Definition of a d.r.v

- \vec{X} : finite set X of possible outcomes // probability distribution over X

Def of a uniform probability dist

each outcome is equally likely $\Longrightarrow \operatorname{Pr}(\mathbf{X}=x)=\frac{1}{|X|}$

Joint pd of two drvs

Given \mathbf{X}, \mathbf{Y}, joint pd has $-\operatorname{drv}(\mathbf{X}, \mathbf{Y})$
$-\operatorname{set} X \times Y$

- pd $\operatorname{Pr}(\mathbf{X}=x, \mathbf{Y}=y)$ (typically write $\operatorname{Pr}(x, y))$
- $($ independent $\Longleftarrow \operatorname{Pr}(x, y)=\operatorname{Pr}(x) \operatorname{Pr}(y))$

Def. of a conditional distribution

$$
(\mathbf{Y} \mid \mathbf{X}): \quad \operatorname{Pr}(y \mid x)=\frac{\operatorname{Pr}(\mathbf{X}=x, \mathbf{Y}=y)}{\operatorname{Pr}(\mathbf{X}=x)}
$$

State and use Bayes' thm

$$
\operatorname{Pr}(x \mid y)=\frac{\operatorname{Pr}(y \mid x) \operatorname{Pr}(x)}{\operatorname{Pr}(y)}
$$

Definition of a finite field

Field: set \mathbb{F} plus,$+ \times$;
$(\mathbb{F},+)$ abelian, identity 0
$(\mathbb{F} \backslash\{0\}, \times)$ abelian, identity 1
distributive $\times /+$ and $+/ \times$
\mathbb{F} finite \Longrightarrow finite field
For each prime power q there is a unique finite field order q
(up to isomorphism)
Recall and use basic properties of finite fields

$$
q=p^{n}
$$

$(G F(q) *, \times)$ is cyclic
d divides $n \Longrightarrow$ unique subfield order p^{d}
no other subfields
field has char p
group A of automorphisms of field is cyclic, $|A|=n, a \rightarrow a^{p}$ (Frobenius automorphism)

Construct $G F\left(q^{n}\right)$ using an irreducible polynomial over $G F(q)$
Use $x^{k+1}+a_{k} x^{k} \ldots+a_{0}=0 \Longrightarrow x^{k+1}=-a_{k} x^{k} \ldots-a_{0}$; sub in as necessary

Perform polynomial interpolation (in $G F(q)[x]$)

Set of simultaneous equations
(Or Lagrange interp formula)

Defn of Shannon entropy of a drv

$$
\mathrm{H}(\mathbf{X})=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

Compute the Shannon entropy of a drv per formula

Fundamental Lemma

Given $\sum_{i} p_{i}=\sum_{i} q_{i}=1$ (two pds):

$$
-\sum_{i} p_{i} \log p_{i} \leq-\sum_{i} p_{i} \log q_{i}
$$

equality $\Longleftrightarrow p_{i}=q_{i}$ for all i
Joint entropy of two drvs \leq sum of their entropies; prove via Fundamental Lemma

$$
\mathrm{H}(\mathbf{X}, \mathbf{Y}) \leq \mathrm{H}(\mathbf{X})+\mathrm{H}(\mathbf{Y})
$$

def of
$\mathrm{H}(\mathbf{X} \mid \mathbf{Y}=y), \mathrm{H}(\mathbf{X} \mid \mathbf{Y})$

$$
\mathrm{H}(\mathbf{X} \mid \mathbf{Y}=y)=-\sum_{x} \operatorname{Pr}(x \mid y) \log \operatorname{Pr}(x \mid y)
$$

"uncertainty in the outcome of \mathbf{X} once we know that the outcome of \mathbf{Y} is y "

Compute

$\mathrm{H}(\mathbf{X} \mid \mathbf{Y}=y), \mathrm{H}(\mathbf{X} \mid \mathbf{Y})$, given \mathbf{X}, \mathbf{Y}

$$
\mathrm{H}(\mathbf{X} \mid \mathbf{Y})=\sum_{y} \operatorname{Pr}(y) \mathrm{H}(\mathbf{X} \mid \mathbf{Y}=y)
$$

"average amount of uncertainty about the outcome of \mathbf{X} remaining once outcome of \mathbf{Y} is known"

State and prove

$\mathrm{H}(\mathbf{X}, \mathbf{Y})=\mathrm{H}(\mathbf{Y})+\mathrm{H}(\mathbf{X} \mid \mathbf{Y})$ expand out definition

State and prove

$\mathrm{H}(\mathbf{X} \mid \mathbf{Y}) \leq \mathrm{H}(\mathbf{X})$ equality $\Longleftrightarrow \mathbf{X}, \mathbf{Y}$ independent

Define $I(X \mid Y)$ and compute it
$\mathrm{I}(\mathbf{X} \mid \mathbf{Y})=\mathrm{H}(\mathbf{X})-\mathrm{H}(\mathbf{X} \mid \mathbf{Y})$
"reduction in uncertainty associated with \mathbf{X} once we know the value of \mathbf{Y} "
Show that $\mathbf{H}(X \mid Y) \geq 0$
equality $\Longleftrightarrow \mathbf{X}, \mathbf{Y}$ independent
Follows from prev. unit
show that $I(\mathbf{X} \mid \mathbf{Y})=I(\mathbf{Y} \mid \mathbf{X})$
hence "mutual" information

