("Optimisation" theoretical vs "OR" practical)
Optimisation:

1. Identify problem (general)
2. Formulate (specific) \& assess viability
3. Observe system (find out constraints etc)
4. Meet parties
5. Mathematical model e.g. LP
6. Preparations: check alg., pilot study, clean data, etc
7. $\mathrm{S} / \mathrm{w}+\mathrm{s} / \mathrm{w}$ tests
8. Solve!
9. Check solutions

Phase 1
10. Sensitivity analysis // sub-optimal but more practical solutions?
11. Present results (present 3 options / "sell" one)
12. Implement chosen soln // evaluate // modifications needed? Phase 3
13. Follow-up etc

Phase 2a
Phase 2

Hard vs Soft: course focuses on "hard" but also need soft

Deterministic vs stochastic: course focuses on deterministic

Goal (Hard, det): maximise objective function / subject to constraints

Choosing software: "crucial" to pick the right algorithm for large and/or complex problems. Speed? Differentiability? Etc. Try different methods. Try different starting values. DON'T just plug in default

Factors to consider:
Problem
problem size
structure
requirements e.g. sensitivity analysis
For NLPs: starting point, good algo important! (diff. etc?)

Software
speed
price
ease of use
vendor support, training compatibility

1 Linear Programming

Two variables: graphical

solution \leadsto varying z gives
a family of parallel lines

Standard form LP:

```
    \(\max \mathbf{c}^{T} \mathbf{x}\) s.t.
    \(A \mathbf{x} \leq \mathbf{b}\);
        \(\mathrm{x} \geq 0\)
    \(\leadsto\) Standard form
```

- feasible: \mathbf{y} is feasible if $A \mathbf{y} \leq \mathbf{b}$ and $\mathbf{y} \geq 0$ and
- optimal: if it is feasible and maximises $\mathbf{c}^{T} \mathbf{x}$;
- feasible region is set of all feasible vectors
- value of LP is maximum value for $z=\mathbf{c}^{T} \mathbf{x}$

LP in standard form - three options:

1. Infeasible
2. Feasible but unbounded
3. Unique solution

Solution (of LP) never in interior of feasible region \rightarrow always at a vertex. But there can be a lot of vertices. . $\left[\right.$ up to $\left.\frac{(m+n)!}{m!n!}\right]$

Simplex: logical approach for moving between vertices

```
Algorithm 1 Simplex algorithm
    Write in standard form
    \(\Longrightarrow\) Convert to slack form (creates an "identity structure")
    \(\Longrightarrow\) Write as tableau
    CHECK feasibility // preliminary pivots if necessary
    LOOP:
(a) ID column with most negative value in bottom row
(b) ID row with min \(\{\) RHS/entry (only consider entries \(>0\) ) \(\Longrightarrow\)
(c) PIVOT by adding multiples of the pivot row to each target row in turn
(NOT more general row ops)
```

UNTIL all bottom row coeffs are non-neg

General idea: if $R H S>0$ and tableau has identity structure ("basic variables"), this corresponds to a basic feasible solution. From feasible solution pivot to new, better, feasible solution.

Initial tableau may not correspond to a BFS: use preliminary pivots.

If: (1) row entries are all 0 and RHS $\neq 0$, or
(2) row entries are all negative and RHS is positive (or vice versa)]
\Longrightarrow infeasible!

If: b.r. entry is negative but no plausible pivot
\Longrightarrow unbounded!

1.1 Simplex: beyond the basics

Degeneracy and cycling

Degeneracy: sequence of pivots transforms some b_{i} to $0 \Longleftrightarrow$ some basic variable $=0$
\leadsto Generally NBD
Cycling \Longrightarrow degeneracy // Degeneracy \nRightarrow cycling

If cycling occurs (rare!): change pivot rule. If problem still not solved, perturbation method.

Initialisation

Recall "basic feasible solution" = Identity structure, with bottom coeffs zero; all RHS >0. Can force the ID structure (slacks) but may land up with -ve RHS (or converting to >0, lose ID structure) \Longrightarrow initialisation: two options covered:

1. Big M

$$
\max x_{1}+b x_{2} \ldots+k x_{n} \rightarrow \max x_{1}+b x_{2} \ldots+k x_{n}-M R
$$

Include R in constraint i where the usual slack variable comes up negative (for + ve RHS b_{i}):

$$
C+\ldots-s_{i} \ldots=+b_{i} \rightarrow \quad C+\ldots-s_{i} \ldots+R=+b_{i}
$$

M assumed to be very large
R replaces s_{i} as "basic variable", but the R column has M on the bottom row, so pivot it out (one step: subtract M times R row from bottom row)
\leadsto Tableau now in BFS form: solve: if R ends up in the basis, no FS to original problem

2. Two-phase

1. Replace objective function with artificial variable R, to be minimised (s.t. constraints)
2. Simplex: if $R=0$, no feasible solution; else, take solution with R as starting point for orig. problem. ($=$ delete R col, refill bottom row, now in BFS form)

Big-M simpler
But harder to implement by computer ("very big" \times small number \rightarrow FP errors etc.)
\leadsto two-phase more common
(Either) can be used to determine existence of FS

1.2 More cool stuff: Duality

1 primal variable : 1 dual constraint
$(\sim$ two constraints: two-variable dual \Longrightarrow graphical solution possible!)

$$
\begin{array}{rlrl}
\text { Primal } & \leftrightarrow \text { Dual } & & \text { dual of eq. constraint } \rightarrow \text { free } \mathrm{var} \\
A & \leftrightarrow & A^{T} \\
\mathbf{b} & \leftrightarrow & \mathbf{c} & \\
\leq & \leftrightarrow & \geq & \text { (constraints only; } \mathbf{x} \geq 0 \rightarrow \mathbf{y} \geq 0) \\
\max & \leftrightarrow \min &
\end{array}
$$

Various results:

1. Dual of dual is original (proof: easy)
2. Weak duality: if \mathbf{y} is feasible for the dual $(=\min)$ and \mathbf{x} for the primal $(=\max), \mathbf{c}^{T} \mathbf{x} \leq \mathbf{b}^{T} \mathbf{y}$
\Longrightarrow value of objective function for any FS to primal is lower bound for minimum value of dual
\Longrightarrow if primal is feasible but unbounded, dual is not feasible
\Longrightarrow if primal and dual both feasible, then they are both bounded
3. Could also have both infeasible (proof by e.g.)
4. Strong duality: if one problem has an optimum, so does the other and it's the same (no proof) \leadsto (Corollary) Options:
(1) Both feasible\&bounded, with same optimal solution
(2) Feasible\&unbounded // infeasible
(3) Both infeasible
5. Complementary slackness:
if constraint has strict inequality at optimum (slack var is non-zero, constraint is "slack"), the matching variable of dual is zero
\Longleftrightarrow if variable is non-zero, then matching constraint is equality (proof by algebra)
[remember: always only as many non-zero vars as constraints]
$\leadsto \quad$ can use to solve hard LPs where dual is easy
[solution already gives us optimum; equality constraints give us simultaneous equations]

Always sanity-check results!

