out to 1.x; + bny + cng + ... = C where the n; are non-basic variables, i.e. normally 0

e reset x; to required value and assume we will change one of the n; to be > 0
[can show algebraically this is always best, proof not included]

e Test each n; of appropriate sign (multiply new n; by the value of this var on z line and subtract
from optimum), to see which one has least negative effect on objective function (reality check:
modifying the solution returns less optimal result!)

e Glue chosen column (& multiplier) into RHS column (subtract) to see effect on other basic vars

“Changes in resources” [change RHS]

e Find slack variable for resource (constraint) being changed (e.g. constraint 3, variable s3)

e DON’T remove column from tableau, but DO glue it (same sign) to RHS, multiplier a (amount
of change)

e Is tableau still optimal? If so, done; if not, pivot time (dual simplex, since non-optimal will

mean something on RHS < 0

“Changes in selling prices” [change bottom line]

e Replace bottom row entry (of soln) with change amount

Sensitivity analysis

e Pivot into identity-matrix form
(= do nothing if ¢ was not in basic var, else add q * (that var’s row) to bottom line)

e ¢ unspecified: whether this tableau is optimal will depend on ¢, can read off range for which it’s
optimal (i.e. for which z row is all > 0): in this range optimum vector stays same and can see
effect of ¢ on optimum value

e ¢ specified: if outside the range above, may need to pivot further to find new optimal form

Interior point methods

“New constraints” [what it says on the tin]

1. Compare constraint with current optimal solution: if constraint is already met, done
2. Otherwise, add constraint to tableau, pivot (= first pivot constraint out of basic var cols,

hopefully this gets into dual simplex form)

1.4 Interior point methods
[No detail] IP/Simplex: both iterative, both start from feasible solution

¢ Alternative for (usually) large problems

> “polynomial” time (vs simplex worst case exponential)

~2 but one I PT iteration is longer than one simplex iteration

¢ Convergence criterion, “close to” optimum (cf gradient descent)

~ convergence criterion not always ideal: duality gap to assess proximity to optimum
(remember at optimum primal and dual have same value)

X No handy tableau for post analysis

¥¢ Possibility of combining with simplex for final stage

*® Tricks:

~2 transform/scale feasible region (keep current iterate near centre = ensures large steps)

~> barrier function = penalty for points close to boundary of feasible region

~ but uses log term = non-linear!

Klee-Minty

max Iq '
st.0<x; <1 ® known to require

e 2¢ — 1 simplex iterations
€xi1 <x; <1 —e€ri

. ~ exponential

€xg—1 < rqg <1 —€rqg

Quadratic programmaing: Lemke

1.5 Quadratic programming: Lemke

¢ Problem: is a quadratic; constraints: linear
Can write in form:

.1 T ¢ Objective function is convex
min 5x@x + ¢ X s.t.

Ax < b; x>0
- *

“quite restrictive but does occur quite often”

(Like LPs, useful not just for quadratic problems but often an approx. for more complex NLPs) (Taylor

series!)

Algorithm 3 Lemke
Init: Get into standard form, i.e. set up Q, 4,c,b

= n variables ; m constraints
0. Check objective function is convex (principal minors of Q)
1. Build tableau (see below) y,v form an identity matrix structure: basic variables
2. Start in z column; pick row with most -ve entry in constant column, pivot so z becomes basic
3. LOOP:

3a. Find variable that left basic structure. If z, then STOP.

Else: = it has a complement:. Identify the complement
3b. Pivot on this complement (“minimum ratio rule”) [RHS/col: min +ve].

If no pivot possible, also STOP (no solution)

Lemke tableau:

X u y |v Z
Q| -AT | I,|0 | (-1 —-1... =T | ¢
A |0 0 | Ip| (-1 -1... =T |b

x;,Yy; are complementary pairs; u;,v; are complementary pairs

\/ (No proof) will terminate (providing obj. function is convex);

\/ efficient

#® can use quadratic approximations of more general problems to use this method as efficient

approximation technique

Integer Programmaing

2 Integer Programming

Often (mixed) binary

No universal algo

~M2 Can’t (necessarily) just round LP solution

~2 Bounded = finitely many solutions ... but might be impractically many!
2 Some “good” approaches but none known that are not exponential

~ More specific approaches for specific problems

#® Neat trick: use NLP constraint z = 2? = z € {0,1}

2.1

Strategies

General tool = ¥¢ branch-and-bound ¢

But sometimes, can find shortcuts:

Small problems: exhaustive enumeration

Heuristics, (a) as “good enough” solution (b) to whittle down possibilities

~~> If problems from the real world are being posed because we want a solution in the real
world, can apply real-world common sense!

