Definition of a d.r.v

- \vec{X} : finite set X of possible outcomes // probability distribution over X

Def of a uniform probability dist

each outcome is equally likely \implies $\Pr(\mathbf{X} = x) = \frac{1}{|X|}$

Joint pd of two drvs

Given **X**, **Y**, joint pd has - drv (**X**, **Y**) - set $X \times Y$ - pd Pr(**X** = x,**Y** = y) (typically write Pr(x, y)) - (*independent* \leftarrow Pr(x, y) = Pr(x)Pr(y))

Def. of a conditional distribution

$$(\mathbf{Y}|\mathbf{X}):$$
 $\Pr(y|x) = \frac{\Pr(\mathbf{X} = x, \mathbf{Y} = y)}{\Pr(\mathbf{X} = x)}$

State and use Bayes' thm

$$\Pr(x|y) = \frac{\Pr(y|x)\Pr(x)}{\Pr(y)}$$

Definition of a finite field

Field: set \mathbb{F} plus +, ×;

 $(\mathbb{F}, +)$ abelian, identity 0

 $(\mathbb{F} \setminus \{0\}, \times)$ abelian, identity 1

distributive $\times/+$ and $+/\times$

 \mathbb{F} finite \implies finite field

For each prime power q there is a unique finite field order q

(up to isomorphism)

Recall and use basic properties of finite fields

 $q = p^{n} \qquad (GF(q)*, \times) \text{ is cyclic} \\ d \text{ divides } n \implies \text{ unique subfield order } p^{d} \\ \text{no other subfields} \\ \text{field has char } p \\ \text{group } A \text{ of automorphisms of field is cyclic, } |A| = n, \ a \rightarrow a^{p} \text{ (Frobenius automorphism)} \end{cases}$

Construct $GF(q^n)$ using an irreducible polynomial over GF(q)

Use $x^{k+1} + a_k x^k \dots + a_0 = 0 \implies x^{k+1} = -a_k x^k \dots - a_0$; sub in as necessary

Perform polynomial interpolation (in GF(q)[x])

Set of simultaneous equations

(Or Lagrange interp formula)

Defn of Shannon entropy of a drv

$$\mathbf{H}(\mathbf{X}) = -\sum_{i=1}^{n} p_i \log p_i$$

Compute the Shannon entropy of a drv

per formula

Fundamental Lemma

Given $\sum_{i} p_i = \sum_{i} q_i = 1$ (two pds):

$$-\sum_{i} p_i \log p_i \le -\sum_{i} p_i \log q_i;$$

equality $\iff p_i = q_i$ for all i

Joint entropy of two drvs \leq sum of their entropies; prove via Fundamental Lemma

$$H(\mathbf{X}, \mathbf{Y}) \le H(\mathbf{X}) + H(\mathbf{Y})$$

def of

 $H(\mathbf{X}|\mathbf{Y} = y), H(\mathbf{X}|\mathbf{Y})$

$$H(\mathbf{X}|\mathbf{Y} = y) = -\sum_{x} \Pr(x|y) \log \Pr(x|y)$$

"uncertainty in the outcome of \mathbf{X} once we know that the outcome of \mathbf{Y} is y"

Compute

 $H(\mathbf{X}|\mathbf{Y} = y), H(\mathbf{X}|\mathbf{Y}),$ given \mathbf{X}, \mathbf{Y}

$$H(\mathbf{X}|\mathbf{Y}) = \sum_{y} \Pr(y) H(\mathbf{X}|\mathbf{Y} = y)$$

"average amount of uncertainty about the outcome of \mathbf{X} remaining once outcome of \mathbf{Y} is known"

State and prove

 $H(\mathbf{X}, \mathbf{Y}) = H(\mathbf{Y}) + H(\mathbf{X}|\mathbf{Y})$ expand out definition

State and prove

 $H(\mathbf{X}|\mathbf{Y}) \leq H(\mathbf{X})$ equality $\iff \mathbf{X}, \mathbf{Y}$ independent

Define $I(\mathbf{X}|\mathbf{Y})$ and compute it

 $I(\mathbf{X}|\mathbf{Y}) = H(\mathbf{X}) - H(\mathbf{X}|\mathbf{Y})$

"reduction in uncertainty associated with ${\bf X}$ once we know the value of ${\bf Y}$ "

Show that $\mathbf{H}(X|Y) \ge 0$

equality $\iff \mathbf{X}, \mathbf{Y}$ independent

Follows from prev. unit

show that $I(\mathbf{X}|\mathbf{Y}) = I(\mathbf{Y}|\mathbf{X})$

hence "mutual" information

Defn of a discrete memoryless source

- Finite source alphabet, symbols called words
- Sequence $\mathbf{W}_0, \ldots, \mathbf{W}_i$
- $\mathbf{Pr}(\mathbf{W}_j = w_i) = p_i$

 \implies the \mathbf{W}_i are independent, identically distributed drvs - entropy of source: $\mathbf{H}(\mathbf{W})$

Defns of

instantaneous	no encoded word is a prefix of any other encoded word	
uniquely decipherable	for any sequence S , at most one source message can be encoded	
	as S	
$compact\ encoding$	u.d. with smallest possible expected encoded word length	

Kraft's inequality; McMillan's inequality

Kraft: (existence of instantaneous encoding)

McMillan: (uniquely decipherable) $\sum_{i=1}^{m} D^{-n_i} \le 1$ $\sum_{i=1}^{m} D^{-n_i} \le 1$

Note identical!

