
Walk

Path

Circuit

(Cycle)

Graph G, undirected // Digraph D
{G,D} = (V ,E) // V ,E finite // e ∈ E as ij ∶ i, j ∈ V ⟸ ordered
pair for D not for G
Empty E = ∅ (all v ∈ V are isolated); Complete Kn
Sub(di)graph V ′ ⊆ V ,E′ ⊆ E // Spanning subgraph V ′ = V

Edges: have endvertices // may have weights technically a function
Adjacent vertices are (in-/out-)neighbours via their incident edges
Connected graph // Connected component ⟹ kG # conn. cpts

Adjacency matrix (symmetric for graph, not for digraph) or incidence list (pair of incidence lists for digraphs) or
S − T matrix for bipartite graph

Tree ⟺ connected, has no circuits; Forest of trees; Leaves have degree 1
Tree in digraph may be rooted at r ⟹ everything except r has in-degree 1
Cuts: �(U,W ) is edges with one end in U and the other inW . In G, �(U,W ) = �(W ,U ) but not in D.
IF V = U ∪W : we have a cut: write �+(U ), �−(U ) = �(U,W ), �(W ,U ) [digraphs] NB: U,W non-empty, disjoint
in a digraph:
U ⊂ V separates v from w: v ∈ U,w ∉ U

(s, t)-cut is a cut �+(U ) where U separates s from t

in a graph:
U ⊂ V separates v from w: v XOR w ∈ U

(s, t)-cut is �(S) for some subset S of the vertices separating s and t. Capacity of an (s, t)-cut is sum of caps on
edges in the cut
Digraphs only: Source, sink
Flows Network = D = (V ,E) with specified s, t, with capacities cij ≥ 0. All vertices other than s, t are
intermediate. Flow f : f (e) = fij s.t.

∑

i∶ij∈E
fij =

∑

k∶jk∈E
fjk

at intermediate vertices = conservation equations.
In undirected graph: edge directions: G → D; + flow (in D)
Find that flow out of s = flow into t = volume v(f ) of the flow.
Feasible flow 0 ≤ fij ≤ cij // Feasible & max vol: maximum flow
Minimum cut = minimum capacity cut
�(G; s, t) capacity of a minimum (s, t)-cut [remember the cut itself is an edge set, =�(A) for some vertices A]
Residual network (NB: not a network) R(D, f ) has the same vertices as D and edge ij if net flow can be increased
f -alterable path in residual network has forwards and backwards edges.
f -alterable path to t: f -augmenting path

(s, t)-Edge-connectivity: (D or G) min # edges that can be deleted to leave no (s, t)-path.
(s, t)-Vertex-connectivity: (D or G) min # vertices [NOT s, t] that can be deleted to leave no (s, t)-path.
Global edge conn.: (G): min # edges that can be deleted from G so G becomes disconnected
Current: assignment of a flow fij to edges s.t. there is a net flow of dv for each vertex (demands on vertices)
[c.f.conservation eqns dv = 0 all v]



Circulation: in D a digraph w/o source/sink: flow f with l(e) ≤ f (e) ≤ u(e), satisfying conservation equations
Circular if there is a directed circuit C of D with f = �(> 0) round C and 0 otherwise.
Closed set in digraph = F ⊆ V s.t. i ∈ F , ij ∈ E ⟹ j ∈ F . [it’s a sort of backwards dependency: “finish what you’e
started”]
Now add unit costs to edges:
min. cost flow problem: feasible flow with given vol v at min cost
Vertex identification: glue them together intow, add edgeswj for every merged vj (can then merge parallel edges)
GS = G with v ∈ S identified
Legal ordering: start v1 anywhere and then vi has largest total capacity joining it with v1,… , vi−1.
Gomory–Hu tree: weighted tree T = (V , F ) s.t. for any edge e = st ∈ F ,
take T ⧵ {e} = 2 conn. cpts U, V , �(U ) = �(V ) is a min (s, t)-cut.
for R ⊆ V , Gomory–Hu tree for G,R is T , and a partition of V into parties

with leaders; R is the set of leaders
Subsets A,B ⊆ V cross if A∩B,A−B,B−A, V − (A∪B) are all non-empty