(e.g. aiming to optimise total suitability when matching people to jobs; rule out in advance any
matches with “poor” suitability)

May be able to Use Algebra on constraints to whittle down possibilities (combine constraints,
ete)

~= but, relies on spotting possibilities // not general

“Logical constraints” (build in as algebraic constraints)

!

« (not sure how this is a “strategy”)

Cutting planes:

(1) Solve LP

(2) If solution is optimum, done; else, find “cutting plane” separating optimum from feasible
region = new feasible region

(3) Rinse & repeat

[initially thought not to be efficient; more recent methods discovered making it viable]

Strategies

Branch & Bound

e Solve LP (“LP relaxation”).

e Pick a variable that is non-integer in the solution, so a < x; < a + 1 for some integer a

e Set up two new LPs, one with new constraint ; < a, one with new constraint z; > a+1 (branch)

[NB a =0 = new constraint is z; = 0 due to non-negativity constraints]

e Solve these: each solution establishes an upper bound on objective value

Algorithm 4 Branch-and-bound

Initialise; set L to “any” feasible integer solution (largest known, or a large negative value)

LOOP:
~ Branch: set up new problems ‘NB: only ever 2 subproblems per node‘
~2 Bound: calculate optimum for them

~

~

Fathom: if this branch has z < L, or is infeasible; ditch it
else, z > L; if solution is integer, reset L and cut off branch here

Test: is there anywhere else to go, if not, current L (“incumbent”) is solution

\/ Conceptually simple
\/Can be adapted easily to NLPs

Notes:

e Choosing order of operations has major impact (e.g. breadth-first, depth-first, node orderings...)

e Might make sense to stop at sub-optimal solution [LP optimum is an upper bound: are we close?]

e Spend time on initialisation to get a good starting point

e Might be able to exploit problem structure, e.g. branch on constraints for binary problems

[TODO: check what he means by this??]

e Can also use branch & bound for non-linear integer problems, etc.

e Can be exponential

e Strategies:

— if integer variable has a lot of possible values (e.g. > 20), consider treating it as continuous;
try and keep down total number of integer variables

— make upper/lower bounds on integer variables as tight as possible

— the more constraints the better! (opposite to LPs)

— order in which integer variables are processed is critical. choose “based on economic
significance and user experience”

— stop within 3% of continuous optimum, if allowed

— consider whether rounded LP solution is practical

Graphs and networks

3 Graphs and networks

Terminology (for this course)

graph = (nodes + arcs /) vertices + edges

directed = digraph / undirected

multigraph (multiple edges; loops) / simple (assume unless otherwise stated)
empty — complete = K,, (n vertices)

isomorphic graphs

subgraph

spanning [subgraph, tree]

adjacent (vertices)

neighbourhood N (v) of a vertex v

degree of a vertex

edge sequence — chain — circuit/cycle

connected vertices, graph, digraph: strongly, weakly

acyclic — tree (with leaves)

network = digraph with no loops or multiple edges & each edge has a weight/capacity,
sources & sinks are identified (at least 1 of each). Assume weakly connected
cut [in network]

weighted graph [cf network capacity]

minimum spanning tree (=minimal connector)

Handshaking lemma: sum of the vertex degrees is equal to twice the number of edges

[proof by double counting]
— total number of odd-degree vertices in a graph is even

— if several people shake hands at a party, the total number of hands shaken must be even

Result on trees (no proof) Following are equivalent:

1. G is a tree
2. any two vertices in G are connected by a unique path

3. G is acyclic with |E|= |V|-1

Max-flow min-cut Theorem (no proof):

value of any max flow (in a network) equals minimum capacity of any cut

Shortest path (source to sink)

Types of problem: often could be expressed as LP but useful to exploit network structure.