Every instantaneous code is uniquely decipherable, i.e. [TODO!]

Shannon's noiseless coding theorem

W a discrete memoryless source

1.

$$\bar{n} \ge \frac{\mathrm{H}(\mathbf{W})}{\log D}$$

2. There exists u.d. encoding with

$$\frac{\mathrm{H}(\mathbf{W})}{\log D} + 1 \ge \bar{n}$$

Perform Huffman coding

- Sort source words by probability
- Put as leaves of tree; build tree by merging least probable nodes

Huffman coding produces compact instantaneous encodings

(not unique) (prove by induction: base case 2 words)

Defs of ideal observer decoding; max. likelihood decoding

Given r_j , decode as t_i s.t.

Ideal observer:max. $Pr(t_i|r_j)$ Max. likelihood:max. $Pr(r_j|t_i)$ Ideal observer requires a priori message probs; max likelihood does not

Def of binary symmetric channel

input, output alphabets both $\{0, 1\}$

flip probability p < 0.5

Calculate Hamming dists

Q a finite set; list of elements of Q a codeword;

 ${\mathcal C}$ a set of codewords a code;

codewords all same length \implies block code; $Q = \{0, 1\}$ binary code

Hamming distance $d(\mathbf{w}, \mathbf{u}) = |\{i \in \{1, 2, \dots, n\} | w_i \neq u_i\}$

Prove properties of Hamming dists

e.g.

1. $d(\mathbf{u}, \mathbf{v}) \ge 0$, equality $\iff \mathbf{u} = \mathbf{v}$ 2. $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$ 3. $d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w}) \ge d(\mathbf{u}, \mathbf{w})$ triangle inequality

Unit 5 Learning Outcomes

In binary sym. channel, NN decoding is equivalent to max. likelihood

NN = choose t_i minimising $d(r_j, t_i)$ (recall $p < \frac{1}{2}$ by definition)

Min. dist of a block code

Largest d s.t. for any $\mathbf{u}, \mathbf{v} \in \mathcal{C}, d(\mathbf{u}, \mathbf{v}) \ge d$ $\implies (n, M, d)$ -code

Connection between min. dist of a code & error-correcting properties

Max. errors corrected by NN decoding of block code \mathcal{C} with min. dist d:

$$\left\lfloor \frac{d-1}{2} \right\rfloor$$

(see also Ex 1.5)

Capacity of a noisy channel

capacity: $\sup_{\mathbf{R}} I(\mathbf{T}|\mathbf{R})$

"the greatest possible amount of information that the channel output gives about input to the channel"

Compute capacity of binary sym. channel

$$1 + p \log p + (1 - p) \log (1 - p)$$

(use formula, max. per derivative)

nth extension of channel with cap. C has cap. nC

Shannon's Noisy Coding Thm

rate R of a binary code of length n with M codewords: $\frac{1}{n} \log_2 M$

binary sym. channel with 0 < R < C capacity

 $\epsilon > 0$, sequence of integers M_0, M_1, M_2, \ldots with $1 \le M_i \le 2^{Ri}$:

there is some integer N_0 and C_0, C_1, \ldots s.t. C_i has length i, M_i codewords, max. error prob $\leq \epsilon$ Basically: if you make your codes big enough, you can make the error as small as you want Proof (sketch): TODO

$$\boxed{\text{msg}} \xrightarrow{\mathbf{m}G} \text{codeword} \xrightarrow{\text{noise}} \text{rec'd word} \xrightarrow{\text{NN}} \text{codeword'} \rightarrow \boxed{\text{msg'}}$$

Def. of an [n, k, d] code

Square brackets $[] \implies$ linear

 \implies vector space over alphabet $Q (\implies Q \text{ is a } field)$

dimension of vector space: k n length of code // d min. dist

Use vector space properties to prove simple results

linear code: all linear combos of any words are also words

Def. of linear code as gen. mat + par mat

Gen mat: rows form basis

$\mathbf{Gen} \to \mathbf{par} \ \mathbf{mat}$

Par mat has rank n - k; rows are orthogonal to all codewords

Systematic form $(\mathbb{I}_k|A)$ has par mat $(-A^T|\mathbb{I}_{n-k})$

More generally require orthogonality

Deduce dimension, min. dist., etc. from gen/par mats

Every vector space includes $\mathbf{0}$. Hamming weight of word = dist from 0. min weight of code = smallest Hamming weight = min dist

min dist = min # lin. ind. cols in parmat $\implies 1 \iff$ all-zero col; 2 \iff 1 col is multiple of another (equal in binary) ...