Defn of a discrete memoryless source

- Finite source alphabet, symbols called words
- Sequence $\mathbf{W}_{0}, \ldots, \mathbf{W}_{i}$
${ }^{-} \operatorname{Pr}\left(\mathbf{W}_{j}=w_{i}\right)=p_{i}$
\Longrightarrow the \mathbf{W}_{i} are independent, identically distributed drvs - entropy of source: $\mathrm{H}(\mathbf{W})$

Defns of

instantaneous
uniquely decipherable
compact encoding
no encoded word is a prefix of any other encoded word for any sequence S, at most one source message can be encoded as S
u.d. with smallest possible expected encoded word length

Kraft's inequality; McMillan's inequality

Kraft:
(existence of instantaneous encoding)

McMillan:
(uniquely decipherable)

$$
\begin{aligned}
& \sum_{i=1}^{m} D^{-n_{i}} \leq 1 \\
& \sum_{i=1}^{m} D^{-n_{i}} \leq 1
\end{aligned}
$$

Note identical!
Every instantaneous code is uniquely decipherable, i.e. [TODO!]

Shannon's noiseless coding theorem

\mathbf{W} a discrete memoryless source
1.

$$
\bar{n} \geq \frac{\mathrm{H}(\mathbf{W})}{\log D}
$$

2. There exists u.d. encoding with

$$
\frac{\mathrm{H}(\mathbf{W})}{\log D}+1 \geq \bar{n}
$$

Perform Huffman coding

- Sort source words by probability
- Put as leaves of tree; build tree by merging least probable nodes

Huffman coding produces compact instantaneous encodings

(not unique) (prove by induction: base case 2 words)

Defs of ideal observer decoding; max. likelihood decoding

Given r_{j}, decode as t_{i} s.t.
Ideal observer:
Max. likelihood:
max. $\operatorname{Pr}\left(t_{i} \mid r_{j}\right)$
max. $\operatorname{Pr}\left(r_{j} \mid t_{i}\right)$

Ideal observer requires a priori message probs; max likelihood does not

Def of binary symmetric channel

 input, output alphabets both $\{0,1\}$flip probability $p<0.5$

Calculate Hamming dists

Q a finite set; list of elements of Q a codeword;
\mathcal{C} a set of codewords a code;
codewords all same length \Longrightarrow block code; $Q=\{0,1\}$ binary code
Hamming distance $d(\mathbf{w}, \mathbf{u})=\mid\left\{i \in\{1,2, \ldots, n\} \mid w_{i} \neq u_{i}\right\}$

Prove properties of Hamming dists

e.g.

1. $d(\mathbf{u}, \mathbf{v}) \geq 0$, equality $\Longleftrightarrow \mathbf{u}=\mathbf{v}$
2. $d(\mathbf{u}, \mathbf{v})=d(\mathbf{v}, \mathbf{u})$
3. $d(\mathbf{u}, \mathbf{v})+d(\mathbf{v}, \mathbf{w}) \geq d(\mathbf{u}, \mathbf{w}) \quad$ triangle inequality

In binary sym. channel, NN decoding is equivalent to max. likelihood
$\mathrm{NN}=$ choose t_{i} minimising $d\left(r_{j}, t_{i}\right)$
(recall $p<\frac{1}{2}$ by definition)
Min. dist of a block code
Largest d s.t. for any $\mathbf{u}, \mathbf{v} \in \mathcal{C}, d(\mathbf{u}, \mathbf{v}) \geq d$
$\Longrightarrow(n, M, d)$-code
Connection between min. dist of a code \& error-correcting properties
Max. errors corrected by NN decoding of block code \mathcal{C} with min. dist d :

$$
\left\lfloor\frac{d-1}{2}\right\rfloor
$$

(see also Ex 1.5)

Capacity of a noisy channel

capacity: $\sup _{\mathbf{R}} \mathrm{I}(\mathbf{T} \mid \mathbf{R})$
"the greatest possible amount of information that the channel output gives about input to the channel"

Compute capacity of binary sym. channel

$$
1+p \log p+(1-p) \log (1-p)
$$

(use formula, max. per derivative)
nth extension of channel with cap. C has cap. $n C$

Shannon's Noisy Coding Thm

rate R of a binary code of length n with M codewords: $\frac{1}{n} \log _{2} M$
binary sym. channel with $0<R<C$ capacity
$\epsilon>0$, sequence of integers $M_{0}, M_{1}, M_{2}, \ldots$ with $1 \leq M_{i} \leq 2^{R i}$:
there is some integer N_{0} and $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots$ s.t. \mathcal{C}_{i} has length i, M_{i} codewords, max. error prob $\leq \epsilon$
Basically: if you make your codes big enough, you can make the error as small as you want
Proof (sketch): TODO

Def. of an $[n, k, d]$ code

Square brackets [] \Longrightarrow linear
\Longrightarrow vector space over alphabet $Q(\Longrightarrow Q$ is a field $)$
dimension of vector space: $k n$ length of code $/ / d$ min. dist

Use vector space properties to prove simple results

linear code: all linear combos of any words are also words
Def. of linear code as gen. mat + par mat
Gen mat: rows form basis

Gen \rightarrow par mat

Par mat has rank $n-k$; rows are orthogonal to all codewords
Systematic form $\left(\mathbb{I}_{k} \mid A\right)$ has par mat $\left(-A^{T} \mid \mathbb{I}_{n-k}\right)$
More generally require orthogonality

Deduce dimension, min. dist., etc. from gen/par mats

Every vector space includes $\mathbf{0}$. Hamming weight of word $=$ dist from 0 . min weight of code $=$ smallest Hamming weight $=$ min dist
\min dist $=\min \#$ lin. ind. cols in parmat $\Longrightarrow 1 \Longleftrightarrow$ all-zero col; $2 \Longleftrightarrow 1$ col is multiple of another (equal in binary) ...