3.1 Shortest path (source to sink)

[capacities/weights = distances]

Algorithm 5 Dijkstra’s algorithm

1. Label source vertex
2. LOOP:
(a). Consider last permanently labelled vertex, say X; look at all Y adjacent to X:
if more efficient route than the current temp label on Y (oo if none), update temp label.
(b). Make vertex with shortest-dist temp label into permanent label
(c). If reached destination, STOP
3. Construct shortest path

3.2 Maximum flow through a directed network

Could be an LP but we can manage a lot more efficiently using max flow alg:

Algorithm 6 Maximum flow algorithm

INIT: find a feasible flow [make it as good as you can by inspection, saves time over zero flow. ..
LOOP:
(define sets of edges I, R in which flow can be increased and decreased)
[just a concept: don’t explicitly calculate sets]
a. find a chain source — sink by adding vertices from I or R
(never add a vertex that’s already in the chain (terminology for LNO: “labelled”)).
if no chain possible: STOP
b. increase flow along chain as much as possible
Current flow (before last loop, in which attempt to find chain failed) is optimal

(4. Sanity check by finding a cut)

Extensions

Multiple sources and/or sinks: create artificial “supersource,sink”

Two-way flow: add edge

Node capacities: split node in two, insert edge

Costs as well as capacities

Gains/losses [e.g. electrical circuits heat, money can be taxed...]

Contractual obligations to use certain routes

capacity) spanning tree of an (undirected) graph

3.3 Minimum (=capacity) spanning tree of an (undirected) graph

Ezample problems: (1) New underground system, stations, tracks between them? (2) Central heating

system / minimise piping (3) Telecomms
(a) Kruskal

Repeatedly add minimum weight edge, providing no cycles

Agatha Christie

(b) Prim
Repeatedly add min weight edge that links with a vertex in the tree!

~= look similar, but Kruskal is O(mlogm), Prim O(n?) (n nodes, m

edges). Is graph sparse (m =~ n) or dense? (m =~ n?)

[See also Comp Opt re smart algos!]

4 Complexity

*® usually want to minimise

Y¢ but in cases such as crypto might want to guarantee minimum is not too low!

Factors: .
e the algorithm [key] ® runtime?
e the hardware *® memory?
e the code

e the inputs (think of best case vs worst] #® Time - Moore’s law Quantum?? —

case [“most useful”?] vs avg case)
e constraints for space, time [time most proportional to steps

interesting in modern world] 2 in terms of problem size (input parameters)

O-notation: typically
*: const — log — linear — quadratic — poly (degree k) — exponential
Sum of functions: take the fastest growing one, drop the rest

For this course: worst case;

complete

P: Polynomial time // NP : Check in P time [else: is it exponentiall
[may also need to know: class U: Undecidable]

NP-hard [any NP problem can be transformed into it in P time] //
NP-complete [NP, and NP-hard]

Non-linear programming

5 Non-linear programming

5.1 Convexity / concavity

Set
Def: Convex = points on line segment are in set

Def: Concave = not convex [nothing more]

Y intersection of convex sets is convex (proof by algebra)
¢ union of convex sets is not necessarily convex (proof by example)
¥¢ a hyperplane in R™ divides the space into two convex sets (proof from definition)

¢ feasible region for an LP is convex (proof from definition as intersection)

Function
Def: (strictly) Convex = f(ex1 + (1 — ¢)x2){<, <}ef(x1) + (1 —¢)f(x2) 0<c <1
Def: (strictly) Concave = f(ex1 + (1 — ¢)x2){>,>}ef(x1) + (1 —¢)f(x2) 0<c <1

¥¢ A function f is convex <= —f concave (proof direct from defs)
¥¢ A linear function is both convex and concave (proof from definitions)

¥ f,g convex = f + g convex

Univariate: if f”(z) exists for all in a convex set S then

¢ f(x) is a convex function <= f”(z) >0 for all x € S

¢ f(x) is a concave function <= f”(z) <0 for all x € S

(Notice S is convex both times)

Multivariate
Compute Hessian %aj;j [NB symmetric]:
Y¢ f is concave if H(x) is negative semidefinite for all x

Ye f is strictly concave if H(x) is negative definite

Y¢ mutatis mutandis for convexity

¢ The following statements about a symmetric matrix A are equivalent:
1. A is positive semidefinite
2. All eigenvalues of A are nonnegative