1.2.1 Dual simplex

風 use when: all bottom row coefficients non-negative // RHS has some negative entries
© typically for: updating a solution (new constraint, changes to parameters)
drive to make all RHS non-negative (then done)

Algorithm 2 Dual simplex
 LOOP:

Pick row with most negative RHS
If all column entries in this row are $\geq 0 \rightarrow$ INFEASIBLE
Pick negative column entry for bottom-row/row ratio closest to 0 [analogous to regular]
\Longrightarrow PIVOT

1.3 Sensitivity analysis

"Changes in production" [force value of a variable x_{i} or slack s_{i}]

(Works same whether forcing "units of x_{i} to be made" (x_{i} or "units of resource to be left over" $\left(s_{j}\right)$)
(a) x_{i} not part of identity structure (not a "basic variable"):
\leadsto would be 0 in optimal solution;

- Take column for this var, multiply by required value, glue to RHS (subtract)
- RHS still ≥ 0 : still optimal, no change;
otherwise, may have to pivot to get RHS ≥ 0 (e.g. dual simplex)
(b) x_{i} in the identity structure ("basic variable"):
- Look at constraint line where $x_{i}=1$: other basic variables are 0 on this line, so equation works out to $1 . x_{i}+b n_{1}+c n_{2}+\ldots=C$ where the n_{j} are non-basic variables, i.e. normally 0
- reset x_{i} to required value and assume we will change one of the n_{j} to be >0 [can show algebraically this is always best, proof not included]
- Test each n_{j} of appropriate sign (multiply new n_{j} by the value of this var on z line and subtract from optimum), to see which one has least negative effect on objective function (reality check: modifying the solution returns less optimal result!)
- Glue chosen column (\& multiplier) into RHS column (subtract) to see effect on other basic vars

"Changes in resources" [change RHS]

- Find slack variable for resource (constraint) being changed (e.g. constraint 3, variable s_{3})
- DON'T remove column from tableau, but DO glue it (same sign) to RHS, multiplier a (amount of change)
- Is tableau still optimal? If so, done; if not, pivot time (dual simplex, since non-optimal will mean something on RHS <0

"Changes in selling prices" [change bottom line]

- Replace bottom row entry (of soln) with change amount
- Pivot into identity-matrix form (= do nothing if q was not in basic var, else add q * (that var's row) to bottom line)
- q unspecified: whether this tableau is optimal will depend on q, can read off range for which it's optimal (i.e. for which z row is all ≥ 0): in this range optimum vector stays same and can see effect of q on optimum value
- q specified: if outside the range above, may need to pivot further to find new optimal form

"New constraints" [what it says on the tin]

1. Compare constraint with current optimal solution: if constraint is already met, done
2. Otherwise, add constraint to tableau, pivot ($=$ first pivot constraint out of basic var cols, hopefully this gets into dual simplex form)

1.4 Interior point methods

[No detail] IP/Simplex: both iterative, both start from feasible solution
\star Alternative for (usually) large problems
\leadsto "polynomial" time (vs simplex worst case exponential)
\leadsto but one I PT iteration is longer than one simplex iteration
$\hat{\imath}$ Convergence criterion, "close to" optimum (cf gradient descent)
\leadsto convergence criterion not always ideal: duality gap to assess proximity to optimum (remember at optimum primal and dual have same value)
X No handy tableau for post analysis
\star Possibility of combining with simplex for final stage
風 Tricks:
\leadsto transform/scale feasible region (keep current iterate near centre \Longrightarrow ensures large steps)
\leadsto barrier function \Longrightarrow penalty for points close to boundary of feasible region $\leadsto \quad$ but uses log term $=$ non-linear!

Klee-Minty

$$
\begin{array}{c|lc}
\max & x_{d} & \text { known to require } \\
\text { s.t. } 0 \leq x_{1} \leq 1 & & 2^{d}-1 \text { simplex iterations } \\
& \ldots & \\
& \epsilon x_{i-1} \leq x_{i} \leq 1-\epsilon x_{i-1} & \\
& \epsilon x_{d-1} \leq x_{d} \leq 1-\epsilon x_{d-1} & \\
\end{array}
$$

1.5 Quadratic programming: Lemke

Can write in form:
$\min \frac{1}{2} \mathbf{x} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}$ s.t.
$A \mathbf{x} \leq \mathbf{b} ; \quad \quad \mathbf{x} \geq \mathbf{0}$

is Problem: is a quadratic; constraints: linear
\approx Objective function is convex
(Like LPs, useful not just for quadratic problems but often an approx. for more complex NLPs) (Taylor series!)

```
Algorithm 3 Lemke
    Init: Get into standard form, i.e. set up \(Q, A, \mathbf{c}, \mathbf{b}\)
    \(=n\) variables ; \(m\) constraints
    0 . Check objective function is convex (principal minors of \(Q\) )
    1. Build tableau (see below) \(y, v\) form an identity matrix structure: basic variables
    2. Start in \(z\) column; pick row with most -ve entry in constant column, pivot so \(z\) becomes basic
    3. LOOP:
```

3a. Find variable that left basic structure. If z, then STOP.
Else: \Longrightarrow it has a complement:. Identify the complement
3b. Pivot on this complement ("minimum ratio rule") [RHS/col: min +ve]. If no pivot possible, also STOP (no solution)

Lemke tableau:

\mathbf{x}	\mathbf{u}	\mathbf{y}	\mathbf{v}	\mathbf{z}		
$-Q$	$-A^{T}$	I_{n}	0	$(-1-1 \ldots$	$-1)^{T}$	\mathbf{c}
A	0	0	I_{m}	$(-1-1 \ldots$	$-1)^{T}$	\mathbf{b}

x_{i}, y_{i} are complementary pairs; u_{j}, v_{j} are complementary pairs
$\sqrt{ }$ (No proof) will terminate (providing obj. function is convex);
\checkmark efficient
can use quadratic approximations of more general problems to use this method as efficient approximation technique

2 Integer Programming

- Pure or mixed
- Often (mixed) binary
- No universal algo
\leadsto Can't (necessarily) just round LP solution
\leadsto Bounded \Longrightarrow finitely many solutions ... but might be impractically many!
\leadsto Some "good" approaches but none known that are not exponential
$\leadsto \quad$ More specific approaches for specific problems

Neat trick: use NLP constraint $x=x^{2} \Longrightarrow x \in\{0,1\}$

2.1 Strategies

General tool $=\underset{\sim}{ }$ branch-and-bound \gtrsim
But sometimes, can find shortcuts:

