
1 Notes

All subgroups of Dih(8): see eg. 1.17

2 Definitions

Group Require Closure, Associativity, Identity, Inverses

Abelian xy = yx for all x, y ∈ G

Multiplication field R∗,C∗,Q∗ : no zero element → abelian group under multiplication

Useful matrix

groups

GLn : invertible (det 6= 0)

SLn(F ) : det = 1

SL±n : det = ±1

UTn : upper triangular

LTn : lower triangular

Diagn : diagonal

On : {A : AAT = In}

Symmetry group Sym(Φ): f is a symmetry if f(Φ) = Φ. Finite figures: rotations reflections;

infinite figures: add translations, glide reflections

Regular polygon = Dih(2n)

Homomorphism θ(g1g2) = θ(g1)θ(g2)

Given a homomorphism, we know:

1. θ(1) = 1H

2. θ(g−1) = θ(g)−1

3. the order of θ(g) divides the order of g

Isomorphism Injective f(x) = f(y) =⇒ x = y

Surjective: for every y in H there is x ∈ G with y = f(x)

NB: Also require well-defined!

Kernel Things in G that map to 1H

NB: θ is injective if and only if ker(θ) = {1G}

Image Things in H that are θ(g) for some g ∈ G

Equivalence class Symmetric, reflexive, transitive. Elements partition the set. Isomorphism is

an equivalence relation on the set of groups – isomorphism classes.
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Index of a subgroup H in a group G, |G : H| is the number of distinct cosets of H

making up G.

Conjugate y conjx if y = gxg−1 for some g. Sometimes write xg for gxg−1

Conjugacy class xG = {gxg−1 : g ∈ G}

Centraliser CG(x) all g that commute with x

Centre Z(G) all g that commute with every x.

Cycle type of a permutation in Sn: number of cycles of each length (ignoring 1)

Normaliser of a subgroup: NG(H) = {g : gHg−1 = H}

Normal subgroup gHg−1 = H for all g.

Quotient Of a group G by a normal subgroup N is the set of cosets of N (generally

we say left cosets, but L and R are equivalent here). Group multiplication is

defined as (gN)(hN) = (gh)N .

Generated

subgroup

〈H,K〉 of two groups – it’s the group they generate...

Product of two groups H,K: HK = {hk : h ∈ H, k ∈ K}. This is a set, not a subgroup.

We might get lucky and find it’s a group...

Acts on A group G acts on a set X (a G-set) with some operation · if:

1. for all x ∈ X, 1 · x = x

2. for all x ∈ X, g1, g2 ∈ G, (g1g2) · x = g1 · (g2 · x)

Orbit Given x ∈ X, a G-set (acted on by G, take orb(x) = {g · x : g ∈ G}. (“Where

can x get sent?”). The size of this set is the length of the orbit. (A subset of

X)

Stabiliser of x, Gx is the set of g that don’t change x: {g ∈ G : g · x = x}

Sylow p-subgroup Has order pn, where |G| = pnm (i.e. not pr, r < n: this is a general p−subgroup

Simple A group is simple if it has no non-trivial proper normal subgroups.

Direct Product Pointwise ordered pairs (h, k)

Internal direct

product

If G = HK, then G is the internal direct product of H,K

Elementary abelian Abelian group whose elements all have the same order. By Cauchy this must

be a prime p.
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Type of a finite abelian p-group: G ∼= Cpλ1 × . . . Cpλr : type is [λ1, . . . , λr] , sorted

largest to smallest (can do this as the group is abelian)

Upper central

series

1. Let Z1(G) = Z(G)

2. Let Zi(G) be the group such that Zi(G)/Zi−1(G) = Z(G/Zi−1(G))

3. {1} ≤ Z1(G) ≤ ... is the upper central series

Nilpotent If Zn(G) = G for some n, G is nilpotent, of class n.

Subnormal series Chain of subgroups where each one is normal in the one above. Subnormal

refinement to composition series (all subnormal refinements have repeating

terms).

Normal series Subnormal series where each one is ALSO normal in the main one. Normal

refinement to chief series.

Isomorphic

subnormal

series if they have isomorphic factors including repetitions.

Composition

factors

Quotients of a composition series.

Chief factors Quotients of a chief series.

Automorphism An automorphism of a group G is an isomorphism from G to G.

Characteristic

subgroup

N is a characteristic subgroup of G if f(N) = N for all automorphisms of

G. Since conjugation by any element of G is an automorphism, N must be

normal!