Syndrome decoding

- any word \mathbf{c} in code has $H \mathbf{c}^{T}=0$ for par mat H (def)
$-\mathbf{r}=\mathbf{c}+\mathbf{e}$ received, $H \mathbf{r}^{T}=H \mathbf{e}^{T}(1 \times(n-k))$ is syndrome of \mathbf{r}
- divide vector space into cosets by syndrome (1 codeword per coset) // sort cosets by Hamming weight (=coset leader min weight)
- decode by matching syndrome with coset leader
$=$ fast implementation of NN decoding (with precomputation phase)
$\mathcal{*}$: Observation: e has weight (0 or) 1 , then the syndrome of $\mathrm{r}=\mathrm{HeT}$ is just a scalar multiple of a column of H , say col j : flip j th bit (also applies to non-binary...)
(NB: if we /can/ guaranteed decode m errors then there must be a unique coset leader \leftarrow multiple coset leaders give different results)

Dual code

Take par mat and use as gen mat
Dual of an $[n, k]$ code is $[n, n-k]$ code. Orthogonal complement: dual code is orthogonal to code

Find dual codes

Gen \leftrightarrow par

Sphere-packing bound

$$
A_{q}(n, d) \leq \frac{q^{n}}{\sum_{i=0}^{\left\lfloor\frac{d-1}{2}\right\rfloor}\binom{n}{i}(q-1)^{i}}
$$

What is it? $A_{q}(n, d)$ is largest possible M with q-ary (n, M, d) code, i.e. largest possible number of codewords in an (n, d) code.

Def of perfect code

Sphere-packing bound met with equality
($\Longrightarrow d$ odd)

Hamming codes; binary Hamming codes are perfect

Par mat is all non-zero binary vectors of length k.
Capable of correcting single error
Can be generalised to q-ary Hamming codes; still perfect

$$
\mathcal{H}_{2, r} \text { is a }[\underbrace{2^{r}-1}, n-r, 3] \text { code }
$$

divide out scalar multiples $\mathcal{H}_{q, r}$ is a $[\underbrace{\frac{q^{r} n-1}{q-1}}_{n}, n-r, 3]$ code

Singleton bound

$$
A_{q}(n, d) \leq q^{n-d+1}
$$

equality \Longrightarrow maximum-distance separable $=\boldsymbol{M D S}$ code

RS codes

Take n elements of a q-ary alphabet, $q \geq n$. Take polynomials deg $\leq k$ for some $k \leq n$; each codeword is the result of evaluating a polynomial at the n elements

RS codes are MDS codes

$[n, k, n-k+1]$ codes. Show that
(1) linear [linear combo of codewords is also a codeword]
(2) $d \geq n-k+1$ (by polynomial interp.)
(3) singleton bound $d \leq n-k+1 \Longrightarrow d=n-k+1$
(in fact, they are only non-trivial MDS codes known) this is not quite true as e.g. 2.13 is not RS!
efficient decoding
X need big alpha
$\underline{\text { Bounds (U6 \& U7): }}$
Bounds on code size:
Sphere-packing: $A_{q} \leq \ldots$ perfect codes meet : e.g. Hamming codes
Gilbert-Varshamov: $A_{q} \geq \ldots$
Singleton: $A_{q} \leq \ldots M D S$ codes: e.g. R-S codes
$\leadsto \quad$ Asymptotic singleton $\alpha_{q}\left(\frac{n}{d} \rightarrow\right)$
Bound on code length:
Griesmer : simplex codes
A linear code C has minimum Hamming distance d if and only if its parity check matrix H has a set of d linearly dependent columns but no set of $d-1$ linearly dependent columns.

Reminder: 2 columns are l.i. in binary field \Longleftrightarrow they are identical (nothing so simple for 3)

State + prove Gilbert-Varshamov bound

$$
A_{q}(n, d) \geq \frac{q^{n}}{\sum_{i=0}^{d-1}\binom{n}{i}(q-1)^{i}}
$$

Proof: count elements distance max $d-1$ from a given codeword

Griesmer bound

$$
n \geq \sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

Proof based on residual codes

Puncturing a code

Delete certain coordinates and then collapse code to unique codewords

Find punctured code

support of a codeword \mathbf{c} is its nonzero coordinates
residual code wrt c: puncture code on support of \mathbf{c}
don't forget to remove duplicates
result is linear code

Describe simplex codes

duals of Hamming codes. Take r-dimensional simplex code over $G F(q)$:
all non-zero codewords have same weight q^{r-1} satisfies Griesmer bound with equality

Authentication, data integrity, confidentiality for data security

auth: who am I really talking to
integrity: msg didn't get corrupted
confidentiality: eavesdropper can't learn msg

Symmetric encryption

Common key k
Encryption algo Enc s.t. $c=\operatorname{Enc}(k, m) / /$ Matching Dec
Require $\operatorname{Dec}(k, \operatorname{Enc}(k, m))=m$

Kerckhoff's principle

Assume eavesdropper knows everything except k : key space, message space, ciphertext space, Enc, Dec.

