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Unit 1 Learning Outcomes

Definition of a d.r.v x

- ~X: finite set X of possible outcomes // probability distribution over X

Def of a uniform probability dist x

each outcome is equally likely =⇒ Pr(X = x) = 1
|X|

Joint pd of two drvs x

Given X, Y, joint pd has - drv (X,Y)

- set X × Y

- pd Pr(X = x,Y = y) (typically write Pr(x, y))

- (independent ⇐= Pr(x, y) = Pr(x)Pr(y))

Def. of a conditional distribution x

(Y|X) : Pr(y|x) =
Pr(X = x,Y = y)

Pr(X = x)

State and use Bayes’ thm x

Pr(x|y) =
Pr(y|x)Pr(x)

Pr(y)

Definition of a finite field x

Field: set F plus +,×;

Field: (F,+) abelian, identity 0

Field: (F \ {0},×) abelian, identity 1

Field: distributive ×/+ and +/×

F finite =⇒ finite field

For each prime power q there is a unique finite field order q x

(up to isomorphism)

Recall and use basic properties of finite fields x

q = pn (GF (q)∗,×) is cyclic

d divides n =⇒ unique subfield order pd

no other subfields

field has char p

group A of automorphisms of field is cyclic, |A| = n, a → ap (Frobenius

automorphism)

Construct GF (qn) using an irreducible polynomial over GF (q) x

Use xk+1 + akx
k . . .+ a0 = 0 =⇒ xk+1 = −akxk . . .− a0; sub in as necessary
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Unit 2 Learning Outcomes

Perform polynomial interpolation (in GF (q)[x]) x

Set of simultaneous equations

(Or Lagrange interp formula)

Defn of Shannon entropy of a drv x

H(X) = −
n∑
i=1

pi log pi

Compute the Shannon entropy of a drv x

per formula

Fundamental Lemma x

Given
∑

i pi =
∑

i qi = 1 (two pds):

−
∑
i

pi log pi ≤ −
∑
i

pi log qi;

equality ⇐⇒ pi = qi for all i

Joint entropy of two drvs ≤ sum of their entropies; prove via Fundamental Lemma x

H(X,Y) ≤ H(X) + H(Y)

def of x

H(X|Y = y), H(X|Y)

H(X|Y = y) = −
∑
x

Pr(x|y) log Pr(x|y)

“uncertainty in the outcome of X once we know that the outcome of Y is y”

Compute x

H(X|Y = y), H(X|Y), given X, Y

H(X|Y) =
∑
y

Pr(y)H(X|Y = y)

“average amount of uncertainty about the outcome of X remaining once outcome of Y is known”

State and prove x

H(X,Y) = H(Y) + H(X|Y) expand out definition

State and prove x

H(X|Y) ≤ H(X) equality ⇐⇒ X,Y independent
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Unit 3 Learning Outcomes

Define I(X|Y) and compute it x

I(X|Y) = H(X)−H(X|Y)

“reduction in uncertainty associated with X once we know the value of Y”

Show that H(X|Y ) ≥ 0 x

equality ⇐⇒ X,Y independent

Follows from prev. unit

show that I(X|Y) = I(Y|X) x

hence “mutual” information

Defn of a discrete memoryless source x

- Finite source alphabet, symbols called words

- Sequence W0, . . . ,Wi

- Pr(Wj = wi) = pi

=⇒ the Wi are independent, identically distributed drvs - entropy of source: H(W)

Defns of x

instantaneous no encoded word is a prefix of any other encoded word

uniquely decipherable for any sequence S, at most one source message can be encoded

as S

compact encoding u.d. with smallest possible expected encoded word length

Kraft’s inequality; McMillan’s inequality x

Kraft:

(existence of instantaneous encoding)
m∑
i=1

D−ni ≤ 1

McMillan:

(uniquely decipherable)
m∑
i=1

D−ni ≤ 1

Note identical!

Every instantaneous code is uniquely decipherable, i.e. [TODO!]

