
(“Optimisation” theoretical vs “OR” practical)

Optimisation:

1. Identify problem (general)

2. Formulate (specific) & assess viability

3. Observe system (find out constraints etc)

4. Meet parties indentindentindentindentindent

5. Mathematical model e.g. LP

6. Preparations: check alg., pilot study, clean data, etc

7. S/w + s/w tests

8. Solve!indentindentindentindentindentindentindentindent

9. Check solutions

10. Sensitivity analysis // sub-optimal but more practical solutions?

11. Present results (present 3 options / “sell” one) indentindent

12. Implement chosen soln // evaluate // modifications needed?

13. Follow-up etc

Phase 1

Phase 2

Phase 2a

Phase 3

R Hard vs Soft: course focuses on “hard” but also need soft

R Deterministic vs stochastic: course focuses on deterministic

R Goal (Hard, det): maximise objective function / subject to constraints

Choosing software: “crucial” to pick the right algorithm for large and/or complex problems.

Speed? Differentiability? Etc. Try different methods. Try different starting values. DON’T just

plug in default

Factors to consider:

Problem Software

problem size speed

structure price

requirements e.g. sensitivity analysis ease of use

For NLPs: starting point, vendor support, training

good algo important! (diff. etc?) compatibility

L
in

ea
r

P
ro

gr
a
m

m
in

g

1 Linear Programming

Two variables: graphical

solution varying z gives

a family of parallel lines

whatever

Standard form LP:

max cTx s.t.
Ax ≤ b;

x ≥ 0

 Standard form

� feasible: y is feasible if Ay ≤ b and y ≥ 0 and

� optimal: if it is feasible and maximises cTx;

� feasible region is set of all feasible vectors

� value of LP is maximum value for z = cTx

R LP in standard form – three options:

1. Infeasible

2. Feasible but unbounded

3. Unique solution

R Solution (of LP) never in interior of feasible region

→ always at a vertex. But there can be a lot of

vertices. . .

[
up to

(m+ n)!

m!n!

]

R Simplex: logical approach for moving between vertices

Algorithm 1 Simplex algorithm

Write in standard form

=⇒ Convert to slack form (creates an “identity structure”)

=⇒ Write as tableau

CHECK feasibility // preliminary pivots if necessary

LOOP:

(a) ID column with most negative value in bottom row

(b) ID row with min {RHS/entry} (only consider entries > 0) =⇒

(c) PIVOT by adding multiples of the pivot row to each target row in turn

(NOT more general row ops)

UNTIL all bottom row coeffs are non-neg

General idea: if RHS > 0 and tableau has identity structure (“basic variables”), this corresponds to

a basic feasible solution. From feasible solution pivot to new, better, feasible solution.

Initial tableau may not correspond to a BFS: use preliminary pivots.

If: (1) row entries are all 0 and RHS 6= 0, or

If: (2) row entries are all negative and RHS is positive (or vice versa)]

=⇒ infeasible!

If: b.r. entry is negative but no plausible pivot

=⇒ unbounded!

S
im

p
le

x:
be

yo
n

d
th

e
ba

si
cs

1.1 Simplex: beyond the basics

Degeneracy and cycling

Degeneracy: sequence of pivots transforms some bi to 0 ⇐⇒ some basic variable = 0

 Generally NBD

Cycling =⇒ degeneracy // Degeneracy ; cycling

If cycling occurs (rare!): change pivot rule. If problem still not solved, perturbation method.

Initialisation

Recall “basic feasible solution” = Identity structure, with bottom coeffs zero; all RHS > 0. Can force

the ID structure (slacks) but may land up with -ve RHS (or converting to > 0, lose ID structure)

=⇒ initialisation: two options covered:

1. Big M

maxx1 + bx2 . . .+ kxn → max x1 + bx2 . . .+ kxn−MR

Include R in constraint i where the usual slack variable comes up negative (for +ve RHS bi):

C + . . .− si . . . = +bi → C + . . .− si . . .+R = +bi

M assumed to be very large

R replaces si as “basic variable”, but the R column has M on the bottom row, so pivot it out

(one step: subtract M times R row from bottom row)

 Tableau now in BFS form: solve: if R ends up in the basis, no FS to original problem

2. Two-phase

1. Replace objective function with artificial variable R, to be minimised (s.t. constraints)

2. Simplex: if R = 0, no feasible solution; else, take solution with R as starting point for orig. problem.

(= delete R col, refill bottom row, now in BFS form)

XBig-M simpler

7 But harder to implement by computer (“very big” × small number → FP errors etc.)

 two-phase more common

R (Either) can be used to determine existence of FS

M
o
re

co
o
l

st
u

ff
:

D
u

a
li

ty

1.2 More cool stuff: Duality

1 primal variable : 1 dual constraint

(two constraints: two-variable dual =⇒
graphical solution possible!)

