1 Sn

- Inverses: reverse
- Conjugate x by g: $(=gxg^{-1})$ replace each i in x with g(i)
- Permutations are conjugate \iff same cycle type
- A_n simple $n \ge 5$
- A_n generated by $3 cycles \ (n \ge 3)$
- A_n is the only nontrivial proper subgroup of S_n , $n \ge 5$
- $(x_1x_2...x_k) = (x_1x_k)(x_1x_{k-1})...(x_1x_2)$

2 *p*-groups

Type (for abelian): counts of powers of $p \ G \cong C_{p^{\lambda_1}} \times \ldots C_{p^{\lambda_r}}$: type is $[\lambda_1, \ldots, \lambda_r]$

- $|G| = p^2 \implies G$ abelian
- Z(G) is nontrivial (but could be whole group) \implies never simple!
- If abelian *p*-group: idp of cyclic *p*-groups
- Abelian *p*-group: every decomposition as a direct product of cyclic *p*-groups has same type
- Finite *p*-group: nilpotent

3 Abelian groups

- Elementary: all elements have same order
- nilpotent of class one
- factors of a soluble group
- $x^2 = 1 \forall x \implies$ abelian
- All subgroups are normal; \implies HK is always a subgroup
- G/Z(G) cyclic \implies G was abelian
- $|G| = p^2 \implies G$ abelian
- Abelian and simple : cyclic of prime order
- If abelian *p*-group: idp of cyclic *p*-groups

- Abelian *p*-group: every decomposition as a direct product of cyclic *p*-groups has same type
- Number of non-isomorphic abelian groups corresponds to integer partitions of some n
- All (two!) groups order 4 are abelian

4 Any group

- Any finite char. simple group is an IDP of isomorphic simple groups
- Any finite simple soluble group is cyclic of prime order
- Nilpotent \iff IDP of sylow subgroups

4.1 Order

- Conjugate elements have the same order
- $HK = \frac{|H|.|K|}{|H \cap K}$ (Whether or not HK is a group!)

•
$$|G| = ...$$

Z > 1	$p^n \implies$
G abelian	$p^2 \implies$
$\cong C_p \times C_p \text{ or } \cong C_{p^2}$	\Rightarrow
G cyclic or dihedral (p odd)	$2p \implies$
exists $P, Q \leq G; PQ \cong C_{pq}$	$2pq \implies$
exists $P, Q \trianglelefteq G$	$pq \implies$
G cyclic	$pq \text{ with } q \neq 1(modp) \implies$
$G \cong C_4 \text{ or } G \cong V_4$	$4 \implies$
$C_n \not\cong \mathtt{Dih}(n)$	$n > 2 \implies$

5 Normal groups // Simple groups

5.1 Conjugacy

- Conjugacy classes partition a group
- Conjugate elements have the same order // in S_n same cycle type
- $|G| = |x^G| \cdot |C_G(x)|$
- $\bullet\,\,\Rightarrow\, {\rm Conjugacy}$ class size divides order of group
- Conjugate in $H \leq G \implies$ conjugate in G (one-way)

5.2 General

- Normal \iff union of conjugacy classes
- Sylow *p*-subgroups form a single conjugacy class
- Number of conjugates of a group is the index of $N_G(H)$ in the group
- $\ker(\theta) Z(G) N \cap H \leq H$ index 2 union of conj. classes
- if $H \leq G, N \leq G$, then HN = NH
- if HN = NH, then the product HN is a group
- |G| = pq : G cannot be simple
- |G| = 2pq: G has a normal subgroup P or Q and a normal cyclic subgroup PQ
- $|G| = mp^n, m < p$: G cannot be simple (ex 48)
- $|G| = p^n (n > 1)$: G is not simple
- $\{(h,1): h \in H\} \leq H \times K$
- $H, K \trianglelefteq G, H \cap K = \{1\} \implies \langle H, K \rangle = HK$
- •

$$\frac{G/N}{H/N} \cong \frac{G}{H}$$

(require $N, H \leq G$)

- $|G| = 2^n$: G is not simple (has a subgroup index 2)
- Compo factors are simple