Shannon’s noiseless coding theorem x

W a discrete memoryless source

1.

n̄ ≥ H(W)

logD

2. There exists u.d. encoding with
H(W)

logD
+ 1 ≥ n̄
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Unit 4 Learning Outcomes

Perform Huffman coding x

- Sort source words by probability

- Put as leaves of tree; build tree by merging least probable nodes

Huffman coding produces compact instantaneous encodings x

(not unique) (prove by induction: base case 2 words)

Defs of ideal observer decoding; max. likelihood decoding x

Given rj , decode as ti s.t.

Ideal observer: max. Pr(ti|rj)

Max. likelihood: max. Pr(rj |ti)
Ideal observer requires a priori message probs; max likelihood does not

Def of binary symmetric channel x

input, output alphabets both {0, 1}

flip probability p < 0.5

Calculate Hamming dists x

Q a finite set; list of elements of Q a codeword;

C a set of codewords a code;

codewords all same length =⇒ block code; Q = {0, 1} binary code

Hamming distance d(w,u) = |{i ∈ {1, 2, . . . , n}|wi 6= ui}

Prove properties of Hamming dists x

e.g.

1. d(u,v) ≥ 0, equality ⇐⇒ u = v

2. d(u,v) = d(v,u)

3. d(u,v) + d(v,w) ≥ d(u,w) triangle inequality
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Unit 5 Learning Outcomes

In binary sym. channel, NN decoding is equivalent to max. likelihood x

NN = choose ti minimising d(rj , ti)

(recall p < 1
2 by definition)

Min. dist of a block code x

Largest d s.t. for any u,v ∈ C, d(u,v) ≥ d

=⇒ (n,M, d)-code

Connection between min. dist of a code & error-correcting properties x

Max. errors corrected by NN decoding of block code C with min. dist d:⌊
d− 1

2

⌋
(see also Ex 1.5)

Capacity of a noisy channel x

capacity: supR I(T|R)

“the greatest possible amount of information that the channel output gives about input to the

channel”

Compute capacity of binary sym. channel x

1 + p log p+ (1− p) log (1− p)

(use formula, max. per derivative)

nth extension of channel with cap. C has cap. nC

Shannon’s Noisy Coding Thm x

rate R of a binary code of length n with M codewords: 1
n log2M

binary sym. channel with 0 < R < C capacity

ε > 0, sequence of integers M0,M1,M2, . . . with 1 ≤Mi ≤ 2Ri:

there is some integer N0 and C0, C1, . . . s.t. Ci has length i, Mi codewords, max. error prob ≤ ε

Basically: if you make your codes big enough, you can make the error as small as you want

Proof (sketch): TODO

msg
mG→ codeword

noise→ rec’d word
NN→ codeword’ → msg’
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Unit 6 Learning Outcomes

Def. of an [n, k, d] code x

Square brackets [] =⇒ linear

=⇒ vector space over alphabet Q ( =⇒ Q is a field)

dimension of vector space: k n length of code // d min. dist

Use vector space properties to prove simple results x

linear code: all linear combos of any words are also words

Def. of linear code as gen. mat + par mat x

Gen mat: rows form basis

Gen → par mat x

Par mat has rank n− k; rows are orthogonal to all codewords

Systematic form (Ik|A) has par mat (−AT |In−k)

More generally require orthogonality

Deduce dimension, min. dist., etc. from gen/par mats x

Every vector space includes 0. Hamming weight of word = dist from 0. min weight of code =

smallest Hamming weight = min dist

min dist = min # lin. ind. cols in parmat =⇒ 1 ⇐⇒ all-zero col; 2 ⇐⇒ 1 col is multiple of

another (equal in binary) . . .