V

A B
A

∩

B

MatchingM in G: edge subset; no two incident with same vertex;
vertices are covered byM or exposed.
Not to be confused with: a (vertex) cover: a subset of vertices s.t. you can get all edges. [not required: all vertices!].
Min. cover has fewest poss. vertices. think cut-and-cover
M may be maximum; a maximum matching may be perfect.
⟺ flows: M-alternating;M-augmenting;
General G (not bipartite): ko(G) (o for odd) is the number of conn. cpts with odd number of vertices.
blossom for matchingM= circuit with odd number 2k + 1 of vertices and k edges ofM . Has a base. identifying
blossom to its base is shrinking it.
NB: Maximum (biggest) vs Maximal (can’t add anything)
NB: Maximal might not be maximum: below left is maximal (can’t add) but not maximum (there’s an aug. path)
indent − ∼ − vs ∼ − ∼

Big-O Exists c > 0, A s.t.: ∀x > A, |f (x)| ≤ cg(x) ⟹ O(g)

Matroids & friends
Hereditary system: I ∈ , J ⊆ I ⟹ J ∈  always contains empty set
e.g.: edge sets of spanning forests
e.g.: lin. independent columns of a matrix
Matroid: Hereditary system AND: for every I, J ∈  s.t. |I| < |J |, can find an element in J to add to I and get a
new ind. set

Transversal matroid: (S,) (for G = (S, T , E)): I ⊆ S is independent ⟺ there existsM in G s.t. I ⊂ S(M)

Has rank r(M) = size of biggest ind. set. (Transversal) matroid of the (bipartite) graph G: mat(G)
We write S(M) for the vertices of S covered by the matchingM .



1. Bubblesort
In: List of n integers
for i = n − 1 ∶ −1 ∶ 1:
indentbubble from 1 ∶ i (= i comparisons)

Out: Sorted list
Time: (n − 1)∑i i = O(n2)

Correctness: by induction

2. Kruskal: min. cost spanning tree

In: G: connected, weighted
T ← ∅;
while E ≠ ∅:
indentdelete cheapest edge e from E;
indentif T ∪ {e} has no circuits: T ← T ∪ {e}

Out: T ⊆ E
Time: naively, O(mn) (using heapsort; BFS for conn. cpt check); better: cpt labelling ⟹ O(m log n)

3. Prim:min. cost spanning tree

In: G: connected, weighted; v ∈ V
T ← ∅;
while (V , T ) not connected:
indentfind cheapest edge e to link to T : T ← T ∪ {e}

Out: T ⊆ E
Time: ?

4. GMST (red-blue) algo

In: G: weighted, connected; all weights distinct (perturb if nec.
Red rule (Circuits): find circuit with no red edges; colour max. cost edge red
Blue rule (Cuts): find cut with no blue edges; colour min. cost edge blue

Out: Blue edges: T ⊆ E
Time: -
All edges get coloured!



5. General greedy algo

In: Hereditary systemM = (E,) + non-neg. weights
I ← ∅

while E ≠ ∅ :
indentdelete costliest edge from E;
indentIf I ∪ {e} ∈ :  ← I ∪ {e}

Out: max weight I ∈ 

Time: ?
vs Kruskal (See Ex 2.14 for how to↔):
indentmax. not min — must be non-neg — Forest not Tree
Works iff: M is matroid

6. BFS: shortest paths
In: Unweighted D, r=start
Init: P(i) = -1 (0 for r)
Loop on queue Q:
indentPull off head v of queue; indentfor all out-neighbours of v, ?update P & add to queue

Out: Tree of paths to all other vertices as vector P of parents
Time: init n + all out-neighbours m = O(n + m