Syndrome decoding

- any word **c** in code has $H\mathbf{c}^T = 0$ for par mat H (def)

- $\mathbf{r} = \mathbf{c} + \mathbf{e}$ received, $H\mathbf{r}^T = H\mathbf{e}^T (1 \times (n-k))$ is **syndrome** of \mathbf{r}

- divide vector space into cosets by syndrome (1 codeword per coset) // sort cosets by Hamming weight (=coset leader min weight)

- decode by matching syndrome with coset leader

= fast implementation of NN decoding (with precomputation phase)

★ : Observation: **e** has weight (0 or) 1, then the syndrome of $\mathbf{r} = \text{HeT}$ is just a scalar multiple of a column of H, say col *j*: flip *j*th bit (also applies to non-binary...)

(NB: if we /can/ guaranteed decode m errors then there must be a unique coset leader \leftarrow multiple coset leaders give different results)

Dual code

Take par mat and use as gen mat

Dual of an [n, k] code is [n, n - k] code. **Orthogonal complement**: dual code is orthogonal to code

Find dual codes

 $Gen \leftrightarrow par$

Sphere-packing bound

$$A_q(n,d) \le \frac{q^n}{\sum_{i=0}^{\left\lfloor \frac{d-1}{2} \right\rfloor} {\binom{n}{i}} (q-1)^i}$$

What is it? $A_q(n, d)$ is largest possible M with q-ary (n, M, d) code, i.e. largest possible number of codewords in an (n, d) code.

Def of perfect code

Sphere-packing bound met with equality

 $(\implies d \text{ odd})$

Hamming codes; binary Hamming codes are perfect

Par mat is all non-zero binary vectors of length k.

Capable of correcting single error

Can be generalised to q-ary Hamming codes; still perfect

$$\mathcal{H}_{2,r}$$
 is a $[\underbrace{2^r-1}_{q,r}, n-r, 3]$ code
divide out scalar multiples $\mathcal{H}_{q,r}$ is a $[\underbrace{\frac{q^r-1}_{q-1}}_{n}, n-r, 3]$ code

Singleton bound

$$A_q(n,d) \le q^{n-d+1}$$

equality \implies maximum-distance separable = MDS code

RS codes

Take n elements of a q-ary alphabet, $q \ge n$. Take polynomials deg $\le k$ for some $k \le n$; each codeword is the result of evaluating a polynomial at the n elements

RS codes are MDS codes

[n, k, n - k + 1] codes. Show that

- (1) linear [linear combo of codewords is also a codeword]
- (2) $d \ge n k + 1$ (by polynomial interp.)
- (3) singleton bound $d \le n k + 1 \implies d = n k + 1$
- (in fact, they are only non-trivial MDS codes known) this is not quite true as e.g. 2.13 is not RS!

✓✓<

 $\underline{\mathbf{Bounds}} \ (\mathrm{U6} \ \& \ \mathrm{U7}):$

Bounds on code size:

Sphere-packing: $A_q \leq \dots$ perfect codes meet : e.g. Hamming codes

Gilbert-Varshamov: $A_q \geq \ldots$

Singleton: $A_q \leq \dots MDS$ codes: e.g. R-S codes

 \rightsquigarrow Asymptotic singleton $\alpha_q \left(\frac{n}{d} \rightarrow \right)$

Bound on code length:

Griesmer : simplex codes

A linear code C has minimum Hamming distance d if and only if its parity check matrix H has a set of d linearly dependent columns but no set of d-1 linearly dependent columns.

Reminder: 2 columns are l.i. in binary field \iff they are identical (nothing so simple for 3)

State + prove Gilbert-Varshamov bound

$$A_q(n,d) \ge \frac{q^n}{\sum_{i=0}^{d-1} {n \choose i} (q-1)^i}$$

Proof: count elements distance max d - 1 from a given codeword

Griesmer bound

$$n \ge \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil$$

Proof based on residual codes

Puncturing a code

Delete certain coordinates and then collapse code to unique codewords

Find punctured code

support of a codeword **c** is its nonzero coordinates

 $\mathit{residual}$ code wrt **c**: puncture code on support of **c**

don't forget to remove duplicates

result is linear code

Describe simplex codes

duals of Hamming codes. Take r-dimensional simplex code over GF(q):

all non-zero codewords have same weight q^{r-1}

satisfies Griesmer bound with equality

Authentication, data integrity, confidentiality for data security

auth: who am I really talking tointegrity: msg didn't get corruptedconfidentiality: eavesdropper can't learn msg

Symmetric encryption

Common key k

Encryption algo Enc s.t. c = Enc(k, m) // Matching Dec

Require Dec(k, Enc(k, m)) = m

Kerckhoff's principle

Assume eavesdropper knows everything except k: key space, message space, ciphertext space, Enc, Dec.