Syndrome decoding x

- any word c in code has HcT = 0 for par mat H (def)

- r = c + e received, HrT = HeT (1× (n− k)) is syndrome of r

- divide vector space into cosets by syndrome (1 codeword per coset) // sort cosets by Hamming

weight (=coset leader min weight)

- decode by matching syndrome with coset leader

= fast implementation of NN decoding (with precomputation phase)

: Observation: e has weight (0 or) 1, then the syndrome of r = HeT is just a scalar multiple

of a column of H, say col j: flip jth bit (also applies to non-binary. . . )

(NB: if we /can/ guaranteed decode m errors then there must be a unique coset leader ←

multiple coset leaders give different results)

Dual code x

Take par mat and use as gen mat

Dual of an [n, k] code is [n, n− k] code. Orthogonal complement: dual code is orthogonal to

code

Find dual codes x

Gen ↔ par
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Sphere-packing bound x

Aq(n, d) ≤ qn∑b d−1
2 c

i=0

(
n
i

)
(q − 1)i

What is it? Aq(n, d) is largest possible M with q-ary (n,M, d) code, i.e. largest possible number

of codewords in an (n, d) code.

Def of perfect code x

Sphere-packing bound met with equality

( =⇒ d odd)

Hamming codes; binary Hamming codes are perfect x

Par mat is all non-zero binary vectors of length k.

Capable of correcting single error

Can be generalised to q-ary Hamming codes; still perfect

H2,r is a [2r − 1︸ ︷︷ ︸
n

, n− r, 3] code

divide out scalar multiplesHq,r is a [
qr − 1

q − 1︸ ︷︷ ︸
n

, n− r, 3] code

Singleton bound x

Aq(n, d) ≤ qn−d+1

equality =⇒ maximum-distance separable = MDS code

RS codes x

Take n elements of a q-ary alphabet, q ≥ n. Take polynomials deg ≤ k for some k ≤ n; each

codeword is the result of evaluating a polynomial at the n elements

RS codes are MDS codes x

[n, k, n− k + 1] codes. Show that

(1) linear [linear combo of codewords is also a codeword]

(2) d ≥ n− k + 1 (by polynomial interp.)

(3) singleton bound d ≤ n− k + 1 =⇒ d = n− k + 1

(in fact, they are only non-trivial MDS codes known) this is not quite true as e.g. 2.13 is not

RS!
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X
efficient decoding

7 need big alpha

Bounds (U6 & U7):

Bounds on code size:

Sphere-packing: Aq ≤ . . . perfect codes meet : e.g. Hamming codes

Gilbert-Varshamov: Aq ≥ . . .

Singleton: Aq ≤ . . . MDS codes: e.g. R-S codes

 Asymptotic singleton αq
(
n
d →

)
Bound on code length:

Griesmer : simplex codes

A linear code C has minimum Hamming distance d if and only if its parity check matrix H has a

set of d linearly dependent columns but no set of d− 1 linearly dependent columns.

Reminder: 2 columns are l.i. in binary field ⇐⇒ they are identical (nothing so simple for 3)
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Unit 7 Learning Outcomes

State + prove Gilbert-Varshamov bound x

Aq(n, d) ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

Proof: count elements distance max d− 1 from a given codeword

Griesmer bound x
n ≥

k−1∑
i=0

⌈
d

qi

⌉
Proof based on residual codes

Puncturing a code x

Delete certain coordinates and then collapse code to unique codewords

Find punctured code x

support of a codeword c is its nonzero coordinates

residual code wrt c: puncture code on support of c

don’t forget to remove duplicates

result is linear code

Describe simplex codes x

duals of Hamming codes. Take r-dimensional simplex code over GF (q):

all non-zero codewords have same weight qr−1

satisfies Griesmer bound with equality

Authentication, data integrity, confidentiality for data security x

auth: who am I really talking to

integrity: msg didn’t get corrupted

confidentiality: eavesdropper can’t learn msg

Symmetric encryption x

Common key k

Encryption algo Enc s.t. c = Enc(k,m) // Matching Dec

Require Dec(k,Enc(k,m)) = m

Kerckhoff’s principle x

Assume eavesdropper knows everything except k: key space, message space, ciphertext space,

Enc, Dec.