Can easily mod for G; can use to determine connectedness

BFS to find circuits in G:

- G connected: count the edges! No BFS needed
- BUT to find the circuits: was e inspected but e ∉ output T ?
- Then e ∈ C: trace up tree for common ancestor.
- G not connected: run BFS from some v; collect up circuits;
- throw away all v ∈ tree found; rinse&repeat
- Shortest circuit? Try for all edges ij in turn: delete e = ij,
- find shortest ij path; compare. (NB this works becauseG is undirected)
- Shortest odd-length circuit: harder than you think!
- Consider special walk = length 2k + 1.



7. Ex 3.3: TSP
In: weighted D, alg A to find shortest paths
Init: replace all weights with -1;
Run A (we don’t know what A is: -ve circuits could exist)

Out: i, j-path passing through all v ∈ V
Time: dep. A (Basically intractable)

8. Ford-Bellman: shortest path tree

In: weighted D with no -ve circuits, r ∈ V
Init: ur, P (r) = 0;
indentall other ui = ∞; all other P (i) = -1;
for 1 ∶ n − 1:
indentcheck every edge: ij: ui + cij

?
< uj :

indentindent→ update uj , P (j)
NB: Ex 3.8 Can stop if no changes or (sneaky) no changes except to sinks!

Out: Tree as vector P , lengths vector ui
Time: O(nm)
Order of edges makes difference! But don’t know “right” order until afterwards ;-)
Can alternatively be used to detect -ve circuits: run loop n times

9. Dijkstra
In: D with no -ve lengths; r
Init: ur, P (r) = 0;
indentTemps T : V − {r}
indentui cost on edge from r, or∞; P (i) = r (note difference from FB init!)
for 1:n-2:
indentfind min T , index is j: finalise j by:
indentindentDelete from T ;
indentindentCheck all remaining T : uj + cjk

?
< uk:

indentindentindent→ update uk, P (k)

Out: u and P as F-B
Time: O(n2)

Ex 3.10 Shortest path S to T

In: G, sets S, T ⊆ V

def G′: s S …(G)… T t

Find (s, t)-path in G′.



10. Ex 3.11 Ordered vertex labelling

In: D (no further constraints)
Init: identify sources by counting in-neighbours: list L
Loop: label a source v ∈ L, ditch it→ D′; add any new sources in D′.
Terminate: either out of vertices ✓or no new sources

Out: Vertex labelling
Time: O(n2) naively ⟹ O(n + m)

Smart runtime: use incidence lists, not adj. matrix→ go through lists of in &out-neighbours of v
⇝ then this stage becomes 2m total (not each step)

11. Ex 3.12 1 to everywhere O(n2)

In: D, r ∈ V
Init: D → D′ = (V ′, E) s.t. ij ∈ E ⟹ i < j; take r = 1
Thm: uij = mink∶i<k<j{uij + ckj}

for j = 1 ∶ n:
indentset u1j = min1∶i<k<j{u1j + ckj}

Out: vector u of shortest paths
Time: O(n2) naively ⟹ O(n + m)

Smarter: use incidence lists of out-neighbours of j, instead of trying all values of k
⇝ as above this gives total O(m) comparisons so we have O(n + m) init, O(n + m) run ⟹ O(n + m)

◦ Ex 3.13 longest paths Replace max by min and set cost to −∞ if no edge

12. Ex 3.14 Critical path analysis

In: Project dependency D (NB unweighted) + weight vector (times) on V
Init: push weights from V to edges, eg with node-splitting trick
Find longest path: alg in 3.13
Its length is sum of weights of its vertices (found automatically with node-splitting version)

Out: Shortest possible project time (+ paths tree)
Time: O(n + m)

13. Ex 3.15 Minimise the max. length of an edge

In: D (no constraints); r, s ∈ V
Init: collect up edge lengths
Binary search: create subgraph D′ by ditching all edges over length l; setting weights of the survivors =1; see
if there’s a path – BFS;
Terminate when there is a path with edges length l, but not l − 1

Out: (r, s)-path minimising max. length of edge
Time: O((log n)(n + m)
Could try and find shortest path in winning D′, but only if we know no -ve length circuits. . .