3. A= ZZ for some real matrix Z

= we can go from eigenvalues or other linear algebra methods to definiteness of H and thus to

convexity /concavity

Principal minors € co

5.2 Principal minors & co

* ith principal minor: determinant of an 7 X ¢ submatrix (can be several ith principal minors)
*® kth leading principal minor: delete the last n x k rows/columns

*® given a multivariate function f, Hy: kth leading principal minor of the Hessian

Theorem: Assume f has continuous second order derivatives. ‘test f: concave?‘

1. fis convex on S <= for all x, all principal minors are non-negative
2. fis concave on S <= for all x, all kth non-zero principal minors have the same sign as (—1)F

~> NB: function can be neither!

* Stationary points: could be local maxima, local minima, ... or saddle points

Theorem: n-variable problem, k =1,...n test nature of stat pt‘

1. if Hy(x) > 0 for all k£ then x is a local minimum

2. if Hy(x) # 0 and has the same sign as (—1)* for all k, x is a local maximum

3. if Hp(x) # 0 but neither 1 nor 2 applies, x is not a local extremum 4. if H,(x) = 0, no

conclusions can be drawn.

Theorem: ‘ local <> global ‘

If (1) NLP is a mazimisation and (2) the feasible region S is a convex set:
Objective function fy concave on S = any local maximum is an optimum

(Proof by contradiction)

Corollary: ‘See also: f, all g convex = KKT pt is global opt

If the NLP is a minimisation, S still convex:

Objective function fy convex on S = any local minimum is an optimum

NLPs:

*® max fo(x) s.t. fi(x) <0 (note formulation as < 0 for all constraints)

[Can always get into this form — but in fact need min for most algs!]

vs LPs Classification

e feasible region has generally curved boundaries

e univariate vs multivariate

e optimum not necessarily at vertex

e constrained vs unconstrained

e not necessarily at boundary at all

(e.g. with 22 + 92 <1, opt at (0,0))

. . ~> 23 = 8 categories
e might be local optimum but not global

[necessary vs sufficient. . . |
e LPs = special case! Other special cases can also be exploited
e potentially multiple disconnected feasible regions

(e.g. sin(x) > sin(z + 7))

e exact vs approx [methods]

5.3 Univariate

(constrained /unconstrained: usually reduce to constrained = find interval of interest)

Points to check: #® Can typically find an interval with optimum in [but careful

- endpoints of interval .
about optima at ends. ..]
- does derivative exist everywhere?
-is f'(x) = 0 solvable?

- distinguish max/min & global/local

* May be subproblems to multivariate methods
% Basic solution is to look for fl(x)=0

Proposed strategy:
1. if f'(z) doesn’t exist in many places or is hard to solve for zero, use numerical method; else
2 (a) plot curve to get a basic idea
(b) Evaluate f at (i) local optima by differentiation; (ii) points of non-differentiability; (iii) end-
points = choose optimum from (i), (ii), (iii)

D X not always possible // (i), (ii), (iii) means ad-hoc methods

~ more commonly: Approximate methods

e for computer implementation

_ : i !
e to a required degree of accuracy ¢ NB: always consider rate of convergence!

e point vs. interval

E.g., point method: Newton

!
Tl = Ty —]]:N((J;Z)) #* continue until |Tpy1 — Tn|< €

\/ tually simpl
conceptually stpie X f ¥« must be twice differentiable ¥¢ ‘can fail if " ~ 0‘

\/ easy to implement
\/ ¢ X might converge to local but not global optimum

can converge fast
X badly behaved functions (could diverge or wander)

Univariate

E.g., interval method: line search

Y¢ Start with sketch!

¥¢ Divide interval in half each time; consider f’(x,) (z, is division point)

% Continue until interval is small enough (can take f ~ £(f(a) + f(b) as point sol.)

\/ simple X slow convergence (log, (%b) divisions)
\/ easy computation X f must be differentiable

X need a single optimum in the interval

Multivariate

5.4 Multivariate
1: Unconstrained
Exact methods

V f(x) the gradient vector of first partial derivatives
= a system of n equations when all are zero
Solve to find stationary points

Then need to determine nature of stationary points (use thms above)

\/ simple X often not applicable

\/ can often find local optima X need differentiability

X can be hard/impossible to solve simultaneous eqn.