Better than "security through obscurity" principle

Caesar cipher: why insecure

addition mod 26:
small key space ; many message properties preserved

Substitution cipher: why insecure
frequency analysis!

Describe perfect secrecy

for all $m \in M, c \in C, \operatorname{Pr}(m \mid c)=\operatorname{Pr}(m)$
"knowing the ciphertext does not help eavesdropper guess message"
Prove one-time pad provides perfect secrecy

$$
|M|=|C|=|K|
$$

Symm. scheme with perfect secrecy requires $|K| \geq|M|$
Means scheme is expensive and often not practical

Defns of Galois / Fib LFSRs; understand diags

Stream ciphers.

Galois: xor en route

Fib: only first box is affected

$$
a_{4}=a_{3}+a_{2}+a_{1}+a_{0} \Longrightarrow P: x^{4}+x^{3}+x^{2}+x+1
$$

Prove that r-bit binary LFSR has max output seq. $2^{r}-1$
If it gets to 0 it gets stuck

m-sequence

output sequence of length $2^{r}-1$ (m for maximum)
Use primitive poly over $G F(2)$ to construct Galois LFSR
1 st \& last are always 1 ; rightmost bit is always fed back, corresponds to last bit, leftmost bit corresponds to x term, ignore x^{0} term;

$1+x^{2}+x^{5}$
TODO check!
NB Fib LFSR by recurrence relation // set up from poly
Set of possible sequences output by max period r-bit LFSR is vector space dim. r and therefore a linear code

Definition of a $(k ; n)$ threshold scheme

n players
Any k or more players can recover secret
No $k-1$ or fewer players learns anything at all (ie all possibilities EQUALLY LIKELY)

Shamir scheme

$q=p^{r} ; q>n ; s \in G F(q)$
Pick $f(x)$ polynomial degree $k-1$ (or less) with coefficients in $G F(q) /$ constant term s
Recover secret by polynomial interp.

Linear secret-sharing scheme

Vandermonde matrix: geometric progression. Property: any k rows are lin. independent $M:(n+1) \times k$: contains powers of elements of $G F(q)$
$\mathbf{r}=\left(s r_{1} \ldots r_{k-1}\right)^{T}\left(r_{i}\right.$ chosen at random $) ; M \mathbf{r}$ is secret + shares
Given any k players, their combo is lin. independent; can recover secret;
$k-1$ players + target: likewise lin. independent \rightarrow can't recover secret
NB: Any scheme that can be constructed from matrix is a linear secret-sharing scheme; efficient to describe, build, and use
Shamir vs linear: shares are same! (VdM as polynomials...)

Link between Shamir and RS codes

Set of potential vectors is the codewords of an RS code
$[n+1, k, n+2-k]$ RS code
Can use any MDS code over $G F(q), q>n$. Rows are distribution rules; code (matrix) is published in advance but only dealer knows which row is distributed this time

Information rate of a secret-sharing scheme

$$
\min _{i} \frac{\log _{2}(|K|)}{\log _{2}\left(\left|S_{i}\right|\right)}
$$

S_{i} is set of possible shares for player i
Shamir: rate 1
A perfect secret-sharing scheme has information rate ≤ 1
Size of share space for each player must be at least as big as the secret space
Rate $=1$: scheme is $\boldsymbol{i d e a l}$

$\left(t_{1}, t_{2}, n\right)$ ramp scheme

up to t_{1} : no information
t_{2} or more: full information
$t_{1} \rightarrow t_{2}$: maybe some information ${ }^{-}$_($\left.{ }^{\prime}{ }^{\prime}\right)^{\prime}$ /- $^{-}$
Construct ramp scheme from error-correcting code
Words of code are distribution rules; last s coordinates are secret

Define c-TA, c-FP codes

Want to track piracy;
code // NN-decoding
Assume pirated content is generated by coalitions of size c
c-TA: can always find one of the pirates c-FP: weaker: can't necessarily find pirate, but can't frame anyone else ("frameproof")

Construct them from error-correcting codes

Any q-ary, length n code min. dist. $d, d>n-\left\lceil\frac{n}{c^{2}}\right\rceil$ is a c-TA code $(c \geq 2)$
(e.g. a RS code)

Prove that every c-TA code is a c-FP code

"if a set S of up to c pirates could frame some user $\mathbf{y} \in \mathcal{C}, \mathbf{y}$ is its own NN \Longrightarrow lies in $S: S$ cannot frame any users whose words are not in S "

Interested in c-FP codes that are larger than the largest c-TA codes (else why bother), e.g. $\left[n,\left\lceil\frac{n}{c}\right\rceil, n-\left\lceil\frac{n}{c}\right\rceil+1\right]$ RS code is a c-FP code $(c \geq 2): q^{\left\lceil\frac{n}{}\right\rceil}$ codewords $\geq q^{\left\lceil\frac{n}{c^{2}}\right\rceil}$

Prove whether given codes satisfy definitions to be c-TA, c-FP

Theorems etc

Thm U1\#1.8. (Bayes)

$$
\operatorname{Pr}(x \mid y)=\frac{\operatorname{Pr}(y \mid x) \operatorname{Pr}(x)}{\operatorname{Pr}(y)}
$$