Better than “security through obscurity” principle

Caesar cipher: why insecure x

addition mod 26:

small key space ; many message properties preserved
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Substitution cipher: why insecure x

frequency analysis!
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Unit 8 Learning Outcomes

Describe perfect secrecy x

for all m ∈M, c ∈ C, Pr(m|c) = Pr(m)

“knowing the ciphertext does not help eavesdropper guess message”

Prove one–time pad provides perfect secrecy x

|M | = |C| = |K|

Symm. scheme with perfect secrecy requires |K| ≥ |M | x

Means scheme is expensive and often not practical

Defns of Galois / Fib LFSRs; understand diags x

Stream ciphers.

Galois: xor en route

+a4 a3 a2 a1 a0

Fib: only first box is affected +

∑

++++

a3 a2 a1 a0

a4 = a3 + a2 + a1 + a0 =⇒ P : x4 + x3 + x2 + x+ 1

Prove that r-bit binary LFSR has max output seq. 2r − 1 x

If it gets to 0 it gets stuck

m-sequence x

output sequence of length 2r − 1 (m for maximum)

Use primitive poly over GF (2) to construct Galois LFSR x

1st & last are always 1; rightmost bit is always fed back, corresponds to last bit, leftmost bit

corresponds to x term, ignore x0 term;

+x x2 x5

1 + x2 + x5

TODO check!

NB Fib LFSR by recurrence relation // set up from poly

Set of possible sequences output by max period r-bit LFSR is vector space dim. r x

and therefore a linear code
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Unit 9 Learning Outcomes

Definition of a (k;n) threshold scheme x

n players

Any k or more players can recover secret

No k − 1 or fewer players learns anything at all (ie all possibilities EQUALLY LIKELY)

Shamir scheme x

q = pr; q > n; s ∈ GF (q)

Pick f(x) polynomial degree k − 1 (or less) with coefficients in GF (q) / constant term s

Recover secret by polynomial interp.

Linear secret-sharing scheme x

Vandermonde matrix: geometric progression. Property: any k rows are lin. independent

M : (n+ 1)× k: contains powers of elements of GF (q)

r = (s r1 . . . rk−1)
T (ri chosen at random); Mr is secret + shares

Given any k players, their combo is lin. independent; can recover secret;

k − 1 players + target: likewise lin. independent → can’t recover secret

NB: Any scheme that can be constructed from matrix is a linear secret-sharing scheme; efficient

to describe, build, and use

Shamir vs linear: shares are same! (VdM as polynomials...)

Link between Shamir and RS codes x

Set of potential vectors is the codewords of an RS code

[n+ 1, k, n+ 2− k] RS code

Can use any MDS code over GF (q), q > n. Rows are distribution rules; code (matrix) is

published in advance but only dealer knows which row is distributed this time

Information rate of a secret-sharing scheme x

min
i

log2(|K|)
log2(|Si|)

Si is set of possible shares for player i

Shamir: rate 1

A perfect secret-sharing scheme has information rate ≤ 1 x

Size of share space for each player must be at least as big as the secret space

Rate = 1: scheme is ideal

(t1, t2, n) ramp scheme x

up to t1: no information

t2 or more: full information

t1 → t2: maybe some information ¯\_('')_/¯

Construct ramp scheme from error-correcting code x

Words of code are distribution rules; last s coordinates are secret
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Unit 10 Learning Outcomes

Define c-TA, c-FP codes x

Want to track piracy;

code // NN-decoding

Assume pirated content is generated by coalitions of size c

c-TA: can always find one of the pirates c-FP: weaker: can’t necessarily find pirate, but can’t

frame anyone else (“frameproof”)

Construct them from error-correcting codes x

Any q-ary, length n code min. dist. d, d > n−
⌈
n
c2

⌉
is a c-TA code (c ≥ 2)

(e.g. a RS code)

Prove that every c-TA code is a c-FP code x

“if a set S of up to c pirates could frame some user y ∈ C, y is its own NN =⇒ lies in S: S

cannot frame any users whose words are not in S”

Interested in c-FP codes that are larger than the largest c-TA codes (else why bother), e.g.