Primal ↔ Dual dual of eq. constraint → free var

A ↔ AT

b ↔ c

≤ ↔ ≥ (constraints only; x ≥ 0→ y ≥ 0)

max ↔ min

Various results:

1. Dual of dual is original (proof: easy)

2. Weak duality: if y is feasible for the dual (=min) and x for the primal (=max), cTx ≤ bTy

=⇒ value of objective function for any FS to primal is lower bound for minimum value of dual

=⇒ if primal is feasible but unbounded, dual is not feasible

=⇒ if primal and dual both feasible, then they are both bounded

3. Could also have both infeasible (proof by e.g.)

4. Strong duality: if one problem has an optimum, so does the other and it’s the same (no proof)

 (Corollary) Options: (1) Both feasible&bounded, with same optimal solution

 Options: (2) Feasible&unbounded // infeasible

 Options: (3) Both infeasible

5. Complementary slackness:

if constraint has strict inequality at optimum (slack var is non-zero, constraint is “slack”),

wtf the matching variable of dual is zero

⇐⇒ if variable is non-zero, then matching constraint is equality (proof by algebra)

[remember: always only as many non-zero vars as constraints]

 can use to solve hard LPs where dual is easy

[solution already gives us optimum; equality constraints give us simultaneous equations]

Always sanity-check results!

1.2.1 Dual simplex

R use when: all bottom row coefficients non-negative // RHS has some negative entries

R typically for: updating a solution (new constraint, changes to parameters)

R drive to make all RHS non-negative (then done)

Algorithm 2 Dual simplex

LOOP:

Pick row with most negative RHS

If all column entries in this row are ≥ 0 → INFEASIBLE

Pick negative column entry for bottom-row/row ratio closest to 0 [analogous to regular]

=⇒ PIVOT

S
en

si
ti

vi
ty

a
n

a
ly

si
s

1.3 Sensitivity analysis

“Changes in production” [force value of a variable xi or slack si]

(Works same whether forcing “units of xi to be made” (xi or “units of resource to be left over” (sj))

(a) xi not part of identity structure (not a “basic variable”):

 would be 0 in optimal solution;

� Take column for this var, multiply by required value, glue to RHS (subtract)

� RHS still ≥ 0: still optimal, no change;

=⇒ otherwise, may have to pivot to get RHS ≥ 0 (e.g. dual simplex)

(b) xi in the identity structure (“basic variable”):

� Look at constraint line where xi = 1: other basic variables are 0 on this line, so equation works

out to 1.xi + bn1 + cn2 + . . . = C where the nj are non-basic variables, i.e. normally 0

� reset xi to required value and assume we will change one of the nj to be > 0

[can show algebraically this is always best, proof not included]

� Test each nj of appropriate sign (multiply new nj by the value of this var on z line and subtract

from optimum), to see which one has least negative effect on objective function (reality check:

modifying the solution returns less optimal result!)

� Glue chosen column (& multiplier) into RHS column (subtract) to see effect on other basic vars

“Changes in resources” [change RHS]

� Find slack variable for resource (constraint) being changed (e.g. constraint 3, variable s3)

� DON’T remove column from tableau, but DO glue it (same sign) to RHS, multiplier a (amount

of change)

� Is tableau still optimal? If so, done; if not, pivot time (dual simplex, since non-optimal will

mean something on RHS < 0

“Changes in selling prices” [change bottom line]

� Replace bottom row entry (of soln) with change amount

� Pivot into identity-matrix form

(= do nothing if q was not in basic var, else add q * (that var’s row) to bottom line)

� q unspecified: whether this tableau is optimal will depend on q, can read off range for which it’s

optimal (i.e. for which z row is all ≥ 0): in this range optimum vector stays same and can see

effect of q on optimum value

� q specified: if outside the range above, may need to pivot further to find new optimal form

In
te

ri
o
r

po
in

t
m

et
h
od

s

“New constraints” [what it says on the tin]

1. Compare constraint with current optimal solution: if constraint is already met, done

2. Otherwise, add constraint to tableau, pivot (= first pivot constraint out of basic var cols,

hopefully this gets into dual simplex form)

1.4 Interior point methods

[No detail] IP/Simplex: both iterative, both start from feasible solution

Alternative for (usually) large problems

 “polynomial” time (vs simplex worst case exponential)

 but one I PT iteration is longer than one simplex iteration

Convergence criterion, “close to” optimum (cf gradient descent)

 convergence criterion not always ideal: duality gap to assess proximity to optimum

 (remember at optimum primal and dual have same value)

7 No handy tableau for post analysis

Possibility of combining with simplex for final stage

R Tricks:

 transform/scale feasible region (keep current iterate near centre =⇒ ensures large steps)

 barrier function =⇒ penalty for points close to boundary of feasible region

 but uses log term = non-linear!

Klee-Minty

max xd
s.t. 0 ≤ x1 ≤ 1

. . .
εxi−1 ≤ xi ≤ 1− εxi−1
. . .
εxd−1 ≤ xd ≤ 1− εxd−1

R known to require

2d − 1 simplex iterations

 exponential

Q
u

a
d
ra

ti
c

p
ro

gr
a
m

m
in

g:
L

em
ke

1.5 Quadratic programming: Lemke

Can write in form:

min 1
2xQx + cTx s.t.

Ax ≤ b; x ≥ 0

Problem: is a quadratic; constraints: linear

Objective function is convex

R “quite restrictive but does occur quite often”

(Like LPs, useful not just for quadratic problems but often an approx. for more complex NLPs) (Taylor

series!)

Algorithm 3 Lemke

Init: Get into standard form, i.e. set up Q,A, c,b

= n variables ; m constraints

0. Check objective function is convex (principal minors of Q)

1. Build tableau (see below) y, v form an identity matrix structure: basic variables

2. Start in z column; pick row with most -ve entry in constant column, pivot so z becomes basic

3. LOOP:

 3a. Find variable that left basic structure. If z, then STOP.

 3a. Else: =⇒ it has a complement:. Identify the complement

 3b. Pivot on this complement (“minimum ratio rule”) [RHS/col: min +ve].

