
UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

Bayesian learning for effective coordination in

uncertain multi-agent systems

A progress report submitted for continuation towards a PhD

Supervisor: Professor Nicholas R. Jennings

Examiner: Professor Paul Lewis

by Mair Allen-Williams

June 8, 2007

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

A progress report submitted for continuation towards a PhD

by Mair Allen-Williams

Multi-agent systems draw together a number of significant trends in modern tech-

nology: ubiquity, decentralisation, openness, dynamism and uncertainty. As work

in these fields develops, such systems face increasing challenges. Two particular

challenges are decision making in uncertain environments, and coordination with

other agents about whom they may have little or no knowledge. Although un-

certainty and coordination have each been tackled as separate problems, formal

models for an integrated approach typically make a number of simplifying as-

sumptions, and often have few guarantees. One such formal model uses Bayesian

methods, as these provide a means of building on available knowledge in order to

act optimally in uncertain scenarios. In this report we explore the extension of

a Bayesian decision-making model into the multi-agent domain. We demonstrate

the effectiveness of the approach on a small coordination problem, and show how

it could be applied to ambulance rescue problem inspired by the Robocup Rescue

system.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

Contents

1 Introduction 9

1.1 The disaster response domain . 11

1.2 Decision making under uncertainty 14

1.2.1 Partial observability . 16

1.2.2 State generalization and function approximation 17

1.3 Coordinated decision making . 18

1.4 Research contributions . 22

1.5 Report structure . 23

2 Literature Review 25

2.1 Autonomous agents . 25

2.2 Decision making under uncertainty 27

2.2.1 Reinforcement learning . 27

2.2.2 Bayesian model-based learning 30

2.2.3 Partial observability . 32

2.3 Learning in multi-agent systems . 35

2.3.1 Learning in games . 36

2.3.2 Multi-agent POMDPs . 38

2.3.3 Learning in multi-agent POMDPs 41

2.4 Managing large state spaces . 42

2.4.1 State space abstractions . 43

2.4.2 Abstractions in POMDPs 45

2.5 Summary . 46

3 A Bayesian model for coordination in partially observable sys-
tems 47

3.1 Problem definition . 47

3.2 Recap: Bayesian multi-agent learning 49

3.3 Partially observable actions . 53

3.3.1 Action-effect model . 53

3.3.2 Limited visibility . 55

3.4 Partially observable states . 56

3.4.1 Single-agent case . 57

3.4.2 Multi-agent case . 58

3.5 Approximations . 61

5

6 CONTENTS

3.6 Summary . 62

4 Demonstration and evaluation of the Bayesian model 63

4.1 Partially observable actions . 63

4.1.1 Experiments . 65

4.1.2 Results . 67

Effect of sample size 68

Effect of delta . 69

Changing delta . 69

Error bar shape . 70

Summary . 71

4.2 Partially observable states: Example from the disaster response
domain . 73

4.2.1 Applying the model of section 3.4 75

Belief state . 76

Prior beliefs . 76

Belief updates . 77

4.2.2 Practical considerations . 80

4.3 Discussion . 80

5 Conclusions 83

5.1 Summary . 83

5.2 Future work . 83

5.3 Timeline . 86

A Results 89

List of Figures

2.1 A simple POMDP . 32

3.1 Bayesian network diagram . 52

3.2 Bayesian network when action effects are observable 54

3.3 Bayesian network when joint actions are not observable 55

3.4 Bayesian network diagram for a single agent system with partially
observable states . 57

3.5 Bayesian network diagram for a system of partially observable states 59

4.1 An illustrative state in the well problem 64

4.2 Agent scores and t-tests for two different sample sizes 68

4.3 Varying delta: agent scores . 70

4.4 Varying delta: t-test results . 71

4.5 Effect of changing delta from 0.81 to 0.5 after 100 time steps (sample
size: 10) . 72

4.6 Example error graphs . 72

4.7 Sample size 102; delta=0.8 → 0.5. q-learner 73

4.8 Bayesian diagram for belief states 79

A.1 Two-agent well test: results (1) . 90

A.2 Two-agent well test: results (2) . 91

A.3 Two-agent well test: t-tests (1) . 92

A.4 Two-agent well test: t-tests (2) . 93

A.5 Two-agent well test: error bars (1) 94

A.6 Two-agent well test: error bars (2) 95

7

Chapter 1

Introduction

This section begins with an overview of multi-agent systems, explaining their im-

portance as part of modern developments in technology, and the way in which

the need for coordinated decision making under uncertainty arises as a particular

need of these systems. To provide a specific grounding for our research, we pro-

pose the disaster response domain, explaining some of the features which make it

interesting (section 1.1). In sections 1.2 and 1.3 we go on to outline contemporary

approaches to the problems of decision making under uncertainty and coordinated

decision making, explaining where there are gaps in recent work and motivating

the remainder of our work. In section 1.4 we detail our contributions.