Approximate methods
Newton (cf univariate) for two-variables (“Obvious extensions for n > 2 variables”)

[string of algebra = derivation]

Xpil =Xp — H VS

At each iteration, evaluate H~! and f at x,, ¥ Good starting point is crucial ¥

\/ Fast convergence in some cases.

X v BOOM % but “not a viable practical tool”:

X Needs a lot of computing power X If H has a singularity (between starting point and true optimum),
¥« BOOM w

X Can be badly behaved // not robust //

~ sensitive to starting point

~7 can reach stationary iteration point

M2 or get stuck in a cycle

X Convergence might not be to an optimum (local; saddle point. . .)

X Need:

H invertible and well conditioned ‘NB H may be invertible for only some x

f twice differentiable with explicit analytic form of derivatives
X Remember this is an approximation method and we're discarding

quadratic (& higher power) terms of a series ... but that can actually cause problems for convergence

Multivariate

#* 500000: Quasi-Newton | x,4+1 = X, — an+1Han‘

argument to f is

1+ ayr

T2 + ay2

x,y are known (prev. step) so it's an eqn in «

M2y, is a ‘step length’

where
e.g.:

~=> {H,} is a sequence of matrices typically with Hy = T

H, = (H + \,I)~! where the \; are constants;
BFGS; DFP (non-examinable)

steepest descent (=minimisation) (or ascent for maximisation)
MY Hy =1 Xp41 = xanHVf(xn)
2 ap,1 found by univariate search to minimise f(xy, + a1V f(xy))

(z, known = equation in «: differentiate and solve for zero gradient)

(2) iterate
(3
(

Usual convergence strategy:

(1) Good starting point

) until convergence criterion

apply to all cpts of vector x)

\/ Simple idea
\/ Usually converges

w Not generally recommended (except well conditioned problems) w

!

¥ Zigragging 7 slow convergence is often a problem

X Often slowly (compared to other approaches)
X Tricky computing, including univariate search
X Could be a local optimum

X Require differentiability

But: many methods suffer from “tricky computing”, local optima, need for differentiability

Adapt steepest ascent to fix zigzagging & slow convergence? = bring it in line with other methods?

~7 change step size e.g. 0.9«

~~ modify direction e.g. a(3(Vf(xn)+ Vf(xn-1)))

2a: Equality constrained

1. Sketch

X 2 variables only (possibly 3)

*® approximate

objective function”

(constraints are sim. eqns) #* Solve

appropriate means

3. Lagrange multipliers: the fun stuff

[no further discussion on these]

2. Substitution (“not to be despised, it can be useful”)

® Algebra with constraints [equality constrained] to get “reduced

reduced objective function by

Algorithm 7 Lagrange multipliers

1. define L Lagrangian by munging constraints with obj. function z;

~2 Constraint C'is stuff =0, | L = 2+ \(C) ‘

2. Diff. w.r.t. x; and A = system of sim. eqns (all derivatives zero)

3. Solve!

4. Check what kind of a stationary point it is...

All optima are Lagrange pts

! not all L. pts are even stat. pts!

I

If sol. is unique and opt. exists,

have found it

Multivariate

2b: Inequality constrained
“The most general type of NLP”
(rearrange to) min fp(x) s.t. fi(x) <0

Method:

e m constraints: build 2 subproblems, each one with i of the constraints (0 < i < m), treated as

equalities [rest ignored]

e solve the 2™ equality constrained problems [choose method from above]

e see if solutions violate other constraints (if so, bin)

e compare optimum for non-binned solutions

¥t Slo000W T

KKT conditions (Karush—Kuhn—Tucker):

® Lagrangian: fo(x) -+ > u; fj(x) (remember the f; (j > 0) are the constraints)

1 gzLi =0 Gradient

2. w;fi(x) =0 Orthogonality
3. filx)<0 Feasibility

4. u; >0 Non-negativity

4 sets of conditions: way more than 4 things to test!

x is a (local) optimum == all conditions are satisfied

KKT Method

o get into’minfo s.t. ... SO‘

e Set up a bunch of equations corresponding to
KKT conditions

e Solve ’em to find local optima [typically
works out as branching technique: pick one
equation that narrows down options, and try

these options in another equation. ..]

e Test to see if it’s global = is f convex?