[n,
⌈
n
c

⌉
, n−

⌈
n
c

⌉
+ 1] RS code is a c-FP code (c ≥ 2): qd

ne codewords ≥ q
⌈

n
c2

⌉

Prove whether given codes satisfy definitions to be c-TA, c-FP x



Theorems etc

Thm U1#1.8. (Bayes)

Pr(x|y) =
Pr(y|x)Pr(x)

Pr(y)

Thm U1#2.5. For every prime power q = pn there exists a unique field GF (q) with q elements, with:

� (GF (q)∗,×) is a cyclic group (thus there is α “primitive element” of GF (q)∗)

� d divides n =⇒ GF (q) has unique subfield order pd; these are the only subfields of GF (q)

(GF (p) ∼= Zp

� a ∈ GF (q) : pa = 0 (“characteristic p”)

� group of automorphisms of GF (q) is cyclic order n, generated by a → ap (“Frobenius

automorphism”)

Ex U1#2.3. Zn is a field ⇐⇒ n is prime

Ex U1#2.6. no. of prim. elts of GF (q = pm) is number of things coprime to q− 1; no. of prim polys

is prim elts
m

Ex U1#2.7. Char p =⇒ (a+ b)p = ap + bp

Ex U1#2.8. GF (qn) is a vector space over GF (q) (any prime power q)

Page U1#7.

� Unique polynomial factorisations

Thm U2#1.1. (Polynomial interp.) (xi, yi) ∈ GF (q = pn)2, for i = 0, 1, . . . , n; no duplicate xis:

=⇒ there is a unique polynomial f ∈ GF (q)[x] with yi = f(xi) for all i

Ex U2#1.3. Lagrange interp.

f(x) =
n∑
i=0

yifi(x)

where

fi(x) =

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)



Thm U2#2.7. Shannon entropy (H(X) = −
∑

i pi log pi)

� H(X) is a continuous function of the probabilities

� If Yn is uniform rv with n outcomes, H(Yn+1) > H(Y)

� Z with two possible outcomes;

H(Z,X) = H(Z)− Pr(z1)
∑
i

Pr(xi|z1) log Pr(xi|z1)− Pr(z2)
∑
i

Pr(xi|z2) log Pr(xi|z2)

� H(X) ≥ 0; equality ⇐⇒ only one possible outcome

� H(X) ≤ log n; equality ⇐= X has uniform dist

� any function satisfying these properties is (constant multiple of) Shannon entropy!

Lemma U2#2.11. (Fundamental Lemma)
∑

i pi =
∑

i qi = 1 (pi, qi positive real numbers):

−
∑
i

pi log pi ≤ −
∑
i

pi log qi

Proof using lnx ≤ x− 1

Thm U2#2.12.

H(X,Y) ≤ H(X) + H(Y),

equality ⇐⇒ X,Y independent

Ex U2#2.18. H(X|X) = 0

Ex U2#2.19. X,Y independent =⇒ H(X|Y) = H(X)

Thm U2#2.20.

H(X,Y) = H(Y) + H(X|Y)

Cor. U2#2.21. H(X|Y) ≤ H(X), equality ⇐⇒ X,Y independent

Thm U3#1.2. I(X|Y) ≥ 0, equality ⇐⇒ X,Y independent

Ex U5#3.8.

H(U|V) ≤ H(U|V,W) + H(W)

Thm U3#1.3. I(X|Y) = I(Y|X)



Thm U3#2.12. (Kraft) Alphabet |Σ| = D Instantaneous encoding with word lengths ni ⇐⇒
m∑
i=1

D−ni ≤ 1

Thm U3#2.13. McMillan Uniquely decipherable encoding ⇐⇒
m∑
i=1

D−ni ≤ 1

Prove “if Kraft then exists” and “if exists then McMillan” and other directions follow by “if

instantaneous then u.d.”