14. Floyd–Roy–Warshall: all shortest paths

In: D, no -ve circuits
Init: uij = cij or∞; Pi(j) = i (i.e. parent tree for start point v = vi is v)
for k=1:n:
indentfor i=1:n:
indentindentfor j=1:n:
indentindentindentTest ui,k + ukj

?
< ui,j : indentindentindentindent→ update uij , Pi(j)→ Pk(j)

Out: matrix of uij , list of trees P (i)
Time: O(n3
FB n times would be O(n2m): if D has Ω(n2) edges, FRW ≈ FB once



15. Augmenting paths algorithm (Ford/Fulkerson)

In: D = a network; f a flow(=0)

Input: D, f

Tree-building: BFS to t Augment

Output f + matrix;
A ⊆ V : �+(A) is a cut

dead end (s t)-path P

Df ′

Out: max flow matrix, C ⊆ V → cut
Time: O(nm2) (Using BFS)

Converting to flow problems:
• Edge connectivity: give all edges cap 1
• Vertex conn.: split vertex trick, cap 1 between split
• Closure (project planning): add source+sink, give s→ +ve v cap r, t→ −ve v cap −r (i.e. +ve value)
∑

+ve − v(flow) =
∑

v ∈ closure = in cut ≠ s

• Current: source → -ve, sink← +ve (opp. from closure!)

• Sports teams: s wins needed⟶ {Teams} ⤨ {Matches}
#matches
→ t

• Digraph building: s out−degree⟶ {V }
max ij
⤨ {V }

in−degree
→ t

indentBipartite: putS and T rather thanV both sides don’t forget backward edges on∞ middles!

• Matching: s 1
→ S ∞

⤨ T 1
→ t

16. Legal ordering
In: G
Init: pick v1 ∈ V (arbitrary);
indentinit table with other vertices
n − 2 times: indentlast one is evident
indentpick vertex v with max cap (current table row):
indentindentadd to list;
indentindentcreate new table row: blank out v; for remaining vertices in table, entry vj+ = cap(vvj)

b c d e
[a] 2 3 0 5
[ae] 2 13 1 -
[aec] 7 - 1 -
[aecb]

⟹ [a, e, c, b, d] a

b

c

e

d
2

35
13

1

5

Out: Vertex list v1,… , vn
Time: O(n2)



17. Global minimum cut

In: G, with caps ≥ 0
Init: M = ∞, A = ∅
Loop:
indentFind legal ordering; test c(�({vn}))

?
< M :

indentindent→ updateM , new A = �({vn});
indentIdentify vn, vn−1 → G′; loop

Out: A ⊆ E, a min cut
Time: O(n3)

18. Gomory–Hu

In: G

Start: G

min cut on G

G2

�(…) in G2

G22G21

indentR21indent→ x
R22indent
→ yindent

a, b ∈ R2:

G1

�(…) in G1

G12G11

a, b ∈ R1:

vertex id
R2 → w

vertex id
R1 → v

some a, b: (a, b)-cut
{R1, R2 ⊆ V }

R1 R2

R11

R12

R21 R22

c

… merge from bottom up

�x

�y

join @ this level’s
“fake” vertices;
delete the fakes

�v

��w

Output: T

Out: T , a G–H tree
Time: (n − 1) min. cuts (e.g. via aug paths) (technically, (n − 1) * max. flow = O(n2m2)



19. Hungarian matching alg

In: G = (S, T , E) bipartite,M(= ∅)

Input: G = (S, T , E);M(= ∅)

Start Pick v ∈ S ⧵ {blue}

Output

Tree building

Augment

Matching

Colours→cover

(!blue, red)

None found

o-o~o-o~o-?Fail: keep
colours!