Thm U1\#2.5. For every prime power $q=p^{n}$ there exists a unique field $G F(q)$ with q elements, with:

- $\left(G F(q)^{*}, \times\right)$ is a cyclic group (thus there is α "primitive element" of $\left.G F(q)^{*}\right)$
- d divides $n \Longrightarrow G F(q)$ has unique subfield order p^{d}; these are the only subfields of $G F(q)$ $\left(G F(p) \cong \mathbb{Z}_{p}\right.$
- $a \in G F(q): p a=0$ ("characteristic p")
- group of automorphisms of $G F(q)$ is cyclic order n, generated by $a \rightarrow a^{p}$ ("Frobenius automorphism")

Ex U1\#2.3. \mathbb{Z}_{n} is a field $\Longleftrightarrow n$ is prime

Ex U1\#2.6. no. of prim. elts of $G F\left(q=p^{m}\right)$ is number of things coprime to $q-1$; no. of prim polys is $\frac{\text { prim elts }}{m}$

Ex U1\#2.7. Char $p \Longrightarrow(a+b)^{p}=a^{p}+b^{p}$

Ex U1\#2.8. $G F\left(q^{n}\right)$ is a vector space over $G F(q)$ (any prime power q)

Page U1\#7.

- Unique polynomial factorisations

Thm U2\#1.1. (Polynomial interp.) $\left(x_{i}, y_{i}\right) \in G F\left(q=p^{n}\right)^{2}$, for $i=0,1, \ldots, n$; no duplicate $x_{i} \mathrm{~s}$: \Longrightarrow there is a unique polynomial $f \in G F(q)[x]$ with $y_{i}=f\left(x_{i}\right)$ for all i

Ex U2\#1.3. Lagrange interp.

$$
f(x)=\sum_{i=0}^{n} y_{i} f_{i}(x)
$$

where

$$
f_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Thm U2\#2.7. Shannon entropy $\left(\mathrm{H}(\mathbf{X})=-\sum_{i} p_{i} \log p_{i}\right)$

- $\mathrm{H}(\mathbf{X})$ is a continuous function of the probabilities
- If \mathbf{Y}_{n} is uniform rv with n outcomes, $H\left(\mathbf{Y}_{n+1}\right)>\mathrm{H}(\mathbf{Y})$
- Z with two possible outcomes;

$$
\mathrm{H}(\mathbf{Z}, \mathbf{X})=\mathrm{H}(\mathbf{Z})-\operatorname{Pr}\left(z_{1}\right) \sum_{i} \operatorname{Pr}\left(x_{i} \mid z_{1}\right) \log \operatorname{Pr}\left(x_{i} \mid z_{1}\right)-\operatorname{Pr}\left(z_{2}\right) \sum_{i} \operatorname{Pr}\left(x_{i} \mid z_{2}\right) \log \operatorname{Pr}\left(x_{i} \mid z_{2}\right)
$$

- $\mathrm{H}(\mathbf{X}) \geq 0$; equality \Longleftrightarrow only one possible outcome
- $\mathrm{H}(\mathbf{X}) \leq \log n$; equality $\Longleftarrow \mathbf{X}$ has uniform dist
- any function satisfying these properties is (constant multiple of) Shannon entropy!

Lemma U2\#2.11. (Fundamental Lemma) $\sum_{i} p_{i}=\sum_{i} q_{i}=1$ (p_{i}, q_{i} positive real numbers):

$$
-\sum_{i} p_{i} \log p_{i} \leq-\sum_{i} p_{i} \log q_{i}
$$

Proof using $\ln x \leq x-1$

Thm U2\#2.12.

$$
\mathrm{H}(\mathbf{X}, \mathbf{Y}) \leq \mathrm{H}(\mathbf{X})+\mathrm{H}(\mathbf{Y}),
$$

equality $\Longleftrightarrow \mathbf{X}, \mathbf{Y}$ independent

Ex U2\#2.18. $\mathrm{H}(\mathbf{X} \mid \mathbf{X})=0$

Ex U2\#2.19. \mathbf{X}, \mathbf{Y} independent $\Longrightarrow \mathrm{H}(\mathbf{X} \mid \mathbf{Y})=\mathrm{H}(\mathbf{X})$

Thm U2\#2.20.

$$
\mathrm{H}(\mathbf{X}, \mathbf{Y})=\mathrm{H}(\mathbf{Y})+\mathrm{H}(\mathbf{X} \mid \mathbf{Y})
$$

Cor. U2\#2.21. $\mathrm{H}(\mathbf{X} \mid \mathbf{Y}) \leq \mathrm{H}(\mathbf{X})$, equality $\Longleftrightarrow \mathbf{X}, \mathbf{Y}$ independent

Thm U3\#1.2. $\mathrm{I}(\mathbf{X} \mid \mathbf{Y}) \geq 0$, equality $\Longleftrightarrow \mathbf{X}, \mathbf{Y}$ independent

Ex U5\#3.8.

$$
\mathrm{H}(\mathbf{U} \mid \mathbf{V}) \leq \mathrm{H}(\mathbf{U} \mid \mathbf{V}, \mathbf{W})+\mathrm{H}(\mathbf{W})
$$

Thm U3\#1.3. $\mathrm{I}(\mathbf{X} \mid \mathbf{Y})=\mathrm{I}(\mathbf{Y} \mid \mathbf{X})$

Thm U3\#2.12. (Kraft) Alphabet $|\Sigma|=D$ Instantaneous encoding with word lengths $n_{i} \Longleftrightarrow$

$$
\sum_{i=1}^{m} D^{-n_{i}} \leq 1
$$

Thm U3\#2.13. McMillan Uniquely decipherable encoding \Longleftrightarrow

$$
\sum_{i=1}^{m} D^{-n_{i}} \leq 1
$$

Prove "if Kraft then exists" and "if exists then McMillan" and other directions follow by "if instantaneous then u.d."