- Small problems: exhaustive enumeration
- Heuristics, (a) as "good enough" solution (b) to whittle down possibilities
\leadsto If problems from the real world are being posed because we want a solution in the real world, can apply real-world common sense!
(e.g. aiming to optimise total suitability when matching people to jobs; rule out in advance any matches with "poor" suitability)
- May be able to Use Algebra on constraints to whittle down possibilities (combine constraints, etc)
\leadsto but, relies on spotting possibilities // not general
- "Logical constraints" (build in as algebraic constraints)
! (not sure how this is a "strategy")
- Cutting planes:
(1) Solve LP
(2) If solution is optimum, done; else, find "cutting plane" separating optimum from feasible region \Longrightarrow new feasible region
(3) Rinse \& repeat
[initially thought not to be efficient; more recent methods discovered making it viable]

Branch \& Bound

- Solve LP ("LP relaxation").
- Pick a variable that is non-integer in the solution, so $a<x_{i}<a+1$ for some integer a
- Set up two new LPs, one with new constraint $x_{i} \leq a$, one with new constraint $x_{i} \geq a+1$ (branch) [NB $a=0 \Longrightarrow$ new constraint is $x_{i}=0$ due to non-negativity constraints]
- Solve these: each solution establishes an upper bound on objective value

```
Algorithm 4 Branch-and-bound
    Initialise; set L to "any" feasible integer solution (largest known, or a large negative value)
    LOOP:
    M Branch: set up new problems NB: only ever 2 subproblems per node
    \leadsto ~ B o u n d : ~ c a l c u l a t e ~ o p t i m u m ~ f o r ~ t h e m ~
    ~Fathom: if this branch has z<L, or is infeasible; ditch it
                    else, z>L; if solution is integer, reset L and cut off branch here
    \Test: is there anywhere else to go, if not, current L ("incumbent") is solution
```

$\sqrt{ }$ Conceptually simple
$\sqrt{ }$ Can be adapted easily to NLPs

Notes:

- Choosing order of operations has major impact (e.g. breadth-first, depth-first, node orderings...)
- Might make sense to stop at sub-optimal solution [LP optimum is an upper bound: are we close?]
- Spend time on initialisation to get a good starting point
- Might be able to exploit problem structure, e.g. branch on constraints for binary problems [TODO: check what he means by this??]
- Can also use branch \& bound for non-linear integer problems, etc.
- Can be exponential
- Strategies:
- if integer variable has a lot of possible values (e.g. >20), consider treating it as continuous; try and keep down total number of integer variables
- make upper/lower bounds on integer variables as tight as possible
- the more constraints the better! (opposite to LPs)
- order in which integer variables are processed is critical. choose "based on economic significance and user experience"
- stop within 3% of continuous optimum, if allowed
- consider whether rounded LP solution is practical

3 Graphs and networks

Terminology (for this course)

```
graph = (nodes + arcs /) vertices + edges
directed = digraph / undirected
multigraph (multiple edges; loops) / simple (assume unless otherwise stated)
empty }->\mathrm{ complete = K K ( }n\mathrm{ vertices)
isomorphic graphs
subgraph
spanning [subgraph, tree]
adjacent (vertices)
neighbourhood N(v) of a vertex v
degree of a vertex
edge sequence }->\mathrm{ chain }->\mathrm{ circuit/cycle
connected vertices, graph, digraph: strongly, weakly
acyclic }->\mathrm{ tree (with leaves)
network = digraph with no loops or multiple edges & each edge has a weight/capacity,
sources & sinks are identified (at least 1 of each). Assume weakly connected
cut [in network]
weighted graph [cf network capacity]
minimum spanning tree (=minimal connector)
```

Handshaking lemma: sum of the vertex degrees is equal to twice the number of edges [proof by double counting]
\Longrightarrow total number of odd-degree vertices in a graph is even
\Longrightarrow if several people shake hands at a party, the total number of hands shaken must be even

Result on trees (no proof) Following are equivalent:

1. G is a tree
2. any two vertices in G are connected by a unique path
3. G is acyclic with $|E|=|V|-1$

Max-flow min-cut Theorem (no proof):
value of any max flow (in a network) equals minimum capacity of any cut

Types of problem: often could be expressed as LP but useful to exploit network structure.

3.1 Shortest path (source to sink)

[capacities/weights $=$ distances]

```
Algorithm 5 Dijkstra's algorithm
    1. Label source vertex
    2. LOOP:
        (a). Consider last permanently labelled vertex, say \(X\); look at all \(Y\) adjacent to \(X\) :
            if more efficient route than the current temp label on \(Y\) ( \(\infty\) if none), update temp label.
            (b). Make vertex with shortest-dist temp label into permanent label
            (c). If reached destination, STOP
```

3. Construct shortest path

3.2 Maximum flow through a directed network

Could be an LP but we can manage a lot more efficiently using max flow alg:

```
Algorithm 6 Maximum flow algorithm
    INIT: find a feasible flow [make it as good as you can by inspection, saves time over zero flow...]
    LOOP:
```

 (define sets of edges \(I, R\) in which flow can be increased and decreased)
 [just a concept: don't explicitly calculate sets]
 a. find a chain source \(\rightarrow\) sink by adding vertices from I or R
 (never add a vertex that's already in the chain (terminology for LNO: "labelled")).
 if no chain possible: STOP
 b. increase flow along chain as much as possible
 Current flow (before last loop, in which attempt to find chain failed) is optimal
 (4. Sanity check by finding a cut)

Extensions

- Multiple sources and/or sinks: create artificial "supersource,sink"
- Two-way flow: add edge
- Node capacities: split node in two, insert edge
- Costs as well as capacities
- Gains/losses [e.g. electrical circuits heat, money can be taxed...]
- Contractual obligations to use certain routes

3.3 Minimum (=capacity) spanning tree of an (undirected) graph

Example problems: (1) New underground system, stations, tracks between them? (2) Central heating system / minimise piping (3) Telecomms

(a) Kruskal

Repeatedly add minimum weight edge, providing no cycles
(b) Prim

Repeatedly add min weight edge that links with a vertex in the tree!
$==================================$ edges). Is graph sparse $(m \approx n)$ or dense? $\left(m \approx n^{2}\right)$

[See also Comp Opt re smart algos!]

4 Complexity

usually want to minimise
s but in cases such as crypto might want to guarantee minimum is not too low!

Factors:

- the algorithm [key]
- the hardware
- the code
- the inputs (think of best case vs worst case ["most useful" ?] vs avg case)
- constraints for space, time [time most interesting in modern world]
runtime?
memory?