Characteristically

simple

G is char. simple if its only characteristic subgroups are {1} and G.

Soluble A group is soluble if it has a normal series whose factors are all abelian. This

is NOT required to be a chief series so an abelian group G > {1} and done.

Commutator the commutator [g, h] of g, h ∈ G: [g, h] = ghg−1h−1

Commutator

subgroup =

derived group

G′ is the subgroup generated by the commutators of G:

G′ = [G,G] = 〈ghg−1h−1 : g, h ∈ G〉

Derived series of a group G is the series of commutator subgroups:

G(0) = G;G(1) = [G,G]; . . . ;G(r) = [G(r−1), G(r−1)]
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3 Theorems and results

Prop 1.4. Identity is unique: gh = g ⇒ h = Ig – inverses are unique – gh = 1⇒ h = g−1

x2 = 1∀x ∈ G : G is abelian one way

Page 5. (x1x2 . . . xk) = (x1xk)(x1xk−1) . . . (x1x2) (For product of transpositions)

Prop 1.7. [Subgroup test] Test closure, inverses suffices

Prop 1.8. [Finite subgroup test] Test closure suffices

Prop 1.13. Let G be a group with x ∈ G: 〈x〉 = {xk : k ∈ Z} is a subgroup of G with |〈x〉 = o(x)|.

Eg in C: 〈i〉 = {i,−1,−i, 1} (not everything has infinite order!)

Thm 1.15. Lagrange H ≤ G: |H| divides |G|.

Cor. 1.15. (1) G has prime order =⇒ G is cyclic (2) G has prime order =⇒ any non-identity elt is

a generator (3) Order of any element in the group divides |G| (4) a ∈ G : a|G| = e (5) Every subgroup

of a cyclic group is cyclic

Note p.7. To find subgroups systematically, look at groups generated by subsets

Page 9. θ is injective if and only if ker(θ) = {1G}

Prop 1.21. Kernel, image are groups. ker(θ) ≤ G; im(θ) ≤ H (Ex. 22: ker(θ) is normal in G)

Lemma 1.23. Element orders are preserved by isomorphism. f : G→ H isomorphism: o(g) = o(f(g)).

Lemma 1.24. Properties preserved by isomorphism: (1) Group order – (2) Abelianism – (3) Cyclic-

ness (4) Number of elements of each order

Page 11. Zn = Cn

Lemma 1.30. g1 ∼ g2 ⇐⇒ g1 ∈ Hg2 is an equivalence relation with cosets as equivalence classes (so

the cosets partition the group).

Lemma 1.31. Equality of cosets: H ≤ G: g1H = g2H ⇐⇒ g−11 g2 ∈ H; similarly Hg1 = Hg2 ⇐⇒

g1g
−1
2 ∈ H.

Page 12.
|G|
|H|

= |G : H|

Page 12. Conjugacy is an equivalence relation, i.e. conjugacy classes partition the group.

Ex 19. Centre / centraliser Z(G) and CG(x) are subgroups of G.

Prop 1.33. Conjugacy class xG vs centraliser: |G| = |xG| · |CG(x)|.

Lemma 1.34. If y is conjugate to x, x and y have the same order.
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Lemma 1.35. Conjugates in permutation group Sn: Given x, g ∈ G: gxg−1 is obtained by replacing

each i in x with g(i).

Note internet. Inverse of a permutation in cycle notation: write it backwards.

Thm 1.36. Permutations in Sn are conjugate if and only if they have the same cycle type.

Ex 20. Any subgroup of an abelian group is normal.

Ex 21. The centre Z(G) of any group G is normal in G.

Ex 22. Kernel of any homomorphism from G to another group is normal in G.

Lemma 1.37. Intersection of a normal subgroup with any subgroup H is a normal subgroup of H

(but not necessarily of the original group G): N E G,H ≤ G : N ∩H E H

Lemma 1.38. Index 2 =⇒ H is normal in G.

Ex 23. A subgroup H is normal in G if and only if H is a union of conjugacy classes of G.

Ex 24. List of conjugacy classes of S4 and normal subgroups of S4; normal subgroups of A4.

Thm 1.40. The homomorphism theorem
G

ker(θ
∼= im(θ).

Prop 1.41. The product HK is a subgroup a group G if and only if HK = KH.

Prop 1.42. If N is a normal subgroup of G and H any subgroup of G, NH = HN so NH is a group.

Cor. 1.43. For an abelian group G, HK is always a subgroup.