Thm U3\#2.15. (Shannon's Noiseless Coding) W a discrete memoryless source with alphabet W of w_{i} with probs p_{i}, entropy $\mathrm{H}(\mathbf{W})=-\sum_{i} p_{i} \log p_{i}$: For any uniquely decipherable encoding of W over alphabet $\Sigma,|\Sigma|=D$, into codewords of lengths n_{i} :

$$
\frac{\mathrm{H}(\mathbf{W})}{\log D} \underbrace{\leq}_{\text {Any u.d }} \bar{n} \underbrace{\leq}_{\text {u.d. must exist }} \frac{\mathrm{H}(\mathbf{W})}{\log D}+1
$$

Page U4\#4. Huffman coding is a compact encoding

Ex U4\#2.11. Hamming distance properties:

1. $d(\mathbf{u}, \mathbf{v}) \geq 0$, equality $\Longleftrightarrow \mathbf{u}=\mathbf{v}$
2. $d(\mathbf{u}, \mathbf{v})=d(\mathbf{v}, \mathbf{u})$
3. $d(\mathbf{u}, \mathbf{v})+d(\mathbf{v}, \mathbf{w}) \geq d(\mathbf{u}, \mathbf{w}) \quad$ triangle inequality

Thm U5\#1.1. For the binary symmetric channel, NN decoding is equivalent to max. likelihood decoding

Thm U5\#1.4. NN decoding of a block code with min. dist d can correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

Thm U5\#2.2. Capacity of binary symmetric channel with error prob p :

$$
1+p \log p+(1-p) \log (1-p)
$$

Page U5\#5. If channel has cap. C, its nth extension has cap $n C$

Thm U5\#3.4. (Shannon's Noisy Coding Thm) For a binary symm. channel with cap C and rate $0<R<C$. Given $\epsilon>0$, sequence of integers $M_{0}, M_{1}, M_{2}, \ldots$ with $1 \leq M_{i} \leq 2^{R i}$:
there is some integer N_{0} and sequence $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots$ s.t. \mathcal{C}_{i} has length i, M_{i} codewords, max. error prob $\leq \epsilon$ for all $i \geq N_{0}$

Basically: if you make your codes big enough, you can make the error as small as you want

Thm U5\#3.5. (Chebyshev) For any real $a>0$

$$
\operatorname{Pr}(|\mathbf{X}-E(\mathbf{X})| \geq a) \leq \frac{\operatorname{var}(\mathbf{X})}{a^{2}}
$$

Lemma U5\#3.6. $0 \leq p \leq \frac{1}{2}$:

$$
\sum_{r=0}^{\lfloor p n\rfloor}\binom{n}{r} \leq 2^{n h(p)}
$$

$($ where $h(p)=-p \log p-(1-p) \log (1-p))$ To prove, assume $p n$ integer; write $1=(p+(1-p))^{n}$; do magic

Thm U5\#3.7. C capacity of discrete memoryless channel. $R>C$: no sequence of codes \mathcal{C}^{i} with \mathcal{C}^{i} having length i and $2^{n R}$ codewords with error probability tending to 0 as $n \rightarrow \infty$

Lemma U5\#3.9. (Fano) \mathbf{X}, \mathbf{Y} drvs with input set $=$ output set $X=Y$; let \mathbf{Z} :

$$
\mathbf{Z}=\left\{\begin{array}{ll}
0 & \mathbf{X}=\mathbf{Y} \\
1 & \mathbf{X} \neq \mathbf{Y}
\end{array} \quad \approx\right. \text { (decoding error) }
$$

Then:

$$
\mathrm{H}(\mathbf{X} \mid \mathbf{Y}) \leq \mathrm{H}(\mathbf{Z})+\operatorname{Pr}(\mathbf{Z}=1) \log (|X|-1)
$$

Ex U6\#1.5. Min. weight of a linear code is its min. dist

Ex U6\#1.6. \mathcal{C} a linear code, G its gen mat: elementary row ops, permuting columns, multiplying columns by nonzero scalars $\Longrightarrow \mathcal{C}^{\prime}$ equivalent to \mathcal{C}

Ex U6\#1.7. Every $[n, k, d]$ code is equivalent [but not equal!] to a code with gen mat in form $\left(\mathbb{I}_{k} \mid A\right)$
Ex U6\#1.10. H is par mat \Longrightarrow codewords are all \mathbf{c} s.t. $H \mathbf{c}^{t}=0$

Ex U6\#1.11. If gen mat is $\left(\mathbb{I}_{k} \mid A\right)$ then par mat is $\left(-A^{T} \mid \mathbb{I}_{n-k}\right)$