Time - Moore's law - Quantum?? -
\leadsto proportional to steps
$\leadsto \quad$ in terms of problem size (input parameters)

O-notation: typically
*: const $\rightarrow \log \rightarrow$ linear \rightarrow quadratic \rightarrow poly (degree k) \rightarrow exponential Sum of functions: take the fastest growing one, drop the rest

For this course: worst case;
P: Polynomial time // NP : Check in P time [else: is it exponential] [may also need to know: class U: Undecidable]
NP-hard [any NP problem can be transformed into it in P time] // NP-complete [NP, and NP-hard]

5 Non-linear programming

5.1 Convexity / concavity

Set

Def: Convex $=$ points on line segment are in set
Def: Concave $=$ not convex [nothing more]
\mathcal{T} intersection of convex sets is convex (proof by algebra)
\lesssim union of convex sets is not necessarily convex (proof by example)
$\mathcal{*}$ a hyperplane in \mathbb{R}^{n} divides the space into two convex sets (proof from definition)
feasible region for an LP is convex (proof from definition as intersection)

Function

Def: (strictly) Convex $=f\left(c \mathbf{x}_{1}+(1-c) \mathbf{x}_{2}\right)\{\leq,<\} c f\left(\mathbf{x}_{1}\right)+(1-c) f\left(\mathbf{x}_{2}\right) 0 \leq c \leq 1$
Def: $($ strictly $)$ Concave $=f\left(c \mathbf{x}_{1}+(1-c) \mathbf{x}_{2}\right)\{\geq,>\} c f\left(\mathbf{x}_{1}\right)+(1-c) f\left(\mathbf{x}_{2}\right) 0 \leq c \leq 1$
\gtrsim A function f is convex $\Longleftrightarrow-f$ concave (proof direct from defs)
$\mathcal{\sim}$ A linear function is both convex and concave (proof from definitions)
む f, g convex $\Longrightarrow f+g$ convex

Univariate: if $f^{\prime \prime}(x)$ exists for all x in a convex set S then
刁 $f(x)$ is a convex function $\Longleftrightarrow f^{\prime \prime}(x) \geq 0$ for all $x \in S$
$\leadsto f(x)$ is a concave function $\Longleftrightarrow f^{\prime \prime}(x) \leq 0$ for all $x \in S$
(Notice S is convex both times)
Multivariate
Compute Hessian $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ [NB symmetric]:
$\approx f$ is concave if $H(\mathbf{x})$ is negative semidefinite for all \mathbf{x}
$\leftrightarrow f$ is strictly concave if $H(\mathbf{x})$ is negative definite
\sim mutatis mutandis for convexity
\approx The following statements about a symmetric matrix A are equivalent:

1. A is positive semidefinite
2. All eigenvalues of A are nonnegative
3. $A=Z Z^{\prime}$ for some real matrix Z
\Longrightarrow we can go from eigenvalues or other linear algebra methods to definiteness of H and thus to convexity/concavity

5.2 Principal minors \& co

i th principal minor: determinant of an $i \times i$ submatrix (can be several i th principal minors)
k th leading principal minor: delete the last $n \times k$ rows/columns
given a multivariate function f, H_{k} : k th leading principal minor of the Hessian
Theorem: Assume f has continuous second order derivatives.
test f : concave?

1. f is convex on $S \Longleftrightarrow$ for all \mathbf{x}, all principal minors are non-negative
2. f is concave on $S \Longleftrightarrow$ for all \mathbf{x}, all k th non-zero principal minors have the same sign as $(-1)^{k}$ \leadsto NB: function can be neither!

Stationary points: could be local maxima, local minima, ... or saddle points
Theorem: n-variable problem, $k=1, \ldots n$
test nature of stat pt

1. if $H_{k}(\mathbf{x})>0$ for all k then \mathbf{x} is a local minimum
2. if $H_{k}(\mathbf{x}) \neq 0$ and has the same sign as $(-1)^{k}$ for all k, \mathbf{x} is a local maximum
3. if $H_{n}(\mathbf{x}) \neq 0$ but neither 1 nor 2 applies, \mathbf{x} is not a local extremum 4. if $H_{n}(\mathbf{x})=0$, no conclusions can be drawn.

Theorem:

$$
\text { local } \leftrightarrow \text { global }
$$

If (1) NLP is a maximisation and (2) the feasible region S is a convex set:
Objective function f_{0} concave on $S \Longrightarrow$ any local maximum is an optimum (Proof by contradiction)

Corollary:

```
See also: f, all g convex \Longrightarrow KKT pt is global opt
```

If the NLP is a minimisation, S still convex:
Objective function f_{0} convex on $S \Longrightarrow$ any local minimum is an optimum

NLPs:

$\max f_{0}(\mathbf{x})$ s.t. $f_{i}(\mathbf{x}) \leq 0$ (note formulation as ≤ 0 for all constraints)
[Can always get into this form \rightarrow but in fact need min for most algs!]

vs LPs

- feasible region has generally curved boundaries
- optimum not necessarily at vertex
- not necessarily at boundary at all
(e.g. with $x^{2}+y^{2} \leq 1$, opt at $(0,0)$)
- might be local optimum but not global [necessary vs sufficient...]
- $\mathrm{LPs}=$ special case! Other special cases can also be exploited
- potentially multiple disconnected feasible regions (e.g. $\sin (x) \geq \sin (x+\pi))$

Classification

- univariate vs multivariate
- constrained vs unconstrained
- exact vs approx [methods]
$\leadsto \quad 2^{3}=8$ categories

5.3 Univariate

(constrained/unconstrained: usually reduce to constrained $=$ find interval of interest)

Points to check:

- endpoints of interval
- does derivative exist everywhere?
- is $f^{\prime}(x)=0$ solvable?
- distinguish max/min \& global/local

Can typically find an interval with optimum in [but careful about optima at ends...]

May be subproblems to multivariate methods
Basic solution is to look for $f^{\prime}(x)=0$

Proposed strategy:

1. if $f^{\prime}(x)$ doesn't exist in many places or is hard to solve for zero, use numerical method; else 2 (a) plot curve to get a basic idea
(b) Evaluate f at (i) local optima by differentiation; (ii) points of non-differentiability; (iii) endpoints \Longrightarrow choose optimum from (i), (ii), (iii)
$\leadsto X_{\text {not always possible } / /(i) \text {, (ii), (iii) means ad-hoc methods }}$
\leadsto more commonly: Approximate methods

- for computer implementation
- to a required degree of accuracy
- point vs. interval
$\approx \mathrm{NB}$: always consider rate of convergence!