Better than "security through obscurity" principle

Caesar cipher: why insecure

addition mod 26:

small key space; many message properties preserved

Substitution cipher: why insecure

frequency analysis!

Describe perfect secrecy

for all $m \in M, c \in C$, $\Pr(m|c) = \Pr(m)$

"knowing the ciphertext does not help eavesdropper guess message"

Prove one-time pad provides perfect secrecy

|M| = |C| = |K|

Symm. scheme with perfect secrecy requires $|K| \ge |M|$

Means scheme is expensive and often not practical

Defns of Galois / Fib LFSRs; understand diags

Stream ciphers.

$$a_4 = a_3 + a_2 + a_1 + a_0 \implies P : x^4 + x^3 + x^2 + x + 1$$

Prove that r-bit binary LFSR has max output seq. $2^r - 1$

If it gets to 0 it gets stuck

m-sequence

output sequence of length $2^r - 1$ (m for maximum)

Use primitive poly over GF(2) to construct Galois LFSR

1st & last are always 1; rightmost bit is always fed back, corresponds to last bit, leftmost bit

 $1 + x^2 + x^5$

TODO check!

NB Fib LFSR by recurrence relation // set up from poly

Set of possible sequences output by max period r-bit LFSR is vector space dim. r

and therefore a linear code

Definition of a (k; n) threshold scheme

n players

Any k or more players can recover secret

No k-1 or fewer players learns anything at all (ie all possibilities EQUALLY LIKELY)

Shamir scheme

 $q = p^r; q > n; s \in GF(q)$

Pick f(x) polynomial degree k-1 (or less) with coefficients in GF(q) / constant term s

Recover secret by polynomial interp.

Linear secret-sharing scheme

Vandermonde matrix: geometric progression. Property: any k rows are lin. independent

 $M: (n+1) \times k$: contains powers of elements of GF(q)

 $\mathbf{r} = (s \ r_1 \ \dots \ r_{k-1})^T \ (r_i \text{ chosen at random}); \ M\mathbf{r} \text{ is secret} + \text{shares}$

Given any k players, their combo is lin. independent; can recover secret;

k-1 players + target: likewise lin. independent \rightarrow can't recover secret

NB: Any scheme that can be constructed from matrix is a *linear* secret-sharing scheme; efficient to describe, build, and use

Shamir vs linear: shares are same! (VdM as polynomials...)

Link between Shamir and RS codes

Set of potential vectors is the codewords of an RS code

[n+1, k, n+2-k] RS code

Can use any MDS code over GF(q), q > n. Rows are *distribution rules*; code (matrix) is published in advance but only dealer knows which row is distributed this time

Information rate of a secret-sharing scheme

$$\min_{i} \frac{\log_2(|K|)}{\log_2(|S_i|)}$$

 S_i is set of possible shares for player i

Shamir: rate 1

A perfect secret-sharing scheme has information rate ≤ 1

Size of share space for each player must be at least as big as the secret space

Rate = 1: scheme is ideal

(t_1, t_2, n) ramp scheme

up to t_1 : no information

 t_2 or more: full information

 $t_1 \rightarrow t_2$: maybe some information $^{-}_{-}('')_/^{-}$

Construct ramp scheme from error-correcting code

Words of code are distribution rules; last s coordinates are secret

Define *c*-TA, *c*-FP codes

Want to track piracy;

code // NN-decoding

Assume pirated content is generated by coalitions of size c

c-TA: can always find one of the pirates *c*-FP: **weaker**: can't necessarily find pirate, but can't frame anyone else ("frameproof")

Construct them from error-correcting codes

Any q-ary, length n code min. dist. $d, d > n - \left\lceil \frac{n}{c^2} \right\rceil$ is a c-TA code $(c \ge 2)$

(e.g. a RS code)

Prove that every c-TA code is a c-FP code

"if a set S of up to c pirates could frame some user $\mathbf{y} \in \mathcal{C}$, \mathbf{y} is its own NN \implies lies in S: S cannot frame any users whose words are not in S"

Interested in c-FP codes that are larger than the largest c-TA codes (else why bother), e.g.