Thm U3#2.15. (Shannon’s Noiseless Coding) W a discrete memoryless source with alphabet

W of wi with probs pi, entropy H(W) = −
∑

i pi log pi: For any uniquely decipherable encoding of W

over alphabet Σ, |Σ| = D, into codewords of lengths ni:

H(W)

logD
≤︸︷︷︸

Any u.d

n̄ ≤︸︷︷︸
u.d. must exist

H(W)

logD
+ 1

Page U4#4. Huffman coding is a compact encoding

Ex U4#2.11. Hamming distance properties:

1. d(u,v) ≥ 0, equality ⇐⇒ u = v

2. d(u,v) = d(v,u)

3. d(u,v) + d(v,w) ≥ d(u,w) triangle inequality

Thm U5#1.1. For the binary symmetric channel, NN decoding is equivalent to max. likelihood

decoding

Thm U5#1.4. NN decoding of a block code with min. dist d can correct up to
⌊
d−1
2

⌋
errors

Thm U5#2.2. Capacity of binary symmetric channel with error prob p:

1 + p log p+ (1− p) log (1− p)

Page U5#5. If channel has cap. C, its nth extension has cap nC

Thm U5#3.4. (Shannon’s Noisy Coding Thm) For a binary symm. channel with cap C and

rate 0 < R < C. Given ε > 0, sequence of integers M0,M1,M2, . . . with 1 ≤Mi ≤ 2Ri:

there is some integer N0 and sequence C0, C1, . . . s.t. Ci has length i, Mi codewords, max. error prob

≤ ε for all i ≥ N0

Basically: if you make your codes big enough, you can make the error as small as you want



Thm U5#3.5. (Chebyshev) For any real a > 0

Pr(|X− E(X)| ≥ a) ≤ var(X)

a2

Lemma U5#3.6. 0 ≤ p ≤ 1
2 :

bpnc∑
r=0

(
n

r

)
≤ 2nh(p)

(where h(p) = −p log p− (1− p) log (1− p)) To prove, assume pn integer; write 1 = (p+ (1− p))n; do

magic

Thm U5#3.7. C capacity of discrete memoryless channel. R > C : no sequence of codes Ci with Ci

having length i and 2nR codewords with error probability tending to 0 as n→∞

Lemma U5#3.9. (Fano) X,Y drvs with input set = output set X = Y ; let Z:

Z =

0 X = Y

1 X 6= Y ≈ (decoding error)

Then:

H(X|Y) ≤ H(Z) + Pr(Z = 1) log (|X| − 1)

Ex U6#1.5. Min. weight of a linear code is its min. dist

Ex U6#1.6. C a linear code, G its gen mat: elementary row ops, permuting columns, multiplying

columns by nonzero scalars =⇒ C′ equivalent to C

Ex U6#1.7. Every [n, k, d] code is equivalent [but not equal!] to a code with gen mat in form (Ik|A)

Ex U6#1.10. H is par mat =⇒ codewords are all c s.t. Hct = 0

Ex U6#1.11. If gen mat is (Ik|A) then par mat is (−AT |In−k)

Ex U6#1.14. G gen mat for code is par mat for dual code

Ex U6#1.15. Dual of an [n, k] code is an [n, n− k] code

Thm U6#2.1. (Sphere-packing)

Aq(n, d) ≤ qn∑b d−1
2 c

i=0

(
n
i

)
(q − 1)i



Ex U6#2.2. If q-ary (n,M, d) code is perfect, d is odd

Page U6#8. Any 2 columns lin. ind =⇒ no word has weight ≤ 2

Thm U6#2.5. Binary Hamming codes are perfect

Ex U6#2.6. non-binary Hamming codes too

Thm U6#2.10. Singleton Bound

Aq(n, d) ≤ qn−d+1

Cor. U6#2.11. For C an [n, k, d] code over GF (q):

dim C ≤ n− d+ 1

Thm U6#2.16. RS codes are [n, k, n− k + 1] codes, i.e. MDS codes

Thm U7#1.1. (Gilbert-Varshamov)

Aq(n, d) ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

Thm U7#2.1. (Asymptotic singleton bound) define αq(δ) as asymptotic limit of Aq, with δ the

limit of the relative distance d
n . Then

αq(δ) ≤ 1− δ

Lemma U7#3.2. Residual code obtained by puncturing on the support of some codeword weight w

is an [n− w, k − 1, d′] code, with d′ ≥ d− w +
⌈
w
q

⌉
Cor. U7#3.3. If code is [n, k, d] code and punctured on codeword weight d, residual code is