 3a. If no pivot possible, also STOP (no solution)

Lemke tableau:

x u y v z

−Q −AT In 0 (−1 − 1 . . . − 1)T c

A 0 0 Im (−1 − 1 . . . − 1)T b

xi, yi are complementary pairs; uj , vj are complementary pairs

X(No proof) will terminate (providing obj. function is convex);

X efficient

R can use quadratic approximations of more general problems to use this method as efficient

approximation technique

In
te

ge
r

P
ro

gr
a
m

m
in

g

2 Integer Programming

� Pure or mixed

� Often (mixed) binary

� No universal algo

 Can’t (necessarily) just round LP solution

 Bounded =⇒ finitely many solutions ... but might be impractically many!

 Some “good” approaches but none known that are not exponential

 More specific approaches for specific problems

R Neat trick: use NLP constraint x = x2 =⇒ x ∈ {0, 1}

2.1 Strategies

General tool = branch-and-bound

But sometimes, can find shortcuts:

� Small problems: exhaustive enumeration

� Heuristics, (a) as “good enough” solution (b) to whittle down possibilities

 If problems from the real world are being posed because we want a solution in the real

world, can apply real-world common sense!

(e.g. aiming to optimise total suitability when matching people to jobs; rule out in advance any

matches with “poor” suitability)

� May be able to Use Algebra on constraints to whittle down possibilities (combine constraints,

etc)

 but, relies on spotting possibilities // not general

� “Logical constraints” (build in as algebraic constraints)

! (not sure how this is a “strategy”)

� Cutting planes:

(1) Solve LP

(2) If solution is optimum, done; else, find “cutting plane” separating optimum from feasible

region =⇒ new feasible region

(3) Rinse & repeat

[initially thought not to be efficient; more recent methods discovered making it viable]

S
tr

a
te

gi
es

Branch & Bound

� Solve LP (“LP relaxation”).

� Pick a variable that is non-integer in the solution, so a < xi < a+ 1 for some integer a

� Set up two new LPs, one with new constraint xi ≤ a, one with new constraint xi ≥ a+1 (branch)

[NB a = 0 =⇒ new constraint is xi = 0 due to non-negativity constraints]

� Solve these: each solution establishes an upper bound on objective value

Algorithm 4 Branch-and-bound

Initialise; set L to “any” feasible integer solution (largest known, or a large negative value)

LOOP:

 Branch: set up new problems NB: only ever 2 subproblems per node

 Bound: calculate optimum for them

 Fathom: if this branch has z < L, or is infeasible; ditch it

 Fathom: else, z > L; if solution is integer, reset L and cut off branch here

 Test: is there anywhere else to go, if not, current L (“incumbent”) is solution

XConceptually simple

XCan be adapted easily to NLPs

Notes:

� Choosing order of operations has major impact (e.g. breadth-first, depth-first, node orderings...)

� Might make sense to stop at sub-optimal solution [LP optimum is an upper bound: are we close?]

� Spend time on initialisation to get a good starting point

� Might be able to exploit problem structure, e.g. branch on constraints for binary problems

[TODO: check what he means by this??]

� Can also use branch & bound for non-linear integer problems, etc.

� Can be exponential

� Strategies:

– if integer variable has a lot of possible values (e.g. > 20), consider treating it as continuous;

try and keep down total number of integer variables

– make upper/lower bounds on integer variables as tight as possible

– the more constraints the better! (opposite to LPs)

– order in which integer variables are processed is critical. choose “based on economic

significance and user experience”

– stop within 3% of continuous optimum, if allowed

– consider whether rounded LP solution is practical

G
ra

p
h
s

a
n

d
n

et
w

o
rk

s

3 Graphs and networks

Terminology (for this course)

graph = (nodes + arcs /) vertices + edges

directed = digraph / undirected

multigraph (multiple edges; loops) / simple (assume unless otherwise stated)

empty → complete = Kn (n vertices)

isomorphic graphs

subgraph

spanning [subgraph, tree]

adjacent (vertices)

neighbourhood N(v) of a vertex v

degree of a vertex

edge sequence → chain → circuit/cycle

connected vertices, graph, digraph: strongly, weakly

acyclic → tree (with leaves)

network = digraph with no loops or multiple edges & each edge has a weight/capacity,

sources & sinks are identified (at least 1 of each). Assume weakly connected

cut [in network]

weighted graph [cf network capacity]

minimum spanning tree (=minimal connector)

==============================

Handshaking lemma: sum of the vertex degrees is equal to twice the number of edges

[proof by double counting]

=⇒ total number of odd-degree vertices in a graph is even

=⇒ if several people shake hands at a party, the total number of hands shaken must be even

Result on trees (no proof) Following are equivalent:

1. G is a tree

2. any two vertices in G are connected by a unique path

3. G is acyclic with |E|= |V |−1

Max-flow min-cut Theorem (no proof):

value of any max flow (in a network) equals minimum capacity of any cut

S
h
o
rt

es
t

pa
th

(s
o
u

rc
e

to
si

n
k)

Types of problem: often could be expressed as LP but useful to exploit network structure.

3.1 Shortest path (source to sink)

[capacities/weights = distances]

Algorithm 5 Dijkstra’s algorithm

1. Label source vertex

2. LOOP:

(a). Consider last permanently labelled vertex, say X; look at all Y adjacent to X:

(a)if more efficient route than the current temp label on Y (∞ if none), update temp label.