E.g., point method: Newton

$$
x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)} \quad \text { cons continue until }\left|x_{n+1}-x_{n}\right|<\epsilon
$$

$\sqrt{\text { conceptually simple }}$
$\sqrt{\text { easy to implement }}$
$\sqrt{\text { can converge fast }}$
$X f \lesssim$ must be twice differentiable \rightsquigarrow
can fail if $f^{\prime \prime} \approx 0$
X might converge to local but not global optimum
X badly behaved functions (could diverge or wander)

E.g., interval method: line search

© Start with sketch!
\lesssim Divide interval in half each time; consider $f^{\prime}\left(x_{n}\right)\left(x_{n}\right.$ is division point)
\hat{s} Continue until interval is small enough (can take $f \approx \frac{1}{2}(f(a)+f(b)$ as point sol.)

$\sqrt{\text { simple }}$| easy computation |
| :--- |

$\boldsymbol{X}_{\text {slow }}$ convergence $\left(\log _{2}\left(\frac{a-b}{\epsilon}\right)\right.$ divisions)
\boldsymbol{X}_{f} must be differentiable
X need a single optimum in the interval

5.4 Multivariate

1: Unconstrained

Exact methods

$\nabla f(\mathbf{x})$ the gradient vector of first partial derivatives
\Longrightarrow a system of n equations when all are zero
Solve to find stationary points
Then need to determine nature of stationary points (use thms above)

$\boldsymbol{V}_{\text {simple }}$	$X_{\text {often not applicable }}$
$\boldsymbol{V}_{\text {can often find local optima }}$	$\boldsymbol{X}_{\text {need differentiability }}$
\ldots	$X_{\text {can be hard/impossible to solve simultaneous eqn. }}$

Approximate methods

Newton (cf univariate) for two-variables ("Obvious extensions for $n>2$ variables")
[string of algebra $=$ derivation]

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}-H^{-1} \nabla f
$$

At each iteration, evaluate H^{-1} and f at $\mathbf{x}_{n} \hat{\mathcal{z}}$ Good starting point is crucial $\hat{\mathcal{s}}$
$\sqrt{ }$ Fast convergence in some cases.
$X \approx \operatorname{BOOM} \hbar$ but "not a viable practical tool":
$\boldsymbol{X}_{\text {Needs a lot of computing power }} \boldsymbol{X}_{\text {If }} H$ has a singularity (between starting point and true optimum),
$\hat{i} \mathrm{BOOM}$ is
X Can be badly behaved // not robust //
\leadsto sensitive to starting point
\leadsto can reach stationary iteration point
\leadsto or get stuck in a cycle
\boldsymbol{X} Convergence might not be to an optimum (local; saddle point. . .)
$X_{\text {Need: }}$
H invertible and well conditioned
NB H may be invertible for only some \mathbf{x} f twice differentiable with explicit analytic form of derivatives
$X_{\text {Remember this is an approximation method and we're discarding }}$ quadratic (\& higher power) terms of a series ... but that can actually cause problems for convergence
sooooo: Quasi-Newton $\mathbf{x}_{n+1}=\mathbf{x}_{n}-\alpha_{n+1} H_{n} \nabla f$
argument to f is $\left(\begin{array}{c}x_{1}+\alpha y_{1} \\ x_{2}+\alpha y_{2} \\ \ldots\end{array}\right)$ where
x, y are known (prev. step) so it's an eqn in α
$\leadsto \quad \alpha_{n}$ is a 'step length'
$\leadsto\left\{H_{i}\right\}$ is a sequence of matrices typically with $H_{0}=I$ e.g.:
$H_{n}=\left(H+\lambda_{n} I\right)^{-1}$ where the λ_{i} are constants;
BFGS; DFP (non-examinable)

```
    steepest descent (=minimisation) (or ascent for maximisation)
    M
    M}\mp@subsup{\alpha}{\mp@subsup{n}{+}{}1}{}\mathrm{ found by univariate search to minimise f( }\mp@subsup{\mathbf{x}}{n}{}+\mp@subsup{\alpha}{n+1}{}\nablaf(\mp@subsup{\mathbf{x}}{n}{})
(xn known \Longrightarrow equation in \alpha: differentiate and solve for zero gradient)
```

Usual convergence strategy:
(1) Good starting point
(2) iterate
(3) until convergence criterion
(apply to all cpts of vector \mathbf{x})

\leadsto Zigzagging \leadsto slow convergence is often a problem
i Not generally recommended (except well conditioned problems) i
! But: many methods suffer from "tricky computing", local optima, need for differentiability

Adapt steepest ascent to fix zigzagging \& slow convergence? \Longrightarrow bring it in line with other methods?
\leadsto change step size e.g. 0.9α
$\leadsto \quad$ modify direction e.g. $\alpha\left(\frac{1}{2}\left(\nabla f\left(\mathbf{x}_{n}\right)+\nabla f\left(\mathbf{x}_{n-1}\right)\right)\right) \quad$ [no further discussion on these]

2a: Equality constrained

1. Sketch

X 2 variables only (possibly 3) approximate
2. Substitution ("not to be despised, it can be useful")

Algebra with constraints [equality constrained] to get "reduced objective function" (constraints are sim. eqns) Solve reduced objective function by appropriate means
3. Lagrange multipliers: the fun stuff

[^0]All optima are Lagrange pts ! not all L. pts are even stat. pts!

If sol. is unique and opt. exists, have found it

2b: Inequality constrained

"The most general type of NLP"
(rearrange to) $\min f_{0}(\mathbf{x})$ s.t. $f_{i}(\mathbf{x}) \leq \mathbf{0}$

Method:

- m constraints: build 2^{m} subproblems, each one with i of the constraints $(0 \leq i \leq m)$, treated as equalities [rest ignored]
- solve the 2^{m} equality constrained problems [choose method from above]
- see if solutions violate other constraints (if so, bin)
- compare optimum for non-binned solutions

E Sloo00w is

KKT conditions (Karush-Kuhn-Tucker):

Lagrangian: $f_{0}(\mathbf{x})+\sum_{j} u_{j} f_{j}(\mathbf{x})$ (remember the $f_{j}(j>0)$ are the constraints)

1. $\frac{\partial L}{\partial x_{i}}=0 \quad$ Gradient
2. $u_{i} f_{i}(\mathbf{x})=0 \quad$ Orthogonality
3. $f_{i}(\mathbf{x}) \leq \mathbf{0} \quad$ Feasibility
4. $u_{i} \geq 0 \quad$ Non-negativity

4 sets of conditions: way more than 4 things to test!
\mathbf{x} is a (local) optimum \Longrightarrow all conditions are satisfied

KKT Method

- get into $\min f_{0}$ s.t. $\ldots \leq 0$
- Set up a bunch of equations corresponding to KKT conditions
- Solve 'em to find local optima [typically works out as branching technique: pick one equation that narrows down options, and try these options in another equation. . .]
- Test to see if it's global \Longrightarrow is f convex?