Ex U6\#1.14. G gen mat for code is par mat for dual code

Ex U6\#1.15. Dual of an $[n, k]$ code is an $[n, n-k]$ code

Thm U6\#2.1. (Sphere-packing)

$$
A_{q}(n, d) \leq \frac{q^{n}}{\sum_{i=0}^{\left\lfloor\frac{d-1}{2}\right\rfloor}\binom{n}{i}(q-1)^{i}}
$$

Ex U6\#2.2. If q-ary (n, M, d) code is perfect, d is odd

Page U6\#8. Any 2 columns lin. ind \Longrightarrow no word has weight ≤ 2

Thm U6\#2.5. Binary Hamming codes are perfect

Ex U6\#2.6. non-binary Hamming codes too

Thm U6\#2.10. Singleton Bound

$$
A_{q}(n, d) \leq q^{n-d+1}
$$

Cor. U6\#2.11. For \mathcal{C} an $[n, k, d]$ code over $G F(q)$:
$\operatorname{dim} \mathcal{C} \leq n-d+1$

Thm U6\#2.16. RS codes are $[n, k, n-k+1]$ codes, i.e. MDS codes

Thm U7\#1.1. (Gilbert-Varshamov)

$$
A_{q}(n, d) \geq \frac{q^{n}}{\sum_{i=0}^{d-1}\binom{n}{i}(q-1)^{i}}
$$

Thm U7\#2.1. (Asymptotic singleton bound) define $\alpha_{q}(\delta)$ as asymptotic limit of A_{q}, with δ the limit of the relative distance $\frac{d}{n}$. Then

$$
\alpha_{q}(\delta) \leq 1-\delta
$$

Lemma U7\#3.2. Residual code obtained by puncturing on the support of some codeword weight w is an $\left[n-w, k-1, d^{\prime}\right]$ code, with $d^{\prime} \geq d-w+\left\lceil\frac{w}{q}\right\rceil$

Cor. U7\#3.3. If code is $[n, k, d]$ code and punctured on codeword weight d, residual code is $\left[n-d, k-1, d^{\prime}\right]$ code with $d^{\prime} \geq\left\lceil\frac{d}{q}\right\rceil$

Thm U7\#3.4. (Griesmer)

$$
n \geq \sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

Thm U7\#3.7. Every non-zero codeword of the r-dimensional simplex code over $G F(q)$ has weight q^{r-1} ("constant weight code")

Ex U7\#3.8. These codes satisfy the Griesmer bound with equality

Thm U8\#1.3. For a symmetric encryption scheme with $|K|=|C|=|M|$: perfect secrecy \Longleftrightarrow - each key is chosen with probability $\frac{1}{|K|}$

- every $m \in M, c \in C$, there is unique key K with $\operatorname{Enc}(k, m)=c$

Thm U8\#2.2. Let π be the period of the sequence output by an r-bit LFSR: $\pi \leq 2^{r}-1$

Thm U8\#2.4. LFSR with taps corresponding to degree r primitive polynomial f with $f(\theta)=0$: The set of sequences output by the LFSR form an r-dimensional vector space \Longrightarrow and can be treated as a linear code

Page U8\#7. Specifically, a simplex code (see immediately from fib LFSR) \mathbf{m} as initial state (r bits), m-sequence as codeword $\left(2^{r}-1\right.$ bits)

Ex U8\#2.6. Fib LFSR satisfies recurrence relation // every m-sequence output by a Galois LFSR can also be generated by a Fib LFSR

Thm U8\#2.8. Properties of m-sequence output by r-bit LFSR:

- coordinates of each non-zero length r vector occur exactly once as r consecutive terms of the sequence (think of Fib LFSR internal states)
- number of runs of i consecutive 1s bzw. 0s:
2^{r-i-2}
$i=r-1$: no runs of $1 \mathrm{~s} / 1$ run of 0 s
$i=r: 1$ run of $1 \mathrm{~s} /$ no runs of 0 s
- Autocorrelation of the m-seq. is either -1 or $2^{r}-1$

Thm U9\#1.3. (Shamir's threshold scheme) To construct a ($k ; n$) threshold scheme;
$q=p^{r} ; q>n ; s \in G F(q)$
Pick $f(x)$ polynomial degree $k-1$ (or less) with coefficients in $G F(q) /$ constant term s

Page U9\#5. MDS code \rightarrow secret sharing scheme // rows as distribution rules (Theorem(?): MDS code always yields ($k ; n$) threshold scheme)

Thm U9\#1.10. Perfect secret sharing scheme: information rate ≤ 1

Ex U9\#1.11. $\mathrm{H}(\mathbf{K}) \leq H\left(\mathbf{S}_{i}\right)$

Thm U9\#1.19. Given $[n, m, d]$ code with dual dist. d^{*}, then for any $1 \leq s \leq d^{*}-2$, there exists a $\left(t_{1}, t_{2}, n-s\right)$ ramp scheme with $t_{1}=d^{*}-s-1$ and $t_{2}=n-d+1$

Ex U9\#1.21. Define average information rate $=\frac{n \log _{2}(|K|)}{\log _{2}(|S|)}$: for any $\left(t_{1}, t_{2}, n\right)$ ramp scheme this rate is at most $t_{2}-t_{1}$

Thm U10\#1.5. Let $\mathcal{C} \subseteq Q^{n}$ be a q-ary length n code with M codewords. If $M-1 \geq c \geq q$ then \mathcal{C} is not a c-TA code.