(b). Make vertex with shortest-dist temp label into permanent label

(c). If reached destination, STOP

3. Construct shortest path

3.2 Maximum flow through a directed network

Could be an LP but we can manage a lot more efficiently using max flow alg:

Algorithm 6 Maximum flow algorithm

INIT: find a feasible flow [make it as good as you can by inspection, saves time over zero flow. . .]

LOOP:

(define sets of edges I, R in which flow can be increased and decreased)

[just a concept: don’t explicitly calculate sets]

a. find a chain source → sink by adding vertices from I or R

b. (never add a vertex that’s already in the chain (terminology for LNO: “labelled”)).

b. if no chain possible: STOP

b. increase flow along chain as much as possible

Current flow (before last loop, in which attempt to find chain failed) is optimal

(4. Sanity check by finding a cut)

Extensions

� Multiple sources and/or sinks: create artificial “supersource,sink”

� Two-way flow: add edge

� Node capacities: split node in two, insert edge

� Costs as well as capacities

� Gains/losses [e.g. electrical circuits heat, money can be taxed. . .]

� Contractual obligations to use certain routes

M
in

im
u

m
(=

ca
pa

ci
ty

)
sp

a
n

n
in

g
tr

ee
o
f

a
n

(u
n

d
ir

ec
te

d
)

gr
a
p
h

3.3 Minimum (=capacity) spanning tree of an (undirected) graph

Example problems: (1) New underground system, stations, tracks between them? (2) Central heating

system / minimise piping (3) Telecomms

(a) Kruskal

Repeatedly add minimum weight edge, providing no cycles

(b) Prim

Repeatedly add min weight edge that links with a vertex in the tree!

====================================

 look similar, but Kruskal is O(m logm), Prim O(n2) (n nodes, m

edges). Is graph sparse (m ≈ n) or dense? (m ≈ n2)

[See also Comp Opt re smart algos!]

4 Complexity

R usually want to minimise

but in cases such as crypto might want to guarantee minimum is not too low!

Factors:
� the algorithm [key]

� the hardware

� the code

� the inputs (think of best case vs worst

case [“most useful”?] vs avg case)

� constraints for space, time [time most

interesting in modern world]

R runtime?

R memory?

R Time – Moore’s law – Quantum?? –

 proportional to steps

 in terms of problem size (input parameters)

P

NP-hard NP

NP-

complete

O-notation: typically

*: const→ log→ linear→ quadratic→ poly (degree k)→ exponential

Sum of functions: take the fastest growing one, drop the rest

For this course: worst case;

P: Polynomial time // NP : Check in P time [else: is it exponential]

[may also need to know: class U: Undecidable]

NP-hard [any NP problem can be transformed into it in P time] //

NP-complete [NP, and NP-hard]

N
o
n

-l
in

ea
r

p
ro

gr
a
m

m
in

g

5 Non-linear programming

5.1 Convexity / concavity

Set

Def: Convex = points on line segment are in set

Def: Concave = not convex [nothing more]

intersection of convex sets is convex (proof by algebra)

union of convex sets is not necessarily convex (proof by example)

a hyperplane in Rn divides the space into two convex sets (proof from definition)

feasible region for an LP is convex (proof from definition as intersection)

Function

Def: (strictly) Convex = f(cx1 + (1− c)x2){≤, <}cf(x1) + (1− c)f(x2) 0 ≤ c ≤ 1

Def: (strictly) Concave = f(cx1 + (1− c)x2){≥, >}cf(x1) + (1− c)f(x2) 0 ≤ c ≤ 1

A function f is convex ⇐⇒ −f concave (proof direct from defs)

A linear function is both convex and concave (proof from definitions)

f, g convex =⇒ f + g convex

Univariate: if f ′′(x) exists for all x in a convex set S then

f(x) is a convex function ⇐⇒ f ′′(x) ≥ 0 for all x ∈ S

f(x) is a concave function ⇐⇒ f ′′(x) ≤ 0 for all x ∈ S

(Notice S is convex both times)

Multivariate

Compute Hessian ∂2f
∂xi∂xj

[NB symmetric]:

f is concave if H(x) is negative semidefinite for all x

f is strictly concave if H(x) is negative definite

mutatis mutandis for convexity

The following statements about a symmetric matrix A are equivalent:

1. A is positive semidefinite

2. All eigenvalues of A are nonnegative

3. A = ZZ ′ for some real matrix Z

=⇒ we can go from eigenvalues or other linear algebra methods to definiteness of H and thus to

convexity/concavity

P
ri

n
ci

pa
l

m
in

o
rs

&
co

5.2 Principal minors & co

R ith principal minor: determinant of an i× i submatrix (can be several ith principal minors)

R kth leading principal minor: delete the last n× k rows/columns

R given a multivariate function f , Hk: kth leading principal minor of the Hessian

Theorem: Assume f has continuous second order derivatives. test f : concave?

1. f is convex on S ⇐⇒ for all x, all principal minors are non-negative

2. f is concave on S ⇐⇒ for all x, all kth non-zero principal minors have the same sign as (−1)k

 NB: function can be neither!

R Stationary points: could be local maxima, local minima, . . . or saddle points

Theorem: n-variable problem, k = 1, . . . n test nature of stat pt

1. if Hk(x) > 0 for all k then x is a local minimum

2. if Hk(x) 6= 0 and has the same sign as (−1)k for all k, x is a local maximum

3. if Hn(x) 6= 0 but neither 1 nor 2 applies, x is not a local extremum 4. if Hn(x) = 0, no

conclusions can be drawn.