[n− d, k − 1, d′] code with d′ ≥
⌈
d
q

⌉
Thm U7#3.4. (Griesmer)

n ≥
k−1∑
i=0

⌈
d

qi

⌉

Thm U7#3.7. Every non-zero codeword of the r-dimensional simplex code over GF (q) has weight

qr−1 (“constant weight code”)

Ex U7#3.8. These codes satisfy the Griesmer bound with equality



Thm U8#1.3. For a symmetric encryption scheme with |K| = |C| = |M | : perfect secrecy ⇐⇒

- each key is chosen with probability 1
|K|

- every m ∈M, c ∈ C, there is unique key K with Enc(k,m) = c

Thm U8#2.2. Let π be the period of the sequence output by an r-bit LFSR: π ≤ 2r − 1

Thm U8#2.4. LFSR with taps corresponding to degree r primitive polynomial f with f(θ) = 0: The

set of sequences output by the LFSR form an r-dimensional vector space

=⇒ and can be treated as a linear code

Page U8#7. Specifically, a simplex code (see immediately from fib LFSR)

m as initial state (r bits), m-sequence as codeword (2r − 1 bits)

Ex U8#2.6. Fib LFSR satisfies recurrence relation // every m-sequence output by a Galois LFSR

can also be generated by a Fib LFSR

Thm U8#2.8. Properties of m-sequence output by r-bit LFSR:

- coordinates of each non-zero length r vector occur exactly once as r consecutive terms of the sequence

(think of Fib LFSR internal states)

- number of runs of i consecutive 1s bzw. 0s:

2r−i−2

i = r − 1: no runs of 1s / 1 run of 0s

i = r: 1 run of 1s / no runs of 0s

- Autocorrelation of the m-seq. is either −1 or 2r − 1

Thm U9#1.3. (Shamir’s threshold scheme) To construct a (k;n) threshold scheme;

q = pr; q > n; s ∈ GF (q)

Pick f(x) polynomial degree k − 1 (or less) with coefficients in GF (q) / constant term s

Page U9#5. MDS code → secret sharing scheme // rows as distribution rules (Theorem(?): MDS

code always yields (k;n) threshold scheme)

Thm U9#1.10. Perfect secret sharing scheme: information rate ≤ 1

Ex U9#1.11. H(K) ≤ H(Si)



Thm U9#1.19. Given [n,m, d] code with dual dist. d∗, then for any 1 ≤ s ≤ d∗ − 2, there exists a

(t1, t2, n− s) ramp scheme with t1 = d∗ − s− 1 and t2 = n− d+ 1

Ex U9#1.21. Define average information rate =
n log2(|K|)
log2(|S|)

: for any (t1, t2, n) ramp scheme this rate

is at most t2 − t1

Thm U10#1.5. Let C ⊆ Qn be a q-ary length n code with M codewords. If M − 1 ≥ c ≥ q then C

is not a c-TA code.

Thm U10#1.6. A q-ary length n c-TA code C satisfies

|C| ≤ qd
n
c e + 2c− 2

Thm U10#1.7. For c ≥ 2, a q-ary length n code with min dist. d and d > n−
⌈
n
c2

⌉
is a c-TA code.

Page U10#5. A c-TA code is also a c-frameproof code

Thm U10#1.11. A [n,
⌈n
c

⌉
, n−

⌈n
c

⌉
+ 1] RS code is a c-FP code for c ≥ 2

Thm U10#1.12. A q-ary length n c-FP code C with c < n satisfies

|C| ≤ max{qd
n
c e, t(qd

n
c e − 1) + (c− t)(qb

n
c c − 1)}

where t is the remainder when n is divided by c

Ex U10#1.13. for any c ≥ n, the set of elements of {0, 1, . . . , q − 1}n with exactly one non-zero

component is a c-FP code with n(q−1) elements and is (see Thm 1.12) the largest possible c-FP code

with these parameters



Probability:

(fundamental

lemma)

d.r.v. → distribution, joint, conditional, Bayes

entropy: def, properties, conditional, joint etc.;

from U5: Chebyshev, Fano, nCr lemma

mutual information

Channel encoding

Huffman ←

capacity, rate, . . .

instantaneous, u.d.︸ ︷︷ ︸
=⇒ compact

, noiseless, noisy︸ ︷︷ ︸
Shannon thms

⇓

existence, inequalities

→ (noisy) decoding: ideal obs vs max likelihood

as channel extension

Block codes Hamming dist, min. dist, error corr., puncturing, support, residual code

⇓
Linear codes: gen/par mats =⇒ properties

⇐⇒ dual codes —— orthogonal fun

Syndrome decoding

 Use of vector space features =

sizes, lin. independence, combo properties etc.

= over a vector space

= over a field:

= see GF content

= & polys in GFs

Bounds

(egs are linear but bounds are

not specific to linear codes)

Aq ≤ . . .
≤ . . .
≥ . . .

n ≥


egs = Hamming

Simplex

R-S LFSRs → as linear codes

LFSRs  properties

Security: definitions, Kerckhoff principle, basic ciphers

Ciphers // encryption Perfect secrecy

MDS/linear


Secret-sharing threshold schemes, ramp schemes

error.corr Piracy c-TA, c-FP

codes as

as



Probability & entropy theorems

.

Thm U1#1.8. (Bayes)

Pr(x|y) =
Pr(y|x)Pr(x)

Pr(y)

GF (pm)/P an irreducible polynomial order m is a field of size pm i.e. has pm elements

- its cyclic group has pm − 1 elements of which φ(pm − 1) are primitive.

- m of them are generated by each primitive polynomial and so there are φ(pm−1)
m primitive polynomials

(multiple roots not allowed for prim polys)

- to detect if an element is primitive, look at the prime divisors k1, k2, . . . of pm − 1 and try pm−1
ki

to

see if eki = 1



Ex U1#2.6. no. of prim. elts of GF (q = pm) is number of things coprime to q− 1; no. of prim polys

is prim elts
m

Ex U1#2.7. Char p =⇒ (a+ b)p = ap + bp

Ex U1#2.8. GF (qn) is a vector space over GF (q) (any prime power q)

Thm U2#2.7. Shannon entropy Any function satisfying Shannon entropy properties (cts, Hn+1 ≥

Hn; 0 ≤ H ≤ log n; H(X,Y) = H(X) + H(X|Y)) is a constant multiple of Shannon entropy

Thm U3#2.15. (Shannon’s Noiseless Coding)

H(W)

logD
≤︸︷︷︸

Any u.d

n̄ ≤︸︷︷︸
u.d. must exist

H(W)

logD
+ 1

Ex U4#2.11. Hamming dist is a metric

Thm U5#1.1. For the binary symmetric channel, NN decoding is equivalent to max. likelihood

decoding

Thm U5#1.4. NN decoding of a block code with min. dist d can correct up to
⌊
d−1
2

⌋
errors

Thm U5#2.2. Capacity of binary symmetric channel with error prob p:

1 + p log p+ (1− p) log (1− p)

Page U5#5. If channel has cap. C, its nth extension has cap nC

Ex U9#1.11. H(K) ≤ H(Si)

Thm U9#1.19. Given [n,m, d] code with dual dist. d∗, then for any 1 ≤ s ≤ d∗ − 2, there exists a

(t1, t2, n− s) ramp scheme with t1 = d∗ − s− 1 and t2 = n− d+ 1

Ex U9#1.21. Define average information rate =
n log2(|K|)
log2(|S|)

: for any (t1, t2, n) ramp scheme this rate

is at most t2 − t1

Ex U10#1.13. for any c ≥ n, the set of elements of {0, 1, . . . , q − 1}n with exactly one non-zero

component is a c-FP code with n(q−1) elements and is (see Thm 1.12) the largest possible c-FP code

with these parameters
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