 $[n, \left\lceil \frac{n}{c} \right\rceil, n - \left\lceil \frac{n}{c} \right\rceil + 1] \text{ RS code is a } c\text{-FP code } (c \ge 2): q^{\left\lceil \frac{n}{c} \right\rceil} \text{ codewords } \ge q^{\left\lceil \frac{n}{c^2} \right\rceil}$

Prove whether given codes satisfy definitions to be c-TA, c-FP

Thm U1#1.8. (Bayes)

$$\Pr(x|y) = \frac{\Pr(y|x)\Pr(x)}{\Pr(y)}$$

Thm U1#2.5. For every prime power $q = p^n$ there exists a unique field GF(q) with q elements, with:

- $(GF(q)^*, \times)$ is a cyclic group (thus there is α "primitive element" of $GF(q)^*$)
- d divides $n \implies GF(q)$ has unique subfield order p^d ; these are the only subfields of GF(q) $(GF(p) \cong \mathbb{Z}_p)$
- $a \in GF(q)$: pa = 0 ("characteristic p")
- group of automorphisms of GF(q) is cyclic order n, generated by $a \to a^p$ ("Frobenius automorphism")

Ex U1#2.3. \mathbb{Z}_n is a field $\iff n$ is prime

Ex U1#2.6. no. of prim. elts of $GF(q = p^m)$ is number of things coprime to q - 1; no. of prim polys is $\frac{\text{prim elts}}{m}$

Ex U1#2.7. Char $p \implies (a+b)^p = a^p + b^p$

Ex U1#2.8. $GF(q^n)$ is a vector space over GF(q) (any prime power q)

Page U1#7.

• Unique polynomial factorisations

Thm U2#1.1. (Polynomial interp.) $(x_i, y_i) \in GF(q = p^n)^2$, for i = 0, 1, ..., n; no duplicate x_i s: \implies there is a unique polynomial $f \in GF(q)[x]$ with $y_i = f(x_i)$ for all i

Ex U2#1.3. Lagrange interp.

$$f(x) = \sum_{i=0}^{n} y_i f_i(x)$$

where

$$f_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$

Thm U2#2.7. Shannon entropy $(H(\mathbf{X}) = -\sum_i p_i \log p_i)$

- $H(\mathbf{X})$ is a continuous function of the probabilities
- If \mathbf{Y}_n is uniform rv with *n* outcomes, $H(\mathbf{Y}_{n+1}) > H(\mathbf{Y})$
- Z with two possible outcomes;

$$H(\mathbf{Z}, \mathbf{X}) = H(\mathbf{Z}) - \Pr(z_1) \sum_{i} \Pr(x_i | z_1) \log \Pr(x_i | z_1) - \Pr(z_2) \sum_{i} \Pr(x_i | z_2) \log \Pr(x_i | z_2)$$

- $H(\mathbf{X}) \ge 0$; equality \iff only one possible outcome
- $H(\mathbf{X}) \leq \log n$; equality $\iff \mathbf{X}$ has uniform dist
- any function satisfying these properties is (constant multiple of) Shannon entropy!

Lemma U2#2.11. (Fundamental Lemma) $\sum_i p_i = \sum_i q_i = 1$ (p_i, q_i positive real numbers):

$$-\sum_{i} p_i \log p_i \le -\sum_{i} p_i \log q_i$$

Proof using $\ln x \le x - 1$

Thm U2#2.12.

 $H(\mathbf{X}, \mathbf{Y}) \le H(\mathbf{X}) + H(\mathbf{Y}),$

equality $\iff \mathbf{X}, \mathbf{Y}$ independent

Ex U2#2.18. H(X|X) = 0

Ex U2#2.19. \mathbf{X}, \mathbf{Y} independent \implies $H(\mathbf{X}|\mathbf{Y}) = H(\mathbf{X})$

Thm U2#2.20.

$$H(\mathbf{X}, \mathbf{Y}) = H(\mathbf{Y}) + H(\mathbf{X}|\mathbf{Y})$$

Cor. U2#2.21. $H(X|Y) \le H(X)$, equality $\iff X, Y$ independent

Thm U3#1.2. $I(\mathbf{X}|\mathbf{Y}) \ge 0$, equality $\iff \mathbf{X}, \mathbf{Y}$ independent

Ex U5#3.8.

$$H(\mathbf{U}|\mathbf{V}) \le H(\mathbf{U}|\mathbf{V},\mathbf{W}) + H(\mathbf{W})$$

Thm U3#1.3. $I(\mathbf{X}|\mathbf{Y}) = I(\mathbf{Y}|\mathbf{X})$

Thm U3#2.12. (Kraft) Alphabet $|\Sigma| = D$ Instantaneous encoding with word lengths $n_i \iff$

$$\sum_{i=1}^{m} D^{-n_i} \le 1$$

Thm U3#2.13. McMillan Uniquely decipherable encoding \iff

$$\sum_{i=1}^{m} D^{-n_i} \le 1$$

Prove "if Kraft then exists" and "if exists then McMillan" and other directions follow by "if instantaneous then u.d."