Theorem: local ↔ global

If (1) NLP is a maximisation and (2) the feasible region S is a convex set:

If (1) Objective function f0 concave on S =⇒ any local maximum is an optimum

(Proof by contradiction)

Corollary: See also: f , all g convex =⇒ KKT pt is global opt

If the NLP is a minimisation, S still convex:

If (1) Objective function f0 convex on S =⇒ any local minimum is an optimum

NLPs:

R max f0(x) s.t. fi(x) ≤ 0 (note formulation as ≤ 0 for all constraints)

[Can always get into this form → but in fact need min for most algs!]

vs LPs Classification

� feasible region has generally curved boundaries

� optimum not necessarily at vertex

� not necessarily at boundary at all

(e.g. with x2 + y2 ≤ 1, opt at (0,0))

� might be local optimum but not global

[necessary vs sufficient. . .]

� LPs = special case! Other special cases can also be exploited

� potentially multiple disconnected feasible regions

(e.g. sin(x) ≥ sin(x+ π))

� univariate vs multivariate

� constrained vs unconstrained

� exact vs approx [methods]

 23 = 8 categories

U
n

iv
a
ri

a
te

5.3 Univariate

(constrained/unconstrained: usually reduce to constrained = find interval of interest)

Points to check:

- endpoints of interval

- does derivative exist everywhere?

- is f ′(x) = 0 solvable?

- distinguish max/min & global/local

R Can typically find an interval with optimum in [but careful

about optima at ends. . .]

R May be subproblems to multivariate methods

R Basic solution is to look for f ′(x) = 0

Proposed strategy:

1. if f ′(x) doesn’t exist in many places or is hard to solve for zero, use numerical method; else

2 (a) plot curve to get a basic idea

2 (b) Evaluate f at (i) local optima by differentiation; (ii) points of non-differentiability; (iii) end-

points =⇒ choose optimum from (i), (ii), (iii)

 7 not always possible // (i), (ii), (iii) means ad-hoc methods

 more commonly: Approximate methods

� for computer implementation

� to a required degree of accuracy

� point vs. interval

NB: always consider rate of convergence!

E.g., point method: Newton

xn+1 = xn − f ′(xn)
f ′′(xn)

R continue until |xn+1 − xn|< ε

X conceptually simple

X easy to implement

X can converge fast

7 f must be twice differentiable can fail if f ′′ ≈ 0

7 might converge to local but not global optimum

7 badly behaved functions (could diverge or wander)

E.g., interval method: line search

Start with sketch!

Divide interval in half each time; consider f ′(xn) (xn is division point)

Continue until interval is small enough (can take f ≈ 1
2(f(a) + f(b) as point sol.)

X simple

X easy computation

7 slow convergence (log2
(
a−b
ε

)
divisions)

7 f must be differentiable

7 need a single optimum in the interval

M
u

lt
iv

a
ri

a
te

5.4 Multivariate

1: Unconstrained

Exact methods

∇f(x) the gradient vector of first partial derivatives

=⇒ a system of n equations when all are zero

Solve to find stationary points

Then need to determine nature of stationary points (use thms above)

. . .

X simple

X can often find local optima

. . .

7 often not applicable

7 need differentiability

7 can be hard/impossible to solve simultaneous eqn.

Approximate methods

Newton (cf univariate) for two-variables (“Obvious extensions for n > 2 variables”)

[string of algebra = derivation]

xn+1 = xn −H−1∇f

At each iteration, evaluate H−1 and f at xn Good starting point is crucial

X Fast convergence in some cases.

7 BOOM but “not a viable practical tool”:

7 Needs a lot of computing power 7 IfH has a singularity (between starting point and true optimum),

BOOM

7 Can be badly behaved // not robust //

 sensitive to starting point

 can reach stationary iteration point

 or get stuck in a cycle

7 Convergence might not be to an optimum (local; saddle point. . .)

7 Need:

Need: H invertible and well conditioned NB H may be invertible for only some x

Need: f twice differentiable with explicit analytic form of derivatives

7 Remember this is an approximation method and we’re discarding

quadratic (& higher power) terms of a series ... but that can actually cause problems for convergence

M
u

lt
iv

a
ri

a
te

R sooooo: Quasi-Newton xn+1 = xn − αn+1Hn∇f

argument to f is


x1 + αy1

x2 + αy2

. . .

 where

x, y are known (prev. step) so it’s an eqn in α

 αn is a ‘step length’

 {Hi} is a sequence of matrices typically withH0 = I

e.g.:

Need: Hn = (H + λnI)−1 where the λi are constants;

BFGS; DFP (non-examinable)

Need: steepest descent (=minimisation) (or ascent for maximisation)

Need: Hn = I: xn+1 = x + αn+1∇f(xn)

Need: αn+1 found by univariate search to minimise f(xn + αn+1∇f(xn))

(xn known =⇒ equation in α: differentiate and solve for zero gradient)

Usual convergence strategy:

(1) Good starting point

(2) iterate

(3) until convergence criterion

(apply to all cpts of vector x)

Zigzagging slow convergence is often a problem

X Simple idea

X Usually converges

7 Often slowly (compared to other approaches)

7 Tricky computing, including univariate search

7 Could be a local optimum

7 Require differentiability

Not generally recommended (except well conditioned problems)

! But: many methods suffer from “tricky computing”, local optima, need for differentiability

Adapt steepest ascent to fix zigzagging & slow convergence? =⇒ bring it in line with other methods?