Thus, we begin by introducing multi-agent systems. These may be described as

systems of interacting intelligent actors, or agents, existing in some environment.

This environment provides stimulation to the agents’ senses, and reacts to the

agents’ actions. There is no global view, rather, each individual is able to sense

part of the system. Such systems are becoming increasingly important as they

draw together a number of significant trends in modern technology (Wooldridge,

2002):

Ubiquity: As computing chips become smaller and cheaper it is possible to add

computational power and intelligence to many kinds of devices in almost any

location. Multi-agent systems made of networks of these ubiquitous devices

have much greater possibilities than individual devices. Such systems may

also be mobile, adapting quickly to changing surroundings.

9

10 Chapter 1 Introduction

Decentralisation: With the advent of the world wide web and other comput-

ing networks, systems that distribute data and tasks among a network of

machines are increasingly common.

Openness and dynamism: Open systems are those in which agents may enter

or leave at any time, while dynamic systems have a constantly changing en-

vironment. Many real-world systems need to be both open and dynamic.

Thus there has been a corresponding trend in computing away from systems

in which one supplies a static problem and waits for a solution, towards

providing interactive systems which are able to respond to a changing envi-

ronment.

Uncertainty: Uncertainty plays a large part in systems which respond to envi-

ronmental or sensor inputs. Moreover, a trend towards increasingly large

and complex systems means that frequently systems are effectively uncer-

tain, even if they are technically deterministic.

A combination of these features describes the kinds of decentralised data and

information systems which are increasingly required by many commercial and

industrial organisations. Moreover, multi-agent systems can be used to implement

or to model all or part of such systems. Example application areas are as diverse

as modelling eBay auctions (Rogers et al., 2006), modelling social structures (Sun

and Naveh, 2004), or creating fight scenes in films (agent systems were used in The

Lord of the Rings1). Consequently, multi-agent research is a lively and growing

area facing many challenges.

In particular, agents acting in real environments frequently find themselves facing

high degrees of uncertainty, about their current environment and about any other

agents which might exist in the environment. Moreover, as these systems get

larger, the full state of the environment may not be completely observable, adding

to the agent’s uncertainty. Thus agents in such environments will typically carry

out some kind of discovery phase to determine the essential characteristics of the

scenario, before they attempt to achieve their own goals. This discovery phase

in a multi-agent system is tightly linked with the presence of other agents in the

system. In particular, other agents with related goals may be prepared to share any

information they have or discover. Even if such agents do not share the ultimate

goals of our agents, they may share subgoals (such as determining the state of the

environment) and thefore be prepared to cooperate. An agent exploring such an

1http://www.massivesoftware.com/what massive.html

http://www.massivesoftware.com/what_massive.html

Chapter 1 Introduction 11

environment should therefore incorporate the behaviour of other agents into its

plans. Beyond discovery, there will continue to be interaction between the agents

in a multi-agent system. This may be explicitly cooperative or obstructive (so

agents explicitly include the goals of others when making decisions). Conversely,

there may be no explicit coordination, but because the actions of each agent will

inevitably have the potential to interact with each other, the behaviour of other

agents must be taken into account.

Now, this general problem of taking others’ behaviour into account, coordination, is

a key issue in a multi-agent system. In uncertain and open systems, fixed protocols

for coordination must function against a background where agents are not fully

aware of the situation; the resources available to them, or the presence or goals of

the other agents. The negotiation of coordinated behaviour in such systems may

be intertwined with the discovery phase, as agents discover the details of the other

agents, and perhaps cooperate with other agents in determining properties of the

situation.