Path found!Reset tree

Out: M , K
Time: O(n3)

20. Assignment problem: min. cost perfect matching

In: G = (S, T , E); |S| = |T | E = {sitj ∶ si ∈ S, tj ∈ T } (“complete”)
Init: Set up u, v: A good init: ui as min. entry in ith row, vi as min of cij − ui in each col.
LOOP:
indent- Calculate reduced cost matrix c̄ij = cij − ui − vj use as basis of bipartite graph GE ;
indent- Seek perfect matching in GE . FOUND ⟹ DONE; else
indent- update u, v: C is vertices coloured during matching step:
indentindent� = min{c̄ij ∶ Si ∈ S, Tj ∈ T − C}:indentindentincrease ui at blue vertices by �;
indentindentdecrease vj at red vertices by �:
indentindentindentNB: when updating c̄ij on next loop:
indentindentindenti, j used to calc. �: 1 ⟺ = c̄ij − �

indentindentindenti XOR j used to calc. �: cij
indentindentindentneither i nor j used to calc. �: cij + �
indent-⟹ loop

v

v2 v3 v4 v6
! ↑ ↑ ↑ ! ↑

! ↑ ↑ ↑ ! ↑

u u3 ← ↔

u4 ← −� ↔ −�

u5 ← ↔

Out: M a matching
Time: O(n4)
Also known as Hungarian alg for assignment problem
Check: ∑i ui +

∑

j vj = cost (u, v not updated after perfect matching found!)



21. Edmonds’ blossom algorithm

In: G

Start

Pick vertex

Output

Tree building

Augment

Input: G,M(= ∅)

Matching

Red→S (Tutte

RBlossom
None to
pick Found: shrink

o-o~o-o~o-?

Fail: keep
colours!

Path found!
Reset tree

Stuck:tryP

Out: M , S ⊆ V

Time: O(n4)
Shrink: G → G′ and this T → T ′

Unshrink: round even # edges

22. Build-up algorithm

In: D a network (integral caps), int � target flow
Init f = 0 // empty flow matrix;
Build-up:
indent- construct R(D, f ) (with costs);
indent- find shortest path P (FB as -ve edges);
indent- augment along P ;
indent⇝ if f = � DONE;
indentindentelse: loop

Out: Flow matrix
Time: O(fnm) (Paths with FB)
Blank slate: build up to min. cost feasible �
Check: cost of flow*edges = sum of aug*path-cost

23. Circuit-cancelling algo

In: D a network (integral caps), f a flow mat @�
Loop:
indent- construct R(D, f ) (with costs);
indent- find -ve circuit C (FB with n iters):
indentindentif none: DONE;
indentindent⇝ augment round C; loop

Out: flow mat f
Time: ?



Lemma 1.2.2. Can break every walk down into paths and circuits

Lemma 1.3.1 // 1.3.6. 3-for-2
G has n − 1 edges n − m edges
G is connected has k(G) = m conn. cpts

G has no circuits (is a tree) is a forest

Lemma 1.3.4. T a spanning tree of G, add one “extra” edge e from G ⟹ T ∪ {e} contains unique circuit C;
can remove any edge of C & get spanning tree.

Prop 1.4.1. i) f polynomial degree k, f is O(xi) ⟺ i ≥ k

indentii) xk is O(ex) (k ∈ ℝ)

indentiii) ln x is O(x� (� > 0)

Prop 1.4.2. f1:O(g1), f2: O(g2) ⟹
i) f1 + f2 is O(max{g1, g2});
ii) f1f2 is O(g1g2)

Ex 1.9. n ≤
(

n
e

)n

Ex 2.3. If weights are distinct, tree found by Kruskal is unique

Lemma 2.3.2. C edges of a circuit, C∗ cut of a graph, |C ∩ C∗| is even

Thm 2.3.3. G connected: GMST colours all the edges and the blue edges form a min. cost spanning tree of G.