Lemma 1.44. |HK| = |H| · |K|
|H ∩K

|G| ≥ |HK|, even if HK is not a subgroup

Prop 2.5. G is a Gset (acting on itself) under the actions left-multiplication: g · x = gx, inverse right

multiplication: g · x = xg−1, conjugation g · x = gxg−1. But not by regular right multiplication, unless

G is abelian

Eg 2.7. G a group, X the set of subgroups of G: G acts on X by conjugation.

Eg 2.8. G a group, H ≤ G, G acts by left mult. on the left cosets of H, and right inverse mult. on

the right cosets of H.

Prop 2.10. Orbits are equivalence classes: x y: x = g · y for some g is an equivalence relation.

Cor. 2.11. ... and therefore orbits partition X

Prop 2.12. The stabiliser of x, Gx, is a subgroup of G.

Thm 2.13: Orbit-stabiliser. |orb(x)| = |G : Gx| =⇒

|orb(x)| = |G|
|Gx|

. Prove with a bijection: check well-defined, injective, surjective
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Eg 2.15. Let G act on itself by conjugation: the orbits are the conjugacy classes:

|xG| × |CG(x)| = |G|

(stabiliser-centraliser): this tells us that The size of a conjugacy class divides the order of the group

Eg 2.16. Let G act on its subgroups by conjugation. Orbit of a subgroup is its conjugates. Stabiliser

of a subgroup is its normaliser: Number of conjugates of H is the index of NG(H) in G

Prop 2.17. p prime, order of G is pn for some n ∈ Z+: The centre of G (Z(G)) is non-trivial. Proof

via orbit-stabiliser

Page 32. Corollary: no simple groups of order pn

Prop 2.18. If G is a group such that the quotient by its centre is cyclic, i.e. G/Z(G) is cyclic, G is

abelian.

Prop 2.19. If G has order p2 for some prime p, G is abelian.

Thm 2.20. Sylow. |G| = pnm; p,m coprime, n > 1

Let np be the number of Sylow p-subgroups.

• G contains at least one Sylow p-subgroup

• np ≡ 1(modp); np divides |G|

• If Q ≤ G and |Q| = pr, Q is contained in some Sylow p-subgroup:

• Sylow p-subgroups form a single conjugacy class

Tech. lemma 2.22. p prime, m ∈ Z+, m, p coprime:

pnm
pn

 = m(modp)

Lemma 2.24. |G| = pnm. G has at least one Sylow p-subgroup.

Lemma 2.25. Number of Sylow p-subgroups, np ≡ 1(modp).

Prop 2.26. For P a Sylow p-subgroup, and Q ≤ NG(P ): Q is contained in P . (Use Lemma 1.44).

Lemma 2.28. Given G with |G| = pnm and P a Sylow p-subgroup of G, Q ≤ G with |Q| = pr(r ≥ 0):

Q is contained in some conjugate of P . Let Y be the conjugacy class of P ; let G act on Y by

conjugation.

Lemma 2.29. Sylow p-subgroups form a single conjugacy class of subgroups, so np divides |G|. (see

Eg. 2.15...)

Ex 36. G has order pq product of two primes, q 6= 1(modp): G is cyclic.

7



Thm 2.34. Cauchy. If p prime divides the order |G| of G, then G has at least one element of order

p. (If g ∈ P a Sylow p-subgroup has order pk, just take gp
k−1

)

Lemma 2.35. Group of order 4 is either cyclic or V4.

Thm 2.36. If |G| = 2p for p an odd prime, G is either cyclic or dihedral

Page 31. Simple groups are: Cyclic of prime order – An (n ≥ 5) – “of Lie type” – Sporadic Simple

(there are 26 of these)

Prop 2.37. G abelian simple (finite, non-trivial): G is cyclic of prime order

Ex 41. No simple groups of order pq for primes p, q.

Ex 42. For any even integer n > 2, there are AT LEAST two non-isomorphic groups: Cn and Dih(n)

Page 32. Example of a group of Lie type.

Page 33. |GL2(Zp)| = (p2 − 1)(p2 − p)

Page 33. n× n matrix over Zp is invertible if and only if rows are linearly independent.

Ex 45. Z(SL2(Zp)) = {±I}

Ex 46. Being in GLn(Zp) means having linearly independent rows. There are pn possible first rows,

but they cannot all be zero or we would get det zero. So pn − 1 possible first rows.

Next row cannot be an integer multiple of first row, and in Zp there are p possible integer multiples.

So pn − p possibilities.