Against this background, we aim to build upon existing techniques for decision

making under uncertainty, explicitly modelling other agents, thus tackling the

problem of providing coordinated behaviour in uncertain and partially-observable

multi-agent systems. To provide a specific grounding for this research, we consider

the domain of disaster response. As we outline in the next section, this has all of

the characteristics relevant to the growing field of multi-agent research.

1.1 The disaster response domain

In disaster situations such as terrorist attacks, floods or earthquakes, many differ-

ent teams from a number of organisations must cooperate to attempt to recover

the situation. Their work may be interrupted by self-interested actors such as jour-

nalists, scavengers, or even terrorists. Moreover, some of the cooperating organi-

sations may have conflicting subgoals—for example, suppose during an aeroplane

crash an injured person is trapped in the wreckage very close to the “black box”.

The police will wish to keep the black box intact for the purposes of determining

what caused the crash, while ambulance teams are concerned only with removing

the injured person, perhaps necessitating the destruction of the black box unless

they are very careful. The overall goal of both, of course, is something akin to

maintaining the wellbeing of the people affected by the disaster or who might be

affected by related disasters.

12 Chapter 1 Introduction

Scenarios of this nature provide rich grounds for the implementation of agent

systems, such as the Robocup Rescue system2, the DEFACTO system (Schurr

et al., 2005) and others (e.g. (Burke, 2003), (Takeuchi et al., 2003)). In such

applications, the extent of computer intervention lies on a scale between a fully

automatic multi-agent system, and a human-managed system making use of agent

systems. At one end of this scale, multi-agent systems can model every aspect

of the disaster response, simulating the disaster, the affected humans, and the

response agents. Robocup Rescue is an example of such a system. In the future,

these systems could be taken further, deploying actual robots at the scene of the

disaster. Indeed, there is already some work on human-robot teams (Schurr et al.,

2005). At the other end of the scale, agent systems can be used alongside the

human response teams, processing data and interactively suggesting courses of

action (Dorais et al., 1998). In the middle of the scale can be found agents who

defer to humans in scenarios they are uncertain about (Scerri et al., 2004).

The focus in this work is on the use of multi-agent systems for modelling aspects

of a complete disaster response. This provides the broadest perspective on the

problem. Complete solutions can be sought, and the resulting models used in

more human-interactive applications. For example, applications in which the au-

tomatic system’s function is to propose courses of action which may be explored

by the human user. Another use for such models is in training human teams. For

example, the Auckland urban search and rescue department are working together

with Robocup Rescue developers to develop new strategic models for their own

rescue services 3.

Taking this complete disaster response problem as the illustrative domain for ex-

ploring multi-agent systems motivates a number of important domain require-

ments. The following are all key properties of disaster response scenarios which

should be taken into consideration by any coordination algorithm grounded in this

domain:

Large: Disaster recovery scenarios may involve hundreds or thousands of distinct

actors, organisations or teams, operating over a wide area.

Dynamic: It is unreasonable to assume that a realistic system will be static.

Environmental conditions are subject to constant change and agents must

be able to adapt to these changes. In disaster recovery scenarios agents must

2http://www.rescuesystem.org/robocuprescue/
3http://www.auckland.ac.nz/uoa/about/news/articles/2004/06/0011.cfm

http://www.rescuesystem.org/robocuprescue/
http://www.auckland.ac.nz/uoa/about/news/articles/2004/06/0011.cfm

Chapter 1 Introduction 13

react to changing weather, unexpected events such as building collapse or

fires and constantly moving traffic, among many other changing conditions.

Open: Systems of this nature will have agents moving in and out of the system

constantly. In the worst case, in disaster scenarios agents are liable to die,

hence vanishing suddenly. On the other hand, as volunteers and taskforces

from elsewhere rush to contribute help, new agents will enter the response

system.

Decentralized: Providing a central server is equivalent to reducing the system

to a single-agent system—all the decision making can in principle be carried

out by the central server; the central server has a complete view of the sys-

tem, and so on (Panait and Luke, 2005). Furthermore, in large and dynamic

systems of the kind we are investigating, providing a central controller is

likely to be infeasible: there are unlikely to be the resources to allow com-

munications between one central controller and every other node, one central

controller is almost certainly not going to be able to obtain a complete view

of the system, and the potentially rapid changes as agents enter and leave

the system would be difficult to track.