Thm: (no proof)
~2 if f; is convex for all j then any such

point (“KKT point”) is a global minimum

~> a few other similar tests (not covered)

X but general case have to examine each point
X tedious
\/ still more promising than 2" constraints

method

Penalty and Barrier methods

5.5 Penalty and Barrier methods
5.5.1 Penalty
Move to feasible region from outside it (sequence of infeasible points)

Set up unconstrained problem min f(x) + c¢P(x)

Defining P:

Equality constraints: P(z) = >_(h(x)?) * in rare cases may be able to

Inequality constraints: < 0: P(x) = >_.(max{0, g(x)})? solve P'(z) = 0 analytically
[square term ensures differentiable. So we are told] (then let M — o0)

{ck} is an increasing sequence tending to infinity

Commonly: use iterative method with x; as starting point for step k + 1

Theorem: A limit point of any sequence {x;} generated by the penalty method (as ¢ — o) is a

solution to the problem min f(x) s.t. x € S

5.5.2 Barrier
“Prevent” the search procedure from leaving the feasible region

Set up unconstrained problem min f(x) + eB(x)

E.g. B=-%, ot or =2 log (—gi(x)))

(9; < 0; barrier methods always feas. pt)

Theorem: A limit point of any sequence {xj} generated by the barrier method (as e — 0) is a

solution to the problem min f(x) s.t. x € §

5.5.3 Both:

\/ normally converge; handle cusps & other anomalies well
\/ easier programming (only unconstrained functions)

X working with more complex functions

X can be issues with slow convergence

Barrier vs Penalty:

B: even if you don’t reach convergence, all solutions are feasible
B: typically require fewer function evaluations = faster
P: good with equality constraints (barrier methods are complicated)

P: barrier methods need feasible start point, could be hard to find

NLP methods: Summary

5.6 NLP methods: Summary

UNIVARIATE

‘ Always sketch graph!

MULTIVARIATE

constr. f'(x) =0 Eq. constrained
constraints — intervals: check: - try subst. to create “reduced obj. fn”
- non-diff. pts *® Lagrange multiplier method
- endpts of interval Eq. constrained
- set up 2™ constraints (slow!)
- KKT method: set up sim eqns. ..
unconstr. - Vf(x) = set up sim. eqns

- use thms to determine nature of stationary pts

X impractical!

constr. point: Penalty or barrier

= Newton: = convert to unconstrained ||

Tt = Tn — f'(zn)
f"(zn)

interval

= line search

lots of issues!

unconstr. - Newton

Xn+1 = Xp — H_l(xn)vf(xn)

... lots of issues

= quasi-Newton
Xn4+1 = Xp — an—l—lAn(Xn)Vf(Xn)

here A is not (necessarily) the Hessian (inverted
Hessian), e.g. could just be an identity matrix —
steepest {a,de}scent.

(still has issues)

Proofs € derivations

6 Proofs & derivations

LP: dual <+ original

let L: primal: maxc’x s.t. Ax <b,x >0
L*(dual) = min bTy s.t. ATx >cy > 0
= max(— by)st —ATx <=c,y>0
(L*)* = —min(c’x) s.t. — (AT Tgcz—b,xz()
= maxc X s.t. Axgb >0
dualising equality constraints
Let L =minc’x s.t. Ax =b,z > 0.
o A b
L =minc" x s.t. X > ,2 x>0
—A -b
T T
b A
Lx = max y s.t. y <c,y>0
-b —A
u u
= max (bT —bT) s.t (AT —AT) <c,y>0
v v
= maxb’ (u—v) st. AL (u—v) <c,
= maxb’z st. ATz <c,

where z = u — v is a vector of free variables (u,v > 0)
cor: dual variable defined by an equality constraint is unrestricted