Thm: (no proof)
$\leadsto \quad$ if f_{j} is convex for all j then any such point ("KKT point") is a global minimum
\leadsto a few other similar tests (not covered)
\boldsymbol{X} but general case have to examine each point $X_{\text {tedious }}$
$\sqrt{ }$ still more promising than 2^{m} constraints method

5.5 Penalty and Barrier methods

5.5.1 Penalty

Move to feasible region from outside it (sequence of infeasible points)

Set up unconstrained problem $\min f(\mathbf{x})+c P(\mathbf{x})$
Defining P :
Equality constraints: $P(x)=\sum\left(h(\mathbf{x})^{2}\right)$
Inequality constraints: $\leq 0: P(x)=\sum_{i}(\max \{0, g(\mathbf{x})\})^{2}$
[square term ensures differentiable. So we are told]
$\left\{c_{k}\right\}$ is an increasing sequence tending to infinity
Commonly: use iterative method with \mathbf{x}_{k} as starting point for step $k+1$

Theorem: A limit point of any sequence $\left\{\mathbf{x}_{k}\right\}$ generated by the penalty method (as $\left.c \rightarrow \infty\right)$ is a solution to the problem $\min f(\mathbf{x})$ s.t. $\mathbf{x} \in S$

5.5.2 Barrier

"Prevent" the search procedure from leaving the feasible region

Set up unconstrained problem $\min f(\mathbf{x})+\epsilon B(\mathbf{x})$
E.g. $\quad B=-\sum_{i} \frac{1}{g_{i}(x)} \quad$ or $\left.\quad-\sum_{i} \log \left(-g_{i}(x)\right)\right)$
($g_{i} \leq 0$; barrier methods always feas. pt)
Theorem: A limit point of any sequence $\left\{\mathbf{x}_{k}\right\}$ generated by the barrier method (as $\underline{\text { as }}$) is a solution to the problem $\min f(\mathbf{x})$ s.t. $\mathbf{x} \in S$

5.5.3 Both:

$\sqrt{ }$ normally converge; handle cusps \& other anomalies well
$\sqrt{ }$ easier programming (only unconstrained functions)
$X_{\text {working }}$ with more complex functions
X can be issues with slow convergence

Barrier vs Penalty:

B: even if you don't reach convergence, all solutions are feasible
B : typically require fewer function evaluations \Longrightarrow faster
\mathbf{P} : good with equality constraints (barrier methods are complicated)
P: barrier methods need feasible start point, could be hard to find

5.6 NLP methods: Summary

Univariate

EXACT

Always sketch graph!
constr. $f^{\prime}(x)=0$
constraints \rightarrow intervals: check:

- non-diff. pts
- endpts of interval

-

unconstr. -	∇

- use thms to determine nature of stationary pts
X impractical!

Approx

constr. point:
$=$ Newton:

$$
x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)}
$$

interval
$=$ line search
lots of issues!

unconstr.

-

Newton

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}-H^{-1}\left(\mathbf{x}_{\mathbf{n}}\right) \nabla f\left(\mathbf{x}_{n}\right)
$$

... lots of issues
\Longrightarrow quasi-Newton

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}-\alpha_{n+1} A_{n}\left(\mathbf{x}_{\mathbf{n}}\right) \nabla f\left(\mathbf{x}_{n}\right)
$$

here A is not (necessarily) the Hessian (inverted Hessian), e.g. could just be an identity matrix \rightarrow steepest $\{\mathrm{a}, \mathrm{de}\}$ scent.
(still has issues)

6 Proofs \& derivations

LP: dual \leftrightarrow original

let L : primal: $\max \mathbf{c}^{T} \mathbf{x}$ s.t. $A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0$

$$
\begin{aligned}
L^{*}(\text { dual }) & =\min \mathbf{b}^{T} \mathbf{y} \text { s.t. } A^{T} \mathbf{x} \geq \mathbf{c}, \mathbf{y} \geq 0 \\
& =\max \left(-\mathbf{b}^{T} \mathbf{y}\right) \text { s.t. }-A^{T} \mathbf{x} \leq=\mathbf{c}, \mathbf{y} \geq 0 \\
\left(L^{*}\right)^{*} & =-\min \left(\mathbf{c}^{T} \mathbf{x}\right) \text { s.t. }-\left(A^{T}\right)^{T} \mathbf{x} \geq-\mathbf{b}, \mathbf{x} \geq 0 \\
& =\max \mathbf{c}^{T} \mathbf{x} \text { s.t. } A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0
\end{aligned}
$$

dualising equality constraints
Let $L=\min \mathbf{c}^{T} \mathbf{x}$ s.t. $A \mathbf{x}=b, x \geq 0$.

$$
L=\min \mathbf{c}^{T} \mathbf{x}
$$

$$
\text { s.t. }\binom{A}{-A} \mathrm{x}
$$

$$
\geq\binom{\mathrm{b}}{-\mathrm{b}}, \mathrm{x} \geq 0
$$

$$
L *=\max \binom{\mathbf{b}}{-\mathbf{b}}^{T} \mathbf{y}
$$

$$
\text { s.t. }\binom{A}{-A}^{T} \mathbf{y} \quad \leq \mathbf{c}, \mathbf{y} \geq 0
$$

$$
\begin{aligned}
& =\max \left(\begin{array}{ll}
\mathbf{b}^{T} & -\mathbf{b}^{T}
\end{array}\right)\binom{\mathbf{u}}{\mathbf{v}} \\
& =\max \mathbf{b}^{T}(\mathbf{u}-\mathbf{v}) \\
& =\max ^{T} \mathbf{b}_{\mathbf{z}}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { s.t. }\left(A^{T}-A^{T}\right)\binom{\mathbf{u}}{\mathbf{v}} & \leq \mathbf{c}, \mathbf{y} \geq 0 \\
\text { s.t. } A_{m}^{T}(\mathbf{u}-\mathbf{v}) & \leq \mathbf{c}
\end{array}
$$

$$
=\max \mathbf{b}^{T} \mathbf{z}
$$

$\begin{array}{ll}\text { s.t. } A^{T}(\mathbf{u}-\mathbf{v}) & \leq \mathbf{c}, \\ \text { s.t. } A^{T} \mathbf{z} & \leq \mathbf{c},\end{array}$
where $\mathbf{z}=\mathbf{u}-\mathbf{v}$ is a vector of free variables $(\mathbf{u}, \mathbf{v} \geq 0)$
cor: dual variable defined by an equality constraint is unrestricted
Weak duality
\mathbf{x}, \mathbf{y} feasible for primal, dual: $\mathbf{c}^{\mathbf{T}} \mathbf{x} \leq \mathbf{b}^{\mathbf{T}} \mathbf{y}$
x feasible $\Longrightarrow A \mathrm{x} \leq \mathbf{b}, \mathrm{x} \geq 0$
$\Longrightarrow(A \mathbf{x})^{T} \leq(\mathbf{b})^{T} \Longrightarrow \mathbf{x}^{T} A^{T} \leq \mathbf{b}^{T} \Longrightarrow \mathbf{x}^{T} A^{T} \mathbf{y} \leq \mathbf{b}^{T} \mathbf{y}$
\mathbf{y} feasible $\Longrightarrow A^{T} \mathbf{y} \geq \mathbf{c}, \mathbf{x} \geq 0$
$\Longrightarrow \mathbf{x}^{T} A^{T} \mathbf{y} \geq \mathbf{x}^{T} \mathbf{c}$
combining, we have $\mathbf{x}^{T} \mathbf{c} \leq \mathbf{b}^{T} \mathbf{y}$
cor: any feasible solution for maximum problem is lower bound to minimum value of minimum problem cor: any feasible solution for minimum problem is lower bound to maximum value of maximum problem
cor: if maximum problem is feasible/unbounded, minimum has no feasible solution
cor: if minimum problem is feasible/unbounded, maximum has no feasible solution
cor: if both problems are feasible, both are bounded