Uncertain: As previously discussed, large, dynamic, open systems typically have

inherent uncertainty. Even if the system is technically predictable, the com-

plexity in the system is likely to make it effectively uncertain. For example,

in disaster recovery scenarios taking place over broad areas, it is unlikely that

any agent will have a complete view of the situation. Moreover, information

which reaches the agent may be error-prone, increasing the uncertainty. At a

different level of granularity, environmental conditions such as the expected

weather or the height of a tide can be equally uncertain.

Heterogeneous: There are many different types of agents involved in a disaster

response scenario, with a variety of capabilities and (potentially conflicting)

goals. At a minimum there will be the rescue teams, each with distinct tasks:

ambulances, police, helicopter teams, and there will be the people affected by

the disaster. Involved may also be journalists, crime teams, environmental

agencies, to name but a few.

Bandwidth-limited: One characteristic which is common in disaster scenarios is

limited communication (Committee on using IT to Enhance Disaster Man-

agement, 2005). For example, mobile phone networks may become jammed,

so that only a fraction of the messages initiated are able to reach their des-

tination.

14 Chapter 1 Introduction

Competitive: As discussed, the actors at a disaster situation may have conflict-

ing goals or subgoals, as in the example above. Furthermore, self-interested

agents have no reason to attempt to resolve the conflicts cooperatively.

As can be seen, there are many challenges when working in such domains. How-

ever, the essential task of any agent operating in a multi-agent system is to process

the inputs it receives, and to plan how to act, in the context of other agents. The

central tasks for the agent are, therefore, information processing and coordinated

decision-making (including decisions about information gathering).

The first of these two tasks, information processing, is, in its fullest sense, the task

of forming a coherent world view as scattered, incomplete, potentially error-prone,

even conflicting messages reach the agent at different times from heterogeneous

sources. The extent to which the agent actually needs a complete world model

will depend on its decision making policy. For example, if agents in a disaster

situation are organised in such a way that each agent is allocated to a particular

region (in the UK, this might be a county) and functions only in that region, it

may choose to maintain a model only of that region and discard messages which

concern other regions. In section 2.1 we briefly discuss the various information

fusion techniques that are relevant to this activity.

Our primary interest, however, is how such agents gather and then make use

of their information in a multi-agent setting. Acting optimally in such settings

involves the integration of two established disciplines: decision making under un-

certainty, and coordinated decision making. Each of these is dealt with in more

detail in the following subsections.

1.2 Decision making under uncertainty

Let us first consider a single agent acting in its environment. The agent perceives

the state of the world through some kind of sensory inputs, and makes a decision

about how to act based on this state. Following the agent’s action, the world

transitions into a new state, and the agent may receive some reward. This model

forms the basis of reinforcement learning theory (Sutton and Barto, 1998). Un-

derlying reinforcement learning theory is the assumption that the immediate next

state is dependent only on the previous state and choice of action—the Markov

assumption. While this property does not hold for many realistic scenarios, it is a

Chapter 1 Introduction 15

sufficiently good approximation that the learning techniques which arise from this

theory often get good results, as demonstrated by many practical examples such

as (Hoar, 1996) (Smith, 2002a), (Abul et al., 2000).

With the Markov assumption, if the transition and reward models are completely

known to the agent, the system can be solved, using the recursive Bellman equa-

tions (Sutton and Barto, 1998), to determine the expected optimal action from

each world state. When there is uncertainty about these models, the agent must

integrate the learning of the models (exploration) with acting to obtain rewards

(exploitation). Reinforcement learning techniques such as Q-learning, TD(λ) and

SARSA (Sutton and Barto, 1998) provide variations on ways of updating the

estimated value of states and actions. The integration between exploitation and

exploration is then achieved by selecting an action stochastically based on the cur-

rent state and the learned state-action values. These techniques provide a good

way for agents to make decisions (and hence act) in scenarios where there is uncer-

tainty about the consequences of their actions and the environmental dynamics.

Within all such techniques, the aforementioned action selection is achieved us-

ing straightforward heuristic rules. For example, ε-greedy selection chooses the

“greedy” action—the action currently believed to be the best—most of the time.