Ex 2.7. Kruskal & Prim are both special cases of GMST

Lemma 3.2.1. D has no -ve length circuit: if you can get i→ j, there’s a shortest path. [just remove circuits]
of interest because algs find walks. . .

Lemma 3.2.2. D has no -ve length circuits and a walk from r to everywhere in V : there is a collection of shortest
paths from r to every other vertex whose union forms a tree rooted at r.

Ex 3.11. No directed circuits ⟹ must be at least 1 sink / at least 1 source

Ex 3.11. Possible to input D and either relabel vertices s.t. ij ∈ E ⟹ i < j, or deduce that D has a (directed)
circuit: runtime O(n + m) [easier; O(n2)]

Thm 3.6.1. D: no -ve weight circuits: FRW alg finds all shortest paths; runtime O(n3).



Matroids

Prop 2.5.2. Graph G: hereditary system (E, ) of spanning forests is a matroid

Prop 2.5.3. M a matrix over field F : (labels of) lin. ind. sets of columns ⟹ matroid. Remember in binary field 2
cols are lin. ind. unless equal

Lemma 2.6.1. Hered. system (E,) is a matroid ⟺ for every subset A of E, all maximal independent subsets
of A have the same size.

Thm 2.6.2. Hered. systemM = (E,) is a matroid ⟺ for every non-negative weight function onE, the greedy
alg determines the maximum weight ind. set.

Ex Assmt 1. Useful fact: M =M(A) ⟹ there exists A′ over F withM =M(A′) and A′ has as many rows as
the largest independent set inM [proof not given//in Assmt solns]

Thm 9.5.2. G = (S, T , V ) (back to bipartite graphs now):  = {S(M) ∶M is a matching}→ (S,) is a matroid
(“transversal matroid”).

Prop 9.5.3. IfM is a transversal matroid then there is a bipartite graphG such thatM = mat(G)with |T | = r(M)

Thm 4.3.3. Max-flow min-cut .

Thm 5.1.1. Integral capacities ⟹ aug. paths takes ≤ v(f ∗) iterations; f ∗ is integral

Cor. 5.1.2. Integrality theorem If all caps are integral, there is a max. flow in which all flow values are integral.

Lemma 5.1.4. Let d(v,w) be the shortest path length in the residual digraph; let f, f ′ be a feasible flow and its
augmentation: For every v ∈ V : d(s, v) ≤ d′(s, v) and d(v, t) ≤ d′(v, t)

Lemma 5.1.5. Additionally, let A(f ) be the union of edges in R(D, f ) in all augmenting paths length d: if
d(s, t) = d′(s, t), then A(f ′) ⊂ A(f )

Thm 5.1.6. The augmenting path alg using BFS has runtime O(nm2)

Ex 5.1. U1, U2 both separate s from t: cap(�+(U1∩U2)+
cap(�+(U1 ∪ U2)) ≤ cap(�+(U1)) + cap(�+(U2))

Proof: think about drawing a picture

Lemma 7.4.3. A,B ⊆ V (G): c(�(A)) + c(�(B)) ≥

c(�(A ∪ B)) + c(�(A ∩ B))

D

U1 U2

U1
∩

U2



Ex 5.3. f1 and f2 both max flows: sets of vertices to which they have f -alterable paths are identical.

Lemma 5.2.1. If every (s, t)-cut in D has infinite cap, there is an (s, t)-path containing only infinite cap edges.

Thm 5.2.2. Let D have an (s, t)-cut with finite cap: then (i) there is a max. flow (=min cap of a cut); (ii) if all
finite caps are integral, there is an integral max. flow; (iii) need time O(nm2) to find it
Menger’s theorems

Thm 5.3.1. (D) (s, t) edge connectivity = max # (s, t) paths with pairwise disjoint sets of edges NB: thm, not the def!

Thm 7.2.1. Same for (G)

Thm 5.3.3. (D) (s, t) vertex conn. = max. # internally disjoint (s, t)-paths.