Weak duality

x,y feasible for primal, dual: ¢Tx < bTy

x feasible —= Ax <b,x>0

— (Ax)T < (b)T = xTAT <b! = xTATy <bly
y feasible = ATy >¢,x>0

T AT

— X yZXTC

combining, we have x’c < by

cor: any feasible solution for maximum problem is lower bound to minimum value of minimum problem

cor: any feasible solution for minimum problem is lower bound to maximum value of maximum problem

cor: if maximum problem is feasible/unbounded, minimum has no feasible solution

cor: if minimum problem is feasible/unbounded, maximum has no feasible solution

cor: if both problems are feasible, both are bounded

Possible to have primal and dual both infeasible

max 2r] — o
st.xy—x2 <1
-3 < =2 & r1,29 >0

Proofs € derivations

Complementary slackness:

Write L as: write dual as
P:maXchxj:z D:mianiyZ-:Z
j .
s.t. Zaijxj + s; = b; for all 4 s.t. Zaiﬂ;i —t;j =cj; for all ¢
’ xj,s; > 0 for all j ' Yi,t; > 0 for all j

Both feasible (by assumption), with optimal solutions w* = z* (equality by duality):

w* —2* = Zbiyi — ch:xj
= Z(Z aijfgj + 8i)yi — Z(Z aijyi — ;)i
: J J i
= Zsiyi + thxj =0
J J

since all vars > 0 : s;5;, = 0 = t;z;

intersection of convex sets is convex:

Let x1,x2 € S1NS2; ¢ € [0,1]. Now ex1+ (1 —c¢)x2 € S1 & similar for Sa. So ex1+ (1 —c¢)x2 € S1NSs.
Extend by induction

Union of convex sets is not necessarily convex

E.g: S1={(z,9) eR0<2<2,0<y, <1}, Sy = {(z,9) eR*0 <z < 1,0 <y, < 2}

A hyperplane in R” divides the space into two convex sets

Take two points in either set and apply the definition of convexity

The feasible region for an LP is convex: Combine result re. hyperplane and result re. intersections.

A function f is convex <= —f is concave: Follows directly from dfns

A linear function is both convex and concave: Let f(x) = ax + b and consider

—~

ex1 + (1 — ¢)x2) +b

flex1+ (1 —c)x2) =
+cb+ (1 —0b)b

= c(axy +b) + (1 — ¢)(axa + b)
=cf(x1) + (1 —¢)f(x2)

f,g convex = f 4 g convex:Apply def of convexity and add resulting inequalities

f"(x) >0 for all x € some convex set S = f(x) convex

If f(x) is convex, the line joining any two points is never below the curve, so the slope of f(z) must

be non-decreasing for all z.

Proofs € derivations

Newton’s method

(n)
Taylor series : f(z) = Z ! n'(a) (x —a)"
~ fa) + F@—a)+ T @ ap
d / ~ / 2 "
() 7@ 0+ () + 2 a) [(2)
fl(x) =0 = f'(a) ~ —af"(z) +af"(z)
L af’(@) = f'(a) _ fa)
- ST @ W
N o S
s iterative scheme, set =, = a, 11 = 2: — | Tpn4+1 = Tn
f//(xn)
Newton’s method: multivariate Taylor expansion for two-variable case:
_ _ 9 _p?t
flo.y) = flab) + (2~ a) 3 (@.0) + (v =) 5 (a.D)
1 0% f o0 f o0 f
T3 (z — G)Q@ +2(z —a)(y — b)axay(“’ b) + (y — b)26T/2(a’ b)

Set (a,b) = (xn,yn) as before; Now we take the partial derivatives w.r.t. z,y and then set them= 0
as before; (remember all the O terms are constants w.r.t. x)

if (£p41,Yn+1) is an improved estimate for the optimum, we can write this compactly as:

0 af o’r .
_ | on n 0x? O0zdxy ntl "
0 af *>f ~
0xo 0x10Yy 856% Ynt1 = Un

ie. 0=Vf+ H(xpt1 — Xp)

— Xnp+1 = Xp — H_lvf

This gives us our iterative method.

Sufficient condition for global optima: S convex, objective function fy concave =— local max is

optimum

Let x*,x" € S both local max, with f(x*) > f(x/):
e By concavity of f, f(cx' 4+ (1 — ¢)x* > f(x') (plug in def of concavity) [1]
e x' is local max so f(z') > f(x) for all x € some neighbourhood N [2]
e Let x=(cx'+(1—¢)x*st.x N (¢c—1)

(By [1]) f(x) > f(x') > f(x) (by [2]). Contradiction!