With some small probability ε, a different action is chosen at random from the re-

maining actions. An improvement on ε-greedy selection is to base the probability

of selecting any action proportionate to its estimated value—Boltzmann selection

is an example of this approach, choosing an action a with probability proportional

to eQ(s,a)/τ (where s is the current state of the agent, Q(s, a) is an estimate of

the value to the agent of taking action a from state s—taking into account the

consequences of the action on likely future states—and τ is some problem-specific

constant). Both of these approaches have the disadvantage that action choices will

never converge even as the model becomes more accurate. This can be mitigated

by reducing ε and τ over time, so that action choices approach the deterministic

choice. A more principled approach, however, is to make the variance in action

choices directly dependent upon the certainty the agent has in a model of the

system.

In more detail, learning methods may be described as either model-based or model-

free. In model-free methods, the agent estimates the value of state-action pairs or

of states, but does not maintain an explicit estimate of the transition or reward

models. Such model-free methods typically involve simple updates at each step.

By contrast, model-based methods update the transition and reward models at

16 Chapter 1 Introduction

each step. Model-based methods can be used to carry out many simulation steps

alongside each real-time step, taking advantage of otherwise idle cpu cycles. An-

other advantage of model-based methods is the ability to bias the system towards a

particular real model, or to re-use parts of the model on different problems. Here,

we focus on model-based methods particularly because of the latter property: in

disaster scenarios we expect to have initial beliefs about the situation based on

domain knowledge or similar disasters, and would like to be able to incorporate

these beliefs into our solutions.

Extending model-based approaches is a Bayesian approach to learning. Rather

than maintaining a point estimate of a model, possibly with some associated cer-

tainty, an agent maintains a probability distribution over possible models (Dearden

et al., 1999) (a belief state). Referring back to the problems with heuristic action

choices, we see that in this method they are eliminated. This is because an agent

can compute for every action, its expected value of its action given the belief state.

This computation explicitly incorporates the uncertainty in the agent’s beliefs, re-

sulting in a principled approach to the problem of integrating exploration and

exploitation. It is such a principled approach which will form the grounding for

our own work, providing a theoretical base for decision making under certainty and

exploring how this base can be practically extended into larger domains. How-

ever, fully-observable single agent problems form only a small subset of the kinds of

problem which are motivated by the target domain outlined in section 1.1. Over

the rest of this section we describe the extension of these techniques into more

challenging problems as motivated by our example domain.

1.2.1 Partial observability

It is not always possible to observe the complete world state. More commonly

in problems such as a disaster rescue, any particular agent will make a sequence

of observations which allow it to make some inferences about the current state.

In a disaster rescue these might be detailed local observations from an agent on

the ground, combined with local observations communicated from other agents, or

they might be (for example) more abstract observations from a helicopter passing

over the disaster region. Given a set of local observations, many possible global

states may be compatible with these local observations (a phenomenon described

as perceptual aliasing). Commonly, the underlying process (moving from global

state to global state) will still be believed to be Markov. Such problems are

Chapter 1 Introduction 17

described as partially observable Markov decision processes, or POMDPs, and there

is a host of techniques for solving them.

First, if the underlying environmental model is known, a POMDP can be con-

verted to a continuous Markov decision process by defining a belief state as a

probability distribution over states. The resulting MDP can be solved using exact

algorithms (Cassandra et al., 1997) or using approximations to make computation

easier (Amato et al., 2006), (Kim et al., 2006). If the underlying model is not

known, learning techniques must be used to refine a solution as the agent explores

the system. Model-free approaches such as (Aberdeen and Baxter, 2002) have

found some success in using learning techniques to solve POMDPs. However,

we believe that model-based approaches may again have benefits. To this end,

(Shani et al., 2005) demonstrates a model-based algorithm which handles percep-

tual aliasing using variable length suffix trees—these trees address the fact that

even if state transitions are Markov, the observed process may not be. However,

these approaches rely on a number of approximations and assumptions about the

state space, hence are not entirely satisfactory. A principled alternative may be to

extend the Bayesian model described previously into partially observable domains

and this is the approach we describe in chapter 3.

Finally, these approximate solutions highlight a general difficulty in complex prob-

lems; that of successfully learning in a large state space. Reinforcement learning

is a technique inspired by human behaviour, and we can look again to human

behaviour to see how large state spaces may be managed. In the next section we

give a brief overview of some common techniques.