Thm U10\#1.6. A q-ary length $n c$-TA code \mathcal{C} satisfies

$$
|\mathcal{C}| \leq q^{\left\lceil\frac{n}{c}\right\rceil}+2 c-2
$$

Thm U10\#1.7. For $c \geq 2$, a q-ary length n code with min dist. d and $d>n-\left\lceil\frac{n}{c^{2}}\right\rceil$ is a c-TA code.
Page U10\#5. A c-TA code is also a c-frameproof code
Thm U10\#1.11. A $\left[n,\left\lceil\frac{n}{c}\right\rceil, n-\left\lceil\frac{n}{c}\right\rceil+1\right]$ RS code is a c-FP code for $c \geq 2$
Thm U10\#1.12. A q-ary length $n c$-FP code \mathcal{C} with $c<n$ satisfies

$$
|\mathcal{C}| \leq \max \left\{q^{\left\lceil\frac{n}{c}\right\rceil}, t\left(q^{\left\lceil\frac{n}{c}\right\rceil}-1\right)+(c-t)\left(q^{\left\lfloor\frac{n}{c}\right\rfloor}-1\right)\right\}
$$

where t is the remainder when n is divided by c

Ex U10\#1.13. for any $c \geq n$, the set of elements of $\{0,1, \ldots, q-1\}^{n}$ with exactly one non-zero component is a c-FP code with $n(q-1)$ elements and is (see Thm 1.12) the largest possible c-FP code with these parameters

'Bounds

(egs are linear but bounds are not specific to linear codes)

$n \geq$
Security: definitions, Kerckhoff principle, basic ciphers
MDS/linear

Ciphers // encryption
error.corr
codes as

Secret-sharing \& threshold schemes, ramp schemes

Piracy \& c-TA, c-FP\end{cases}\)

Thm U1\#1.8. (Bayes)

$$
\operatorname{Pr}(x \mid y)=\frac{\operatorname{Pr}(y \mid x) \operatorname{Pr}(x)}{\operatorname{Pr}(y)}
$$

$G F\left(p^{m}\right) / P$ an irreducible polynomial order m is a field of size p^{m} i.e. has p^{m} elements - its cyclic group has $p^{m}-1$ elements of which $\phi\left(p^{m}-1\right)$ are primitive.

- m of them are generated by each primitive polynomial and so there are $\frac{\phi\left(p^{m}-1\right)}{m}$ primitive polynomials (multiple roots not allowed for prim polys)
- to detect if an element is primitive, look at the prime divisors k_{1}, k_{2}, \ldots of $p^{m}-1$ and try $\frac{p^{m}-1}{k_{i}}$ to see if $e^{k_{i}}=1$

Ex U1\#2.6. no. of prim. elts of $G F\left(q=p^{m}\right)$ is number of things coprime to $q-1$; no. of prim polys is $\frac{\text { prim elts }}{m}$

Ex U1\#2.7. Char $p \Longrightarrow(a+b)^{p}=a^{p}+b^{p}$

Ex U1\#2.8. $G F\left(q^{n}\right)$ is a vector space over $G F(q)$ (any prime power q)

Thm U2\#2.7. Shannon entropy Any function satisfying Shannon entropy properties (cts, $H_{n+1} \geq$ $\left.H_{n} ; 0 \leq H \leq \log n ; \mathrm{H}(\mathbf{X}, \mathbf{Y})=\mathrm{H}(\mathbf{X})+\mathrm{H}(\mathbf{X} \mid \mathbf{Y})\right)$ is a constant multiple of Shannon entropy

Thm U3\#2.15. (Shannon's Noiseless Coding)

$$
\frac{\mathrm{H}(\mathbf{W})}{\log D} \underbrace{\leq}_{\text {Any u.d }} \bar{n} \underbrace{\leq}_{\text {u.d. must exist }} \frac{\mathrm{H}(\mathbf{W})}{\log D}+1
$$

Ex U4\#2.11. Hamming dist is a metric

Thm U5\#1.1. For the binary symmetric channel, NN decoding is equivalent to max. likelihood decoding

Thm U5\#1.4. NN decoding of a block code with min. dist d can correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

Thm U5\#2.2. Capacity of binary symmetric channel with error prob p :

$$
1+p \log p+(1-p) \log (1-p)
$$

Page U5\#5. If channel has cap. C, its nth extension has cap $n C$

Ex U9\#1.11. $\mathrm{H}(\mathbf{K}) \leq H\left(\mathbf{S}_{i}\right)$

Thm U9\#1.19. Given $[n, m, d]$ code with dual dist. d^{*}, then for any $1 \leq s \leq d^{*}-2$, there exists a $\left(t_{1}, t_{2}, n-s\right)$ ramp scheme with $t_{1}=d^{*}-s-1$ and $t_{2}=n-d+1$

Ex U9\#1.21. Define average information rate $=\frac{n \log _{2}(|K|)}{\log _{2}(|S|)}$: for any $\left(t_{1}, t_{2}, n\right)$ ramp scheme this rate is at most $t_{2}-t_{1}$

Ex U10\#1.13. for any $c \geq n$, the set of elements of $\{0,1, \ldots, q-1\}^{n}$ with exactly one non-zero component is a c-FP code with $n(q-1)$ elements and is (see Thm 1.12) the largest possible c-FP code with these parameters