Thm U3#2.15. (Shannon's Noiseless Coding) W a discrete memoryless source with alphabet W of w_i with probes p_i , entropy $H(W) = -\sum_i p_i \log p_i$: For any uniquely decipherable encoding of W over alphabet Σ , $|\Sigma| = D$, into codewords of lengths n_i :

$$\frac{\mathrm{H}(\mathbf{W})}{\log D} \underbrace{\leq}_{\mathrm{Any \ u.d}} \bar{n} \underbrace{\leq}_{\mathrm{u.d. \ must \ exist}} \frac{\mathrm{H}(\mathbf{W})}{\log D} + 1$$

Page U4#4. Huffman coding is a compact encoding

Ex U4#2.11. Hamming distance properties: 1. $d(\mathbf{u}, \mathbf{v}) \ge 0$, equality $\iff \mathbf{u} = \mathbf{v}$ 2. $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$ 3. $d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w}) \ge d(\mathbf{u}, \mathbf{w})$ triangle inequality

Thm U5#1.1. For the binary symmetric channel, NN decoding is equivalent to max. likelihood decoding

Thm U5#1.4. NN decoding of a block code with min. dist d can correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors

Thm U5#2.2. Capacity of binary symmetric channel with error prob *p*:

$$1 + p \log p + (1 - p) \log (1 - p)$$

Page U5#5. If channel has cap. C, its *n*th extension has cap nC

Thm U5#3.4. (Shannon's Noisy Coding Thm) For a binary symm. channel with cap C and rate 0 < R < C. Given $\epsilon > 0$, sequence of integers M_0, M_1, M_2, \ldots with $1 \le M_i \le 2^{Ri}$: there is some integer N_0 and sequence C_0, C_1, \ldots s.t. C_i has length i, M_i codewords, max. error prob

 $\leq \epsilon$ for all $i \geq N_0$

Basically: if you make your codes big enough, you can make the error as small as you want

Thm U5#3.5. (Chebyshev) For any real a > 0

$$Pr(|\mathbf{X} - E(\mathbf{X})| \ge a) \le \frac{\operatorname{var}(\mathbf{X})}{a^2}$$

Lemma U5#3.6. $0 \le p \le \frac{1}{2}$:

$$\sum_{r=0}^{pn\rfloor} \binom{n}{r} \le 2^{nh(p)}$$

(where $h(p) = -p \log p - (1-p) \log (1-p)$) To prove, assume pn integer; write $1 = (p + (1-p))^n$; do magic

Thm U5#3.7. *C* capacity of discrete memoryless channel. R > C: <u>no sequence of codes</u> C^i with C^i having length *i* and 2^{nR} codewords with error probability tending to 0 as $n \to \infty$

Lemma U5#3.9. (Fano) X, Y drvs with input set = output set X = Y; let Z:

$$\mathbf{Z} = \begin{cases} 0 & \mathbf{X} = \mathbf{Y} \\ 1 & \mathbf{X} \neq \mathbf{Y} \end{cases} \approx (\text{decoding error})$$

Then:

$$H(\mathbf{X}|\mathbf{Y}) \le H(\mathbf{Z}) + \Pr(\mathbf{Z}=1)\log(|X|-1)$$

Ex U6#1.5. Min. weight of a linear code is its min. dist

Ex U6#1.6. C a linear code, G its gen mat: elementary row ops, permuting columns, multiplying columns by nonzero scalars $\implies C'$ equivalent to C

Ex U6#1.7. Every [n, k, d] code is equivalent [but not equal!] to a code with gen mat in form $(\mathbb{I}_k|A)$

Ex U6#1.10. *H* is par mat \implies codewords are all **c** s.t. $H\mathbf{c}^t = 0$

Ex U6#1.11. If gen mat is $(\mathbb{I}_k|A)$ then par mat is $(-A^T|\mathbb{I}_{n-k})$

Ex U6#1.14. G gen mat for code is par mat for dual code

Ex U6#1.15. Dual of an [n, k] code is an [n, n-k] code

Thm U6#2.1. (Sphere-packing)

$$A_q(n,d) \le \frac{q^n}{\sum_{i=0}^{\left\lfloor \frac{d-1}{2} \right\rfloor} {n \choose i} (q-1)^i}$$

Page U6#8. Any 2 columns lin. ind \implies no word has weight ≤ 2

Thm U6#2.5. Binary Hamming codes are perfect

Ex U6#2.6. Ron-binary Hamming codes too

Thm U6#2.10. Singleton Bound

 $A_q(n,d) \le q^{n-d+1}$

Cor. U6#2.11. For C an [n, k, d] code over GF(q): dim $C \le n - d + 1$

Thm U6#2.16. RS codes are [n, k, n - k + 1] codes, i.e. MDS codes

Thm U7#1.1. (Gilbert-Varshamov)

$$A_q(n,d) \ge \frac{q^n}{\sum_{i=0}^{d-1} {n \choose i} (q-1)^i}$$

Thm U7#2.1. (Asymptotic singleton bound) define $\alpha_q(\delta)$ as asymptotic limit of A_q , with δ the limit of the relative distance $\frac{d}{n}$. Then

$$\alpha_q(\delta) \le 1 - \delta$$

Lemma U7#3.2. Residual code obtained by puncturing on the support of some codeword weight w is an [n - w, k - 1, d'] code, with $d' \ge d - w + \left\lceil \frac{w}{q} \right\rceil$