Possible to have primal and dual both infeasible

$$
\begin{aligned}
\max & 2 x_{1}-x_{2} \\
\text { s.t. } & x_{1}-x_{2} \leq 1 \\
& -x_{1}+x_{2} \leq-2 \quad \& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Complementary slackness:
Write L as:
write dual as

$$
\begin{aligned}
P: \max \sum_{j} c_{j} x_{j} & =z \\
\text { s.t. } \sum_{j} a_{i j} x_{j}+s_{i} & =b_{i} \text { for all } i \\
x_{j}, s_{i} & \geq 0 \text { for all } j
\end{aligned}
$$

$$
\begin{aligned}
D: \min \sum_{i} b_{i} y_{i} & =z \\
\text { s.t. } \sum_{i} a_{i j} y_{i}-t_{j} & =c_{j} \text { for all } i \\
y_{i}, t_{j} & \geq 0 \text { for all } j
\end{aligned}
$$

Both feasible (by assumption), with optimal solutions $w^{*}=z^{*}$ (equality by duality):

$$
\begin{aligned}
w^{*}-z^{*} & =\sum_{i} b_{i} y_{i}-\sum_{j} c_{j} x_{j} \\
& =\sum_{i}^{i}\left(\sum_{j} a_{i j} x_{j}+s_{i}\right) y_{i}-\sum_{j}\left(\sum_{i} a_{i j} y_{i}-t_{j}\right) x_{i} \\
& =\sum_{j} s_{i} y_{i}+\sum_{j} t_{j} x_{j}=0
\end{aligned}
$$

since all vars $\geq 0: s_{i} y_{i}=0=t_{j} x_{j}$
intersection of convex sets is convex:
Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in S_{1} \cap S_{2} ; c \in[0,1]$. Now $c \mathbf{x}_{1}+(1-c) \mathbf{x}_{\mathbf{2}} \in S_{1} \&$ similar for S_{2}. So $c \mathbf{x}_{1}+(1-c) \mathbf{x}_{\mathbf{2}} \in S_{1} \cap S_{2}$.
Extend by induction

$\underline{\text { Union of convex sets is not necessarily convex }}$

E.g.: $S_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 2,0 \leq y, \leq 1\right\}, S_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1,0 \leq y, \leq 2\right\}$

A hyperplane in \mathbb{R}^{n} divides the space into two convex sets
Take two points in either set and apply the definition of convexity

The feasible region for an LP is convex: Combine result re. hyperplane and result re. intersections.
A function f is convex $\Longleftrightarrow-f$ is concave: Follows directly from dfns
$\underline{\text { A linear function is both convex and concave: Let } f(\mathbf{x})=a \mathbf{x}+b \text { and consider }}$

$$
\begin{array}{rlrl}
f\left(c \mathbf{x}_{1}+(1-c) \mathbf{x}_{\mathbf{2}}\right) & =a\left(c \mathbf{x}_{1}+(1-c) \mathbf{x}_{2}\right) & & +b \\
& =c\left(a \mathbf{x}_{1}+b\right)+(1-c)\left(a \mathbf{x}_{2}+b\right) & & +c b \\
& =c f\left(\mathbf{x}_{1}\right)+(1-c) f\left(\mathbf{x}_{2}\right) &
\end{array}
$$

$\underline{f, g \text { convex } \Longrightarrow f+g \text { convex:Apply def of convexity and add resulting inequalities }}$
$\underline{f^{\prime \prime}(x) \geq 0 \text { for all } x \in \text { some convex set } S \Longrightarrow f(x) \text { convex }}$
If $f(x)$ is convex, the line joining any two points is never below the curve, so the slope of $f(x)$ must be non-decreasing for all x.

$$
\begin{aligned}
\text { Taylor series : } f(x) & =\sum_{i} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} \\
\left(\frac{d}{d x}\right) \quad f^{\prime}(x) & \approx 0+f^{\prime}(a)+\frac{2}{2}(x-a) f^{\prime \prime}(x) \\
f^{\prime}(x)=0 \Longrightarrow f^{\prime}(a) & \approx-x f^{\prime \prime}(x)+a f^{\prime \prime}(x) \\
& \approx \frac{a f^{\prime \prime}(x)-f^{\prime}(a)}{f^{\prime \prime}(x)}=a-\frac{f^{\prime}(a)}{f^{\prime \prime}(x)} \\
\text { As iterative scheme, set } x_{n}=a, x_{n+1}=x: & \Longrightarrow x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)}
\end{aligned}
$$

Newton's method: multivariate Taylor expansion for two-variable case:

$$
\begin{aligned}
f(x, y)= & f(a, b)+(x-a) \frac{\partial f}{\partial x}(a, b)+(y-b) \frac{\partial f}{\partial y}(a, b) \\
& +\frac{1}{2}\left[(x-a)^{2} \frac{\partial^{2} f}{\partial x^{2}}+2(x-a)(y-b) \frac{\partial^{2} f}{\partial x \partial y}(a, b)+(y-b)^{2} \frac{\partial^{2} f}{\partial y^{2}}(a, b)\right]
\end{aligned}
$$

Set $(a, b)=\left(x_{n}, y_{n}\right)$ as before; Now we take the partial derivatives w.r.t. x, y and then set them $=0$ as before; (remember all the ∂ terms are constants w.r.t. x)
if $\left(x_{n+1}, y_{n+1}\right)$ is an improved estimate for the optimum, we can write this compactly as:

$$
\begin{aligned}
\binom{0}{0} & =\binom{\frac{\partial f}{\partial x_{1}}}{\frac{\partial f}{\partial x_{2}}}+\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{1} \partial y} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right)\binom{x_{n+1}-x_{n}}{y_{n+1}-y_{n}} \\
\text { i.e. } \quad \mathbf{0} & =\nabla f+H\left(\mathbf{x}_{n+1}-\mathbf{x}_{n}\right) \\
\Longrightarrow \mathbf{x}_{n+1} & =\mathbf{x}_{n}-H^{-1} \nabla f
\end{aligned}
$$