Thm 7.2.3. Same for (G)

Page U7/5. Global edge conn. = cap of a global min. cut in G with all caps set to 1.

Thm 5.4.2. Gale’s thm Current ⟺ ∑

v dv = 0 and for every S ⊆ V ,∑v∉S dv ≤ cap(�+(S)

(prove by D ∪ s, t→ D′; cap of (s, t)-cut in D′)

Thm 5.4.3. Hoffman circulation thm GivenD and lower/upper bounds on each edge, there is a circulation f ⟺
for every S ⊆ V , l(�−(S) ≤ u(�+(S)).

Page U6/5. Team t can win the league ⟺ the corresponding network has a feasible flow with volume ∑ij rij
(rij are the remaining matches to play)

Page U7/2. �(S) in G is an (s, t)-cut ⟺ one of �+(S), �−(S) is same in D ⟹ capacity of cut in G = cap of
cut in D ⟹ max-flow min-cut holds.

Page U7/5. Possible to find a min. cut by solving n − 1 max flow problems (pick some s, find the min (s, t)-cut
for all choices of t, Bob’s your uncle . . . )

Page U7/5. 1:1 correspondence between cuts of G that are not (s, t)-cuts and cuts of Gs,t; preserves capacity

Lemma 7.3.5. �(G; u, v) ≥ min{�(G; u,w), �(G; v,w)}

Thm 7.3.6. v1,… , vn legal ordering (n! = 1) ⟹ �({vn}is a min. (vn, vn−1)-cut in G.

Lemma 7.4.1. let v0,… , vk be vertices of G: �(v0, vk) ≥ min{�(v0, v1), �(v1, v2),… , �(vk−1, vk}



Thm 7.4.2. T a G–H tree: u v
11

5 8 7
8

10

min edge on (u − v) path is cap of min (u, v)-cut; vertices of the cut are everything on side of the edge

Lemma 7.4.4. �(S) a minimum (s, t)-cut; v,w ∈ S; There is a minimum (v,w)-cut of the form �(W ) forW ⊆ S

Ex 7.12. s, t, v, w ∈ V (G); s ≠ t; v ≠ w; �(S) min (s, t)-cut: there is a min (v,w)-cut �(T ) for some T s.t. S and
T do not cross.

Thm 7.4.5. G = (V ,E): for each ∅ ≠ R ⊆ V , there is a G–H tree for G,R

Thm 7.4.6. A G–H tree for G can be found by computing n − 1 min. cuts.

Page U8/1. G is bipartite ⟺ no circuits with odd length.

Lemma 8.1.2. M a matching, P M-augmenting: M ′ =M △ P is a matching with |M ′
| = |M| + 1.

Thm 8.1.3. Berge 1957 M is maximum ⟺ noM-augmenting path

Lemma 8.1.4. M matching, K cover: |M| ≤ |K|.

Ex 8.2. S ⊆ V covered by someM : must exist maximum matching covering S.

Thm 8.2.3. König Max matching = min cover

Thm 8.2.4. Equivalently: binary matrix A rep S → T : maximum sized set of ones from A with no two ones in
same row or col is equal to min sized set of rows and cols containing every one of A.

Ex 8.6. Can solve matching problem using flows

Ex 8.7. In fact, Hungarian alg & augmenting flow alg do same thing (up to BFS)

Ex 8.8. König is cor. of max-flow min-cut

Thm 8.2.5. Hall perfectM in bipartite graph exists ⟺ for every X ⊆ S, |N(X)| ≥ |X|.

Cor. 8.2.6. r ≥ 0; G has matching |M| ≥ |S| − r ⟺ for every X ⊆ S, |N(X)| ≥ |X| − r. Proof: stick r extra
vertices in T

Ex 8.11. G bipartite; every vertex has degree k: G has k disjoint perfect matchings



Ex 8.13. If G is bipartite and every vertex has degree k: G has an edge colouring using k colours.