Cor: minimisation, S convex, fy convex = any local min is an optimal solution

Adv-Disad- When

7 Adv-Disad-When

Big-M // 2-phase - Two-phase for testing feasibility ~Interior pt: - Large problems

- Two-phase for implementing on computer - Don’t need post-analysis
- Big-M is simpler though ~2 Combo?
Newton vs interval
\/ conceptually simple \/ simple
\/ easy to implement \/ easy computation
\/ can converge fast X slow convergence
X f ¥ must be twice differentiable Y& X f must be differentiable
X might converge to local but not global optimum X need single optimum in the interval
X badly behaved functions (could diverge or wander)

Multivar unconstrained exact

X often not applicable
\/ simple X need differentiability

\/ can often find local optima X can be hard/impossible to solve simultaneous eqn.

Multivar Newton NB Newton is exact for quadratic problems!

¢ Good starting point is crucial ¢
\/ Fast convergence in some cases.
X Y« BOOM % but “not a viable practical tool”:
X If H has a singularity (between starting point and true optimum), v BOOM ¢
X Can be badly behaved // not robust //
~ sensitive to starting point
~ can reach stationary iteration point
~7 or get stuck in a cycle
X Convergence might not be to an optimum (local; saddle point. ..)
X Need:
H invertible and well conditioned
f twice differentiable with explicit analytic form of derivatives
X Remember this is an approximation method and we’re discarding
quadratic (& higher power) terms of a series ... but that can actually cause problems for convergence

X Needs a lot of computing power

Maxes and mins

Quasi-Newton ¥ Not generally recommended (except well conditioned problems) ¢

!

But: many methods suffer from “tricky computing”, local optima, need for differentiability

Steepest ascent:

\/ Simple idea X Often slowly (compared to other approaches)

\/ Usually converges Tricky computing, including univariate search
Could be a local optimum

X Require differentiability

Adapt steepest ascent to fix zigzagging & slow convergence? = bring it in line with other methods?
~7 change step size e.g. 0.9«
~> modify direction e.g. a(3(Vf(x,) +V

Eq. constrained: subst - non-obvious

Barrier /Penalty:

\/ normally converge; handle cusps &

other anomalies well B: even if not convergence, all solutions are feasible

\/ casier programming B: typically require fewer function evaluations = faster

(only unconstrained functions) P: good with equality constraints

X working with more complex functions (barrier methods are complicated)

X can be issues with slow convergence P: barrier need feas. start point = poss. hard to find

7.1 Maxes and mins

o LP: c'x s.t. Axb

e Lemke: %XQX + cte s.t. Axb

e NLP fo(x) st. fi(x)[<)o

e NLP for KKT: fo(x) s.t. fi(x)O

e Lagrange multipliers: also f; work with constraints
e Convex: f(ex1+ (1 —¢)x2) {<, <}lef(x1) + (1 —¢) f(x2)

e Steepest : choose a to f(xnanHVf(xn))

e Steepest : choose « to f(xnanHVf(Xn)) (4 in both cases)
e Second deriv: Convex < f"(z) 0 (Hessian positive semidef)

e Principal minors: : Convex

e Leading p. minors / stationary point: local min.

e Maximisation, f.r. convex, f [concave]: == local max is global max

e Sensitivity analysis

— Forcing a non-basic var: subtract col from RHS (remove)
— Forcing a basic var: subtract chosen change var from RHS (remove)

— Change to constraint: add to RHS (don’t remove)

Change to bottom line: subtract (+ve) change amount from b.r. entry (then pivot)

	Linear Programming
	Simplex: beyond the basics
	More cool stuff: Duality
	Dual simplex

	Sensitivity analysis
	Interior point methods
	Quadratic programming: Lemke

	Integer Programming
	Strategies

	Graphs and networks
	Shortest path (source to sink)
	Maximum flow through a directed network
	Minimum (=capacity) spanning tree of an (undirected) graph

	Complexity
	Non-linear programming
	Convexity / concavity
	Principal minors & co
	Univariate
	Multivariate
	Penalty and Barrier methods
	Penalty
	Barrier
	Both:

	NLP methods: Summary

	Proofs & derivations
	Adv-Disad-When
	Maxes and mins