This gives us our iterative method.
Sufficient condition for global optima: S convex, objective function f_{0} concave \Longrightarrow local max is optimum

Let $\mathbf{x}^{*}, \mathbf{x}^{\prime} \in S$ both local max, with $f\left(\mathbf{x}^{*}\right)>f\left(\mathbf{x}^{\prime}\right)$:

- By concavity of $f, f\left(c \mathbf{x}^{\prime}+(1-c) \mathbf{x}^{*}>f\left(\mathbf{x}^{\prime}\right)\right.$ (plug in def of concavity) [1]
- \mathbf{x}^{\prime} is local max so $f\left(x^{\prime}\right) \geq f(\mathbf{x})$ for all $\mathbf{x} \in \operatorname{some}$ neighbourhood N [2]
- Let $\mathbf{x}=\left(c \mathbf{x}^{\prime}+(1-c) \mathbf{x}^{*}\right.$ s.t. $\mathbf{x} \in N(c \rightarrow 1)$
- (By [1]) $f(\mathbf{x})>f\left(\mathbf{x}^{\prime}\right) \geq f(\mathbf{x})$ (by [2]). Contradiction!

Cor: minimisation, S convex, f_{0} convex \Longrightarrow any local min is an optimal solution

7 Adv-Disad-When

Big-M // 2-phase - Two-phase for testing feasibility

- Two-phase for implementing on computer
- Big-M is simpler though

Interior pt: - Large problems

- Don't need post-analysis
\leadsto Combo?

Newton vs
$\sqrt{ }$ conceptually simple
$\sqrt{ }$ easy to implement
$\sqrt{ }$ can converge fast
$X f \approx$ must be twice differentiable ω
X might converge to local but not global optimum
X badly behaved functions (could diverge or wander)
interval
$\sqrt{ }$ simple
$\sqrt{ }$ easy computation
$\boldsymbol{X}_{\text {slow convergence }}$
\boldsymbol{X}_{f} must be differentiable
$\boldsymbol{X}_{\text {need single }}$ optimum in the interval

Multivar unconstrained exact

Multivar Newton NB Newton is exact for quadratic problems!

Good starting point is crucial is
$\sqrt{ }$ Fast convergence in some cases.

$\boldsymbol{X}_{\text {If }} H$ has a singularity (between starting point and true optimum), $\underset{\sim}{ }$ BOOM \uparrow
X Can be badly behaved // not robust //
\leadsto sensitive to starting point
\leadsto can reach stationary iteration point
\leadsto or get stuck in a cycle
\boldsymbol{X} Convergence might not be to an optimum (local; saddle point...)
X Need:
H invertible and well conditioned
f twice differentiable with explicit analytic form of derivatives
$X_{\text {Remember this is an approximation method and we're discarding }}$
quadratic (\& higher power) terms of a series ... but that can actually cause problems for convergence
X Needs a lot of computing power
$\underline{\text { Quasi-Newton }} \underset{\sim}{ }$ Not generally recommended (except well conditioned problems) \lesssim
! But: many methods suffer from "tricky computing", local optima, need for differentiability Steepest ascent:

Simple idea	$X_{\text {Often slowly (compared to other approaches) }}$
$\sqrt{\text { Usually converges }}$	$X_{\text {Tricky computing, including univariate search }}$
	$X_{\text {Could be a local optimum }}$
	$X_{\text {Require differentiability }}$

Adapt steepest ascent to fix zigzagging \& slow convergence? \Longrightarrow bring it in line with other methods? \leadsto change step size e.g. 0.9α
$\leadsto \quad$ modify direction e.g. $\alpha\left(\frac{1}{2}\left(\nabla f\left(\mathbf{x}_{n}\right)+\nabla\right.\right.$

Eq. constrained: subst - non-obvious

Barrier/Penalty:

$\sqrt{ }$ normally converge; handle cusps \&
other anomalies well
$\sqrt{ }$ easier programming
(only unconstrained functions)
$\boldsymbol{X}_{\text {working with more complex functions }}$
$X_{\text {can }}$ be issues with slow convergence

B: even if not convergence, all solutions are feasible
B: typically require fewer function evaluations \Longrightarrow faster
P: good with equality constraints
(barrier methods are complicated)
P: barrier need feas. start point \Longrightarrow poss. hard to find

7.1 Maxes and mins

- LP: $\max \mathbf{c}^{t} \mathbf{x}$ s.t. $A \mathbf{x} \leq \mathbf{b}$
- Lemke: $\min \frac{1}{2} \mathbf{x} Q \mathbf{x}+\mathbf{c}^{\mathbf{t}} \mathbf{c}$ s.t. $A \mathbf{x} \leq \mathbf{b}$
- NLP $\max f_{0}(\mathbf{x})$ s.t. $f_{i}(\mathbf{x}) \leq 0$
- NLP for KKT: $\min f_{0}(\mathbf{x})$ s.t. $f_{i}(\mathbf{x}) \leq 0$
- Lagrange multipliers: also $\min f$; work with equality constraints
- Convex: $f\left(c \mathbf{x}_{1}+(1-c) \mathbf{x}_{2}\right)\{\leq,<\} c f\left(\mathbf{x}_{1}\right)+(1-c) f\left(\mathbf{x}_{2}\right)$
- Steepest descent : choose α to minimise $f\left(\mathbf{x}_{n}+\alpha_{n+1} \nabla f\left(\mathbf{x}_{n}\right)\right)$
- Steepest ascent : choose α to maximise $f\left(\mathbf{x}_{n} \square \alpha_{n+1} \nabla f\left(\mathbf{x}_{n}\right)\right)$ (+ in both cases)
- Second deriv: Convex $\Longleftrightarrow f^{\prime \prime}(x) \geq 0$ (Hessian positive semidef)
- Principal minors: ≥ 0 : Convex
- Leading p. minors / stationary point: >0 local min.
- Maximisation, f.r. convex, f concave: \Longrightarrow local max is global max
- Sensitivity analysis
- Forcing a non-basic var: subtract col from RHS (remove)
- Forcing a basic var: subtract chosen change var from RHS (remove)
- Change to constraint: add to RHS (don't remove)
- Change to bottom line: subtract (+ ve) change amount from b.r. entry (then pivot)

[^0]: Algorithm 7 Lagrange multipliers

 1. define L Lagrangian by munging constraints with obj. function z;
 $\leadsto \quad$ Constraint C is stuff $=0, L=z+\lambda(C)$
 2. Diff. w.r.t. x_{i} and $\lambda \Longrightarrow$ system of sim. eqns (all derivatives zero)
 3. Solve!
 4. Check what kind of a stationary point it is...