 change step size e.g. 0.9α

 modify direction e.g. α(12(∇f(xn) +∇f(xn−1))) [no further discussion on these]

2a: Equality constrained

1. Sketch

7 2 variables only (possibly 3)

R approximate

2. Substitution (“not to be despised, it can be useful”)

R Algebra with constraints [equality constrained] to get “reduced

objective function”

(constraints are sim. eqns) R Solve reduced objective function by

appropriate means

3. Lagrange multipliers: the fun stuff

Algorithm 7 Lagrange multipliers

1. define L Lagrangian by munging constraints with obj. function z;

 Constraint C is stuff = 0, L = z + λ(C)

2. Diff. w.r.t. xi and λ =⇒ system of sim. eqns (all derivatives zero)

3. Solve!

4. Check what kind of a stationary point it is. . .

All optima are Lagrange pts

! not all L. pts are even stat. pts!

�

If sol. is unique and opt. exists,

have found it

M
u

lt
iv

a
ri

a
te

2b: Inequality constrained

“The most general type of NLP”

(rearrange to) min f0(x) s.t. fi(x) ≤ 0

Method:

� m constraints: build 2m subproblems, each one with i of the constraints (0 ≤ i ≤ m), treated as

equalities [rest ignored]

� solve the 2m equality constrained problems [choose method from above]

� see if solutions violate other constraints (if so, bin)

� compare optimum for non-binned solutions

Sloow

KKT conditions (Karush–Kuhn–Tucker):

R Lagrangian: f0(x) +
∑

j ujfj(x) (remember the fj (j > 0) are the constraints)

1. ∂L
∂xi

= 0 Gradient

2. uifi(x) = 0 Orthogonality

3. fi(x) ≤ 0 Feasibility

4. ui ≥ 0 Non-negativity

4 sets of conditions: way more than 4 things to test!

x is a (local) optimum =⇒ all conditions are satisfied

KKT Method

� get into min f0 s.t. . . . ≤ 0

� Set up a bunch of equations corresponding to

KKT conditions

� Solve ’em to find local optima [typically

works out as branching technique: pick one

equation that narrows down options, and try

these options in another equation. . .]

� Test to see if it’s global =⇒ is f convex?

Thm: (no proof)

 if fj is convex for all j then any such

point (“KKT point”) is a global minimum

 a few other similar tests (not covered)

7 but general case have to examine each point

7 tedious

X still more promising than 2m constraints

method

P
en

a
lt

y
a
n

d
B

a
rr

ie
r

m
et

h
od

s

5.5 Penalty and Barrier methods

5.5.1 Penalty

Move to feasible region from outside it (sequence of infeasible points)

Set up unconstrained problem min f(x) + cP (x)

Defining P :

Equality constraints: P (x) =
∑

(h(x)2)

Inequality constraints: ≤ 0: P (x) =
∑

i(max{0, g(x)})2

[square term ensures differentiable. So we are told]

{ck} is an increasing sequence tending to infinity

R in rare cases may be able to

solve P ′(x) = 0 analytically

(then let M →∞)

Commonly: use iterative method with xk as starting point for step k + 1

Theorem: A limit point of any sequence {xk} generated by the penalty method (as c→∞) is a

solution to the problem min f(x) s.t. x ∈ S

5.5.2 Barrier

“Prevent” the search procedure from leaving the feasible region

Set up unconstrained problem min f(x) + εB(x)

E.g. B = −
∑

i
1

gi(x)
or −

∑
i log (−gi(x)))

(gi ≤ 0; barrier methods always feas. pt)

Theorem: A limit point of any sequence {xk} generated by the barrier method (as ε→ 0) is a

solution to the problem min f(x) s.t. x ∈ S

5.5.3 Both:

Xnormally converge; handle cusps & other anomalies well

Xeasier programming (only unconstrained functions)

7 working with more complex functions

7 can be issues with slow convergence

Barrier vs Penalty:

B: even if you don’t reach convergence, all solutions are feasible

B: typically require fewer function evaluations =⇒ faster

P: good with equality constraints (barrier methods are complicated)

P: barrier methods need feasible start point, could be hard to find

N
L

P
m

et
h
od

s:
S

u
m

m
a
ry

5.6 NLP methods: Summary

Univariate Multivariate

Exact

Always sketch graph!

constr. f ′(x) = 0

constraints → intervals: check:

- non-diff. pts

- endpts of interval

Eq. constrained

- try subst. to create “reduced obj. fn”

R Lagrange multiplier method

Eq. constrained

- set up 2m constraints (slow!)

- KKT method: set up sim eqns. . .

unconstr. - ∇f(x) =⇒ set up sim. eqns

- use thms to determine nature of stationary pts

7 impractical!

Approx

constr. point:

= Newton:

xn+1 = xn −
f ′(xn)

f ′′(xn)

interval

= line search

lots of issues!

Penalty or barrier

=⇒ convert to unconstrained �

unconstr. - Newton

xn+1 = xn −H−1(xn)∇f(xn)

... lots of issues

=⇒ quasi-Newton

xn+1 = xn − αn+1An(xn)∇f(xn)

here A is not (necessarily) the Hessian (inverted

Hessian), e.g. could just be an identity matrix →

steepest {a,de}scent.