Cor. U7#3.3. If code is [n, k, d] code and punctured on codeword weight d, residual code is [n - d, k - 1, d'] code with $d' \ge \left\lceil \frac{d}{q} \right\rceil$

Thm U7#3.4. (Griesmer)

$$n \geq \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil$$

Thm U7#3.7. Every non-zero codeword of the *r*-dimensional simplex code over GF(q) has weight q^{r-1} ("constant weight code")

Ex U7#3.8. These codes satisfy the Griesmer bound with equality

Thm U8#1.3. For a symmetric encryption scheme with |K| = |C| = |M|: perfect secrecy \iff - each key is chosen with probability $\frac{1}{|K|}$

- every $m \in M, c \in C,$ there is unique key K with $\operatorname{Enc}(k,m) = c$

Thm U8#2.2. Let π be the period of the sequence output by an *r*-bit LFSR: $\pi \leq 2^r - 1$

Thm U8#2.4. LFSR with taps corresponding to degree r primitive polynomial f with $f(\theta) = 0$: The set of sequences output by the LFSR form an r-dimensional vector space

 \implies and can be treated as a linear code

Page U8#7. Specifically, a **simplex** code (see immediately from fib LFSR) **m** as initial state (r bits), m-sequence as codeword ($2^r - 1$ bits)

Ex U8#2.6. Fib LFSR satisfies recurrence relation // every m-sequence output by a Galois LFSR can also be generated by a Fib LFSR

Thm U8#2.8. Properties of m-sequence output by r-bit LFSR:

- coordinates of each non-zero length r vector occur exactly once as r consecutive terms of the sequence (think of Fib LFSR internal states)

- number of runs of i consecutive 1s bzw. 0s:

 2^{r-i-2}

i = r - 1: no runs of 1s / 1 run of 0s

i = r: 1 run of 1s / no runs of 0s

- Autocorrelation of the m-seq. is either -1 or $2^r - 1$

Thm U9#1.3. (Shamir's threshold scheme) To construct a (k; n) threshold scheme; $q = p^r; q > n; s \in GF(q)$

Pick f(x) polynomial degree k-1 (or less) with coefficients in GF(q) / constant term s

Page U9#5. MDS code \rightarrow secret sharing scheme // rows as distribution rules (Theorem(?): MDS code always yields (k; n) threshold scheme)

Thm U9#1.10. Perfect secret sharing scheme: information rate ≤ 1

Ex U9#1.11. $H(K) \le H(S_i)$

Thm U9#1.19. Given [n, m, d] code with dual dist. d^* , then for any $1 \le s \le d^* - 2$, there exists a $(t_1, t_2, n - s)$ ramp scheme with $t_1 = d^* - s - 1$ and $t_2 = n - d + 1$

Ex U9#1.21. Define average information rate = $\frac{n \log_2(|K|)}{\log_2(|S|)}$: for any (t_1, t_2, n) ramp scheme this rate is at most $t_2 - t_1$

Thm U10#1.5. Let $C \subseteq Q^n$ be a q-ary length n code with M codewords. If $M - 1 \ge c \ge q$ then C is not a c-TA code.

Thm U10#1.6. A q-ary length n c-TA code C satisfies

$$|\mathcal{C}| \le q^{\left\lceil \frac{n}{c} \right\rceil} + 2c - 2$$

Thm U10#1.7. For $c \ge 2$, a q-ary length n code with min dist. d and $d > n - \lfloor \frac{n}{c^2} \rfloor$ is a c-TA code.

Page U10#5. A c-TA code is also a c-frameproof code

Thm U10#1.11. A $[n, \left\lceil \frac{n}{c} \right\rceil, n - \left\lceil \frac{n}{c} \right\rceil + 1]$ RS code is a *c*-FP code for $c \ge 2$

Thm U10#1.12. A q-ary length n c-FP code C with c < n satisfies

$$|\mathcal{C}| \le \max\{q^{\left\lfloor \frac{n}{c} \right\rfloor}, t(q^{\left\lfloor \frac{n}{c} \right\rfloor} - 1) + (c - t)(q^{\left\lfloor \frac{n}{c} \right\rfloor} - 1)\}$$

where t is the remainder when n is divided by c

Ex U10#1.13. for any $c \ge n$, the set of elements of $\{0, 1, \ldots, q-1\}^n$ with exactly one non-zero component is a *c*-FP code with n(q-1) elements and is (see Thm 1.12) the largest possible *c*-FP code with these parameters