Ex 8.14. G bipartite has k disjoint perfect matchings ⟺ for every A ⊆ S,B ⊆ T , there are at least
k(|A| + |B| − |S|) edges straddling A,B;

Lemma 9.1.1. GivenM , G, S ⊆ V :

|M| ≤ 1
2
(|V | + |S| − ko(G ⧵ S))

Lemma 9.1.3. S a blossom inGw.r.t.M ;MS-augmenting path P inMS : P can be extended to anM-augmenting
path of G by expanding the blossom.

Thm 9.4.1. Tutte, Berge For any G,

max
M

|M| = min
S⊆V

1
2
(|V | + |S| − ko(G ⧵ S))

Ex 9.2. Tutte’s theorem Necessary and sufficient condition for graph to have a perfect matching: for all S ⊆ V ,
ko(G ⧵ S) ≤ |S| AND even # of vertices (otherwise ko = 1 for S = ∅ ⟹ we have already lost) (=Thm 9.6.1)

Ex 9.5. Petersen If every v ∈ V has 3 neighbours and for every e ∈ E,G⧵e is connected: G has a perfect matching.

Ex 10.1. Shortest path problem is a special case of the min. cost flow problem

Lemma 10.1.2. f a circulation in D = f1 +…+ fk with the fi circular circulations

Thm 10.1.3. f feasible, vol. v has min. cost ⟺ no -ve cost (directed) circuit in R(D, f )

Lemma 10.3.1. n iterations of F-B on D: D has -ve length circuit ⟺ some ui changes in the nth iteration,
which can be found by climbing tree from i.

Thm 2.1.2. G connected; Kruskal finds min weight spanning tree.

Thm 2.2.1. Kruskal (can be) O(m log n) (G connected)

Thm 3.3.2. D with no -ve length circuits: F-B outputs length of shortest (r, v)-path for every v that has a path,
plus a rooted tree of the paths; runtime O(nm).

Thm 3.5.1. D with no -ve lengths: Dijkstra finds shortest paths from r to all other vertices; runtime O(n2).

Prop 7.3.4. A legal ordering of a graph G can be found in time O(n2)



Thm 8.2.1. The Hungarian alg returnsM,K with |M| = |K|; runtime O(n3)
Prove: (1)M ; (2) K; (3) |M| = |K|; (4) runtime

Thm 8.3.2. Hungarian algorithm for assignment problem (weighted edges) (1) determines an optimal solution (2)
in time O(n4)

Thm 9.3.1. Edmonds alg finds a max matching and S s.t. (Lemma 9.1.1) ==. Runtime O(n4)
Proof: via 2 claims: (1) for each blue vertex v in a tree with root r there is an alternating path from r to v, first edge
not in matching; (2) for each matching edge, either both endvertices are uncoloured or one is blue and one red;
Mainly need to show that this preserved by blossom step

Thm 10.2.1. The build-up algo returns optimal flow and it’s integral

Thm 10.3.3. Circuit-cancelling algo returns optimal flow of vol v and it’s integral

Tips and tricks
• double up vertices and put capacity between them

• add source & sink and caps to them
[also for finding paths to/from groups of vertices]

• turn into flow network

• finding paths by assigning edge weight 1

• finding most-edges paths by assigning edge weight -1 (FB)

• O(n2) vs O(nm) : is the graph sparse or close to complete?

• run aug path (flow/matching) alg once/to the end to get the list of interesting vertices // confirm result

• sportsteams draws→ just pretend it’s two matches

• MSc student problem with 2 types requirement = 2 types s→ St ⟹ double up the student vertices

• Augmenting paths in G graphs: take care! Net poss change takes both directions into account (can change
direction of arrow); flow of 0 can always add the edge (ditto).

• “Modify” ⟹ modify graph then run vanilla alg, don’t mess with alg!

• NB for thms: often need to specify:

– non-empty
– non-negative capacities
– u ≠ v