So there are
∏

r(p
n − pr) possible rows altogether for an r × r matrix in GLn over Zp.

|SLn(Zp)| =
|GLn(Zp)|
|Zp|

SL3(Z2) = GL3(Z2).

Ex 47. |G| = 2pq then G has a normal subgroup either P or Q (Sylow subgroups) and furthermore a

normal cyclic subgroup PQ.

Ex 48. |G| = mpn where m < p: G cannot be simple (since np ≡ 1(modp) but m < p forces np = 1).

Ex 49. Summary:

• |G| = pn(n > 1) : G is not simple

• |G| = mpn(m < p): G is not simple (get additional reqs)

(NB this covers the case G = pq: just set m = p, p = q, n = 1).

• |G| = 2pq: G is not simple

Lemma 2.40. n ≥ 3: An is generated by 3-cycles.
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Thm 2.41. n ≥ 5: An is simple.

Ex 51. H ×K (with pointwise multiplication) is a group

Eg 3.2. Is the direct product of two cyclic groups cyclic? Answer: generally, no. G = Cr×Cs is cyclic

if and only if gcd(r, s) = 1

Page 38. Order of H ×K is |H| · |K|.

Ex 53. Ĥ = {(h, 1) : h ∈ H} is a normal subgroup of H × K and Ĥ ∼= H; Normally write as if

H ≤ H ×K.

Lemma 3.3. If H,K E G (H,K are NORMAL subgroups) and H ∩K = {1}, then 〈H,K〉 = HK ∼=

H ×K.

If |H| × |K| = |G|, then H ×K ∼= G. Prove isomorphism by exhibiting an isomorphism!

Prop 3.4. G finite, Hi normal subgroups of G, Hi ∩Hj = {1} for all i 6= j, |G| =
∑
|Hi|: then

G ∼= H1 × . . . Hr

Lemma 3.5. Given normal H,K E G and H ∩ K = {1}, if every element of G is hk for some h, k,

then G ∼= H ×K

Ex 55. If G = HK = H ×K, then every element of G has a unique form hk.

Thm 3.6. Every finite nontrivial abelian group is the internal direct product of its Sylow subgroups.

Prop 3.7. G abelian and G ∼= H1 × ... × Hr: Let p be a prime dividing |G| and Pi be the Sylow

p-subgroup of Hi: then the Sylow p-subgroup of G ∼= P1 × . . .× Pr.

Ex 56. H ×K ∼= K ×H (any H,K)

Prop 3.8. A group of order p2 is either cyclic or isomorphic to Cp × Cp. (We already know it is

abelian!)

Tech. lemma 3.9. s, n positive integers, s ≤ n, p prime. The set of elements of order dividing ps in

Cpn = {gdpn−s : d ∈ Z}.

Lemma 3.10. G abelian p-group, a an element of maximal order, H = 〈a〉. bH an element of G/H

with order pm: then bH contains an element of order pm in G. (Not true in general)

Thm 3.11. G abelian p-group: is an internal direct product of cyclic p-groups.

Thm 3.12. G a finite abelian p-group: every decomposition of G as a direct product of cyclic p-groups

has the same type.
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Thm 3.13. Every finite nontrivial abelian group is isomorphic to a direct product of cyclic p-groups;

Decomposition is unique up to the order of the factors.

Lemma 3.16. G ∼= Cn1×Cn2× . . . : then G ∼= Cn1n2 . . . if and only if n1, n2 (etc) are pairwise coprime.

Ex 62. Number of non-isomorphic abelian groups corresponds to integer partitions of some n

Eg 3.19. All groups order 4 are abelian

Prop 3.21. G a group with normal subgroup N E G; furthermore Q ≤ G/N is a subgroup of the

quotient of G by N . Then: H = {g : gN ∈ Q} is a subgroup of G; N ≤ H; H/N = Q; Q is normal in

G/N if and only if H is normal in G.

Eg 3.22. Abelian group is nilpotent of class 1

Lemma 3.24. Every finite p-group is nilpotent.

Thm 3.25. If G is an internal direct product of its Sylow subgroups, G is nilpotent. Conversely, if G

is nilpotent, G is an internal direct product of its Sylow subgroups.

Page 49. : Reminder: (gN)k = gkN

Page 50. : Summary of always-normal subgroups:

• {1}, G, Z(G)

• Kernel of any homomorphism

• N ∩H is normal in H (assuming N is normal in G)

• Subgroup of index 2

• Union of conjugacy classes (IF and ONLY IF)

• if N is normal, then NH = 〈N,H〉

Ex 66. There are only two non-isomorphic abelian groups of order 12

Thm 4.2. H ≤ G, N E G:
H

N ∩H
∼=
HN

N

Ex 69. N a normal subgroup of prime index p:
|G|
|N |

= p. H ≤ G not contained in N : N ∩ H has

index p in H.