	Probability:	d.r.v. \rightarrow distribution	, joint, conditional, Bayes	
		entropy: def, propert	ies, conditional, joint etc.;	
	(fundamental	from U5: Chebyshev,	Fano, ${}^{n}C_{r}$ lemma	
	lemma)	mutual information		
	Channel encoding	instantaneous, u.d.	, noiseless, noisy \Downarrow	
	$\textit{Huffman} \leftarrow$	$\xrightarrow{\longrightarrow \text{ compact}} existence, inequality$	Shannon thms ies	
	capacity, rate,	\rightarrow (noisy) decoding	g: ideal obs vs max likelih	ood
		as channel extension		
,	Block codes	Hamming dist, min.	dist, error corr., puncturin	ng, support, residual code
	Ų			
	Linear codes: g	$en/par mats \implies propert$		
/	4	$\iff \text{dual codes} \longrightarrow \text{orthogonal fun}$ $\bigstar \text{Syndrome decoding} \bigstar$		= over a vector space = over a field: see GF content
	<u>^</u>			
	^	\checkmark Use of vector space f		
	si	izes, lin. independence, con	mbo properties etc.	a polys in GFs
Bo	ounds			
(eg	s are linear but bou	inds are $\int e^{gs} =$	Hamming	
not	specific to linear co	odes)	0. 1	
A_q	≤ <		Simplex	
	≥ ▼		R-S as	\rightarrow as linear codes
n	\geq			<i>v properties</i>
	Security: definitio	ns, Kerckhoff principle, ba	asic ciphers	
	(Ciphers // encryption	Perfect secrecy	
	MDS/linear (S	ecret-sharing	threshold schemes,	camp schemes
	error.corr { F	' iracy	c-TA, c-FP	
	codes as			

Thm U1#1.8. (Bayes)

$$\Pr(x|y) = \frac{\Pr(y|x)\Pr(x)}{\Pr(y)}$$

 $GF(p^m)/P$ an irreducible polynomial order m is a field of size p^m i.e. has p^m elements

- its cyclic group has $p^m - 1$ elements of which $\phi(p^m - 1)$ are primitive.

- *m* of them are generated by each primitive polynomial and so there are $\frac{\phi(p^m-1)}{m}$ primitive polynomials (multiple roots not allowed for prim polys)

- to detect if an element is primitive, look at the prime divisors k_1, k_2, \ldots of $p^m - 1$ and try $\frac{p^m - 1}{k_i}$ to see if $e^{k_i} = 1$

Ex U1#2.6. no. of prim. elts of $GF(q = p^m)$ is number of things coprime to q - 1; no. of prim polys is $\frac{\text{prim elts}}{m}$

Ex U1#2.7. Char $p \implies (a+b)^p = a^p + b^p$

Ex U1#2.8. $GF(q^n)$ is a vector space over GF(q) (any prime power q)

Thm U2#2.7. Shannon entropy Any function satisfying Shannon entropy properties (cts, $H_{n+1} \ge H_n$; $0 \le H \le \log n$; $H(\mathbf{X}, \mathbf{Y}) = H(\mathbf{X}) + H(\mathbf{X}|\mathbf{Y})$) is a constant multiple of Shannon entropy

Thm U3#2.15. (Shannon's Noiseless Coding)

$$\frac{\mathrm{H}(\mathbf{W})}{\log D} \underbrace{\leq}_{\mathrm{Any \ u.d}} \bar{n} \underbrace{\leq}_{\mathrm{u.d. \ must \ exist}} \frac{\mathrm{H}(\mathbf{W})}{\log D} + 1$$

Ex U4#2.11. Hamming dist is a metric

Thm U5#1.1. For the binary symmetric channel, NN decoding is equivalent to max. likelihood decoding

Thm U5#1.4. NN decoding of a block code with min. dist d can correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors

Thm U5#2.2. Capacity of binary symmetric channel with error prob *p*:

$$1 + p \log p + (1 - p) \log (1 - p)$$

Page U5#5. If channel has cap. C, its *n*th extension has cap nC

Ex U9#1.11. $H(K) \le H(S_i)$

Thm U9#1.19. Given [n, m, d] code with dual dist. d^* , then for any $1 \le s \le d^* - 2$, there exists a $(t_1, t_2, n - s)$ ramp scheme with $t_1 = d^* - s - 1$ and $t_2 = n - d + 1$

Ex U9#1.21. Define average information rate = $\frac{n \log_2(|K|)}{\log_2(|S|)}$: for any (t_1, t_2, n) ramp scheme this rate is at most $t_2 - t_1$

Ex U10#1.13. for any $c \ge n$, the set of elements of $\{0, 1, \ldots, q-1\}^n$ with exactly one non-zero component is a *c*-FP code with n(q-1) elements and is (see Thm 1.12) the largest possible *c*-FP code with these parameters