(still has issues)

P
ro

o
fs

&
d
er

iv
a
ti

o
n

s

6 Proofs & derivations

LP: dual ↔ original

let L: primal: max cTx s.t. Ax ≤ b,x ≥ 0

L∗(dual) = min bTy s.t. ATx ≥ c,y ≥ 0
= max(−bTy) s.t. −ATx ≤= c,y ≥ 0

(L∗)∗ = −min(cTx) s.t. − (AT)Tx ≥ −b,x ≥ 0
= max cTx s.t. Ax ≤ b,x ≥ 0

dualising equality constraints

Let L = min cTx s.t. Ax = b, x ≥ 0.

L = min cTx s.t.

 A

−A

x ≥

 b

−b

 ,x ≥ 0

z

L∗ = max

 b

−b

T

y s.t.

 A

−A

T

y ≤ c, y ≥ 0

= max
(
bT −bT

)u

v

 s.t.
(
AT −AT

)u

v

 ≤ c,y ≥ 0

= max bT (u− v) s.t. AT (u− v) ≤ c,
= max bT z s.t. AT z ≤ c,

where z = u− v is a vector of free variables (u,v ≥ 0)

cor: dual variable defined by an equality constraint is unrestricted

Weak duality

x,y feasible for primal, dual: cTx ≤ bTy

x feasible =⇒ Ax ≤ b,x ≥ 0

=⇒ (Ax)T ≤ (b)T =⇒ xTAT ≤ bT =⇒ xTATy ≤ bTy

y feasible =⇒ ATy ≥ c,x ≥ 0

=⇒ xTATy ≥ xT c

combining, we have xT c ≤ bTy

cor: any feasible solution for maximum problem is lower bound to minimum value of minimum problem

cor: any feasible solution for minimum problem is lower bound to maximum value of maximum problem

cor: if maximum problem is feasible/unbounded, minimum has no feasible solution

cor: if minimum problem is feasible/unbounded, maximum has no feasible solution

cor: if both problems are feasible, both are bounded

Possible to have primal and dual both infeasible

max 2x1 − x2
s.t. x1 − x2 ≤ 1
− x1 + x2 ≤ −2 & x1, x2 ≥ 0

P
ro

o
fs

&
d
er

iv
a
ti

o
n

s

Complementary slackness:
Write L as:

P : max
∑
j

cjxj = z

s.t.
∑
j

aijxj + si = bi for all i

xj , si ≥ 0 for all j

write dual as

D : min
∑
i

biyi = z

s.t.
∑
i

aijyi − tj = cj for all i

yi, tj ≥ 0 for all j

Both feasible (by assumption), with optimal solutions w∗ = z∗ (equality by duality):

w∗ − z∗ =
∑
i

biyi −
∑
j

cjxj

=
∑
i

(
∑
j

aijxj + si)yi −
∑
j

(
∑
i

aijyi − tj)xi

=
∑
j

siyi +
∑
j

tjxj = 0

since all vars ≥ 0 : siyi = 0 = tjxj

intersection of convex sets is convex:

Let x1,x2 ∈ S1∩S2; c ∈ [0, 1]. Now cx1 +(1−c)x2 ∈ S1 & similar for S2. So cx1 +(1−c)x2 ∈ S1∩S2.

Extend by induction

Union of convex sets is not necessarily convex

E.g.: S1 = {(x, y) ∈ R2|0 ≤ x ≤ 2, 0 ≤ y,≤ 1}, S2 = {(x, y) ∈ R2|0 ≤ x ≤ 1, 0 ≤ y,≤ 2}

A hyperplane in Rn divides the space into two convex sets

Take two points in either set and apply the definition of convexity

The feasible region for an LP is convex: Combine result re. hyperplane and result re. intersections.

A function f is convex ⇐⇒ −f is concave: Follows directly from dfns

A linear function is both convex and concave: Let f(x) = ax + b and consider

f(cx1 + (1− c)x2) = a(cx1 + (1− c)x2) + b
+ cb+ (1− b)b

= c(ax1 + b) + (1− c)(ax2 + b)
= cf(x1) + (1− c)f(x2)

f, g convex =⇒ f + g convex:Apply def of convexity and add resulting inequalities

f ′′(x) ≥ 0 for all x ∈ some convex set S =⇒ f(x) convex

If f(x) is convex, the line joining any two points is never below the curve, so the slope of f(x) must

be non-decreasing for all x.

P
ro

o
fs

&
d
er

iv
a
ti

o
n

s

Newton’s method

Taylor series :f(x) =
∑
i

f (n)(a)

n!
(x− a)n

≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2(

d

dx

)
f ′(x) ≈ 0 + f ′(a) +

2

2
(x− a)f ′′(x)

f ′(x) = 0 =⇒ f ′(a) ≈ −xf ′′(x) + af ′′(x)

=⇒ x ≈ af ′′(x)− f ′(a)

f ′′(x)
= a− f ′(a)

f ′′(x)

As iterative scheme, set xn = a, xn+1 = x: =⇒ xn+1 = xn −
f ′(xn)

f ′′(xn)

Newton’s method: multivariate Taylor expansion for two-variable case:

f(x, y) = f(a, b) + (x− a)
∂f

∂x
(a, b) + (y − b)∂f

∂y
(a, b)

+
1

2

[
(x− a)2

∂2f

∂x2
+ 2(x− a)(y − b) ∂

2f

∂x∂y
(a, b) + (y − b)2∂

2f

∂y2
(a, b)

]

Set (a, b) = (xn, yn) as before; Now we take the partial derivatives w.r.t. x, y and then set them= 0

as before; (remember all the ∂ terms are constants w.r.t. x)

if (xn+1, yn+1) is an improved estimate for the optimum, we can write this compactly as:
0

0

 =


∂f

∂x1

∂f

∂x2

+


∂2f

∂x21

∂2f

∂x∂x2

∂2f

∂x1∂y

∂2f

∂x22




xn+1 − xn

yn+1 − yn


i.e. 0 = ∇f +H(xn+1 − xn)

=⇒ xn+1 = xn −H−1∇f

This gives us our iterative method.