Thm 4.3. H,N BOTH normal subgroups of G with N ≤ H. Then H/N is a normal subgroup of

G/N , with
G/N

H/N
∼=
G

H
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Ex 4.9. Any nilpotent group G has upper central series and this (reversed) is a normal series for G.

Not an if and only if: non-nilpotent groups can still be soluble...

Ex 4.11. In an abelian group, any subnormal series is also a normal series.

Ex 82. Group order is a power of 2: |G| = 2n: G has a subgroup of index 2.

Ex 83. The only normal subgroups of Sn, n ≥ 5 are An and the two trivial subgroups. (Use N normal

in Sn implies N ∩An is normal in An).

Lemma 4.15. Zassenhaus. . Let H and K be subgroups of G.

Let A E H, B E K:

(H ∩K)A

(H ∩B)A
∼=

(H ∩K)B

(A ∩K)B

Thm 4.16. Schreier’s refinement theorem. . Given S, T subnormal (resp. normal) series for G,

there exist S′, T ′ subnormal (resp. normal) refinements of S, T such that S′ and T ′ are isomorphic.

(They might be trivial refinements).

.

Lemma 4.17. N,H,K subgroups of G, and K ≤ H. If N is normal in G and K is normal in H, i.e.

if N E G,K E H,H ≤ G, then:

KN is normal in HN .

Ex 86. A,B normal subgroups of G: then A ∩B is normal in G and AB is normal in G.

Thm 4.18. Jordan-Hölder. If a group has a composition series (chief series) (it might not – if it’s

infinite!) then any two composition series (chief series) for that group are isomorphic.

Prop 4.21. If a is a composition factor of a group, A is simple.

Cor. 4.22. The only composition factors of nontrivial finite abelian groups are cyclic of prime order.

Ex 88. All abelian simple groups are finite.

Ex 89. An infinite abelian group has no composition series.

Thm 4.23. Fundamental thm of arithmetic. . Every integer greater than 1 can be uniquely factorised

as a product of prime numbers.

Page 63. All characteristic subgroups are normal (but not necessarily vice versa...)

Page 64. If there is just one subgroup of order n, that subgroup must be characteristic.

Prop 4.29. . If G is a finite, characteristically simple group, then: G is an internal direct product of

isomorphic simple groups.
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Eg 4.30. The only simple group that can be a subgroup of a group of order 8 is C2.

Eg 4.31. The nontrivial finite abelian characteristically simple groups are the elementary abelian

p-groups.

Thm 4.32. A chief factor of a group is characteristically simple, and hence is a direct product of

isomorphic simple groups.

Eg 4.33. Chief factors of A4 are C3 and V4.

Cor. 4.34. A nontrivial abelian chief factor of a finite group is an elementary abelian p-group.

Thm 4.35. The smallest nonabelian simple group is A5

Cor. 4.36. If G has order > 1 and less than 60, its composition factors are cyclic of prime order and

its chief factors are elementary abelian.

Eg 4.39. All abelian groups are soluble.

Lemma 4.40. A finite group G is soluble if and only if the chief factors of G are abelian, i.e. if and

only if the chief factors are elementary abelian.

Eg 4.41. All groups of order less than 60 are soluble.

Prop 4.45. If G is soluble and H is a subgroup of G, then H is soluble.

Prop 4.46. If G is a finite, simple, soluble group then G is cyclic of prime order.

Page 68. . If g, h commute, [g, h] = 1. In fact, G abelian if and only if G′ = 1.

Ex 98. . [g, h] = [h, g].

Thm 4.49. G a group. The derived group G′ is a characteristic subgroup of G.

Moreover, the derived group G′ is the smallest normal subgroup with abelian quotient. (ie if G/N is

abelian, G′ ≤ N).

Thm 4.52. G is soluble if and only if G(r) = {1} for some r.

Prop 4.54. There are two non-isomorphic non-abelian groups of order 8: Dih(8) and Q8.

Prop 4.56. There are three non-isomorphic non-abelian groups of order 12: Dih(12), Q12, A4.

Exam 2015. Every quotient of a finite cyclic group is itself a finite cyclic group. Quotient of an abelian

group is abelian.
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