Sufficient condition for global optima: S convex, objective function f0 concave =⇒ local max is

optimum

Let x∗,x′ ∈ S both local max, with f(x∗) > f(x′):

� By concavity of f , f(cx′ + (1− c)x∗ > f(x′) (plug in def of concavity) [1]

� x′ is local max so f(x′) ≥ f(x) for all x ∈ some neighbourhood N [2]

� Let x = (cx′ + (1− c)x∗ s.t. x ∈ N (c→ 1)

� (By [1]) f(x) > f(x′) ≥ f(x) (by [2]). Contradiction!

Cor: minimisation, S convex, f0 convex =⇒ any local min is an optimal solution

A
d
v-

D
is

a
d
-W

h
en

7 Adv-Disad-When

Big-M // 2-phase - Two-phase for testing feasibility

- Two-phase for implementing on computer

- Big-M is simpler though

Interior pt: - Large problems

- Don’t need post-analysis

 Combo?

Newton vs interval

X conceptually simple

X easy to implement

X can converge fast

7 f must be twice differentiable

7 might converge to local but not global optimum

7 badly behaved functions (could diverge or wander)

X simple

X easy computation

7 slow convergence

7 f must be differentiable

7 need single optimum in the interval

Multivar unconstrained exact

. . .

X simple

X can often find local optima

7 often not applicable

7 need differentiability

7 can be hard/impossible to solve simultaneous eqn.

Multivar Newton NB Newton is exact for quadratic problems!

Good starting point is crucial

X Fast convergence in some cases.

7 BOOM but “not a viable practical tool”:

7 If H has a singularity (between starting point and true optimum), BOOM

7 Can be badly behaved // not robust //

 sensitive to starting point

 can reach stationary iteration point

 or get stuck in a cycle

7 Convergence might not be to an optimum (local; saddle point. . .)

7 Need:

Need: H invertible and well conditioned

Need: f twice differentiable with explicit analytic form of derivatives

7 Remember this is an approximation method and we’re discarding

quadratic (& higher power) terms of a series ... but that can actually cause problems for convergence

7 Needs a lot of computing power

M
a
xe

s
a
n

d
m

in
s

Quasi-Newton Not generally recommended (except well conditioned problems)

! But: many methods suffer from “tricky computing”, local optima, need for differentiability

Steepest ascent:

X Simple idea

X Usually converges

7 Often slowly (compared to other approaches)

7 Tricky computing, including univariate search

7 Could be a local optimum

7 Require differentiability

Adapt steepest ascent to fix zigzagging & slow convergence? =⇒ bring it in line with other methods?

 change step size e.g. 0.9α

 modify direction e.g. α(12(∇f(xn) +∇

Eq. constrained: subst - non-obvious

Barrier/Penalty:

Xnormally converge; handle cusps &

other anomalies well

Xeasier programming

(only unconstrained functions)

7 working with more complex functions

7 can be issues with slow convergence

B: even if not convergence, all solutions are feasible

B: typically require fewer function evaluations =⇒ faster

P: good with equality constraints

(barrier methods are complicated)

P: barrier need feas. start point =⇒ poss. hard to find

7.1 Maxes and mins

� LP: max ctx s.t. Ax ≤ b

� Lemke: min 1
2xQx + ctc s.t. Ax ≤ b

� NLP max f0(x) s.t. fi(x) ≤ 0

� NLP for KKT: min f0(x) s.t. fi(x) ≤ 0

� Lagrange multipliers: also min f ; work with equality constraints

� Convex: f(cx1 + (1− c)x2) {≤, <} cf(x1) + (1− c)f(x2)

� Steepest descent : choose α to minimise f(xn + αn+1∇f(xn))

� Steepest ascent : choose α to maximise f(xn + αn+1∇f(xn)) (+ in both cases)

� Second deriv: Convex ⇐⇒ f ′′(x) ≥ 0 (Hessian positive semidef)

� Principal minors: ≥ 0 : Convex

� Leading p. minors / stationary point: > 0 local min.

� Maximisation, f.r. convex, f concave : =⇒ local max is global max

� Sensitivity analysis

– Forcing a non-basic var: subtract col from RHS (remove)

– Forcing a basic var: subtract chosen change var from RHS (remove)

– Change to constraint: add to RHS (don’t remove)

– Change to bottom line: subtract (+ve) change amount from b.r. entry (then pivot)

	Linear Programming
	Simplex: beyond the basics
	More cool stuff: Duality
	Dual simplex

	Sensitivity analysis
	Interior point methods
	Quadratic programming: Lemke

	Integer Programming
	Strategies

	Graphs and networks
	Shortest path (source to sink)
	Maximum flow through a directed network
	Minimum (=capacity) spanning tree of an (undirected) graph

	Complexity
	Non-linear programming
	Convexity / concavity
	Principal minors & co
	Univariate
	Multivariate
	Penalty and Barrier methods
	Penalty
	Barrier
	Both:

	NLP methods: Summary

	Proofs & derivations
	Adv-Disad-When
	Maxes and mins