1.2.2 State generalization and function approximation

Generally speaking, there are two main techniques that are used in decision prob-

lems with huge state spaces. The first, abstraction is to decide actions based on

a high-level or abstract view of the state space, ignoring irrelevant details or co-

alescing several states together—for example, when cleaning a room, if one walks

into any of the walls then an appropriate action is to reverse, regardless of which

wall it is.

The second technique, function approximation is to use experience from states

similar to the current one in deciding the immediate action. This may be achieved

by partitioning or clustering the state space in some way (Sutton and Barto,

1998), or it may be achieved by mapping a high-dimensional space into a lower

18 Chapter 1 Introduction

dimensional one (Roy and Gordon, 2002). In simple reinforcement learning, agents

learn tables of states and values. Function approximation replaces these lookup

tables for state values with functions (such as neural networks or radial basis

functions) which map from state variables to values. Online supervised learning

techniques learn the parameters given the experience in (state, value-estimate)

pairs. Function approximation may also be used to learn behavioural policies

directly, taking features of the state as an input and outputting an action—this

is generally done using classification techniques on the state, with the classes

corresponding to actions.

In general we will need to use both abstraction and function approximation in

order to act in the complex environment of disaster response. However, we do not

focus on these problems within the current work, Rather, we make use of simple

existing techniques—manually defining abstractions, and using neural networks

for function abstraction where necessary. For our future work more sophisticated

techniques will become necessary.

To sum up, in this section, we have outlined reinforcement learning and its exten-

sion to partially observable state spaces. However, in order to act in our target

multi-agent domain, all agents must make decisions in the context of other agents.

In the next sections we discuss current approaches to such coordinated decision

making.

1.3 Coordinated decision making

Agents functioning in uncertain worlds among other agents may simply include

their behaviour in the world model they develop. However, this may lead to inac-

curate assumptions about the world, as other agents adjust their own behaviour.

Maintaining models of the world and of other agents separately provides greater

flexibility and may enable the agent to reuse a world model as agents come and go,

or reuse agent models in fresh scenarios. Furthermore, although in this report we

emphasize coordination as a part of a decision making process, if the other agents

are modelled separately, a coordination mechanism can be studied distinctly or

parts of the coordination mechanism (a communication protocol, for example),

can be supplied separately. In some cases, this may be useful—for example, allow-

ing agents to coordinate for resources, and then make individual decisions within

the constraints of this coordination. Finally, if an agent maintains its models of

the other agents separately from the environment, it can reuse these models if it

Chapter 1 Introduction 19

meets the same agents in a fresh environment, and it can adapt its overall model

to an open system. It is therefore interesting to explore ways in which agents can

coordinate when they have explicit models of the other agents in the system.

To this end, we outline each of the three potentially overlapping coordination

mechanisms identifed be Boutilier (1996):

Conventions can be the simplest form of coordination. In a convention-based

coordination system, there are a number of assumed “social rules” defining

how agents interact when they are aware of other agents. There are many

real-word precedents for coordination by convention. For example, traffic

control is frequently based around conventions such as stopping at red lights,

or travelling faster in the right-hand lane of a motorway than the left-hand

lane. Such coordination has the advantages of being simple and requiring no

setup time (Fitoussi and Tennenholtz, 2000). However, it is inflexible, and

relies on all participants knowing the conventions and complying with them.

A potentially more flexible extension to coordination by conventions is a

role-based organisation. Each role is associated with a set of conventions.

Role-based structures have been successfully implemented for teams such

as Robocup soccer teams (Tambe et al., 1999). However, this work is not

applicable to very open domains as it considers teams which are fixed over

the relevant time period. To handle dynamic open domains, self-organising

structures can be used (Wang, 2002). Self-organisation can also be applied to

uncertain domains: organisations can restructure as the agents obtain new

information about the environment. However, we see this as a particular

application of learning and so do not explore this technique in any further

detail.

Communication is another common human coordination technique. Coordina-

tion through communication has a small setup time and some bandwidth

costs. It requires a common language, and the flexibility of this language

determines the flexibility of the resulting coordination. There is potential

for probabilistic models of language (Fischer et al., 2005), permitting (for

example) adaptation to changing environments. Alongside a language for

coordination, agents must have some means of reasoning internally about

the outcomes. The nature of the coordination will thus depend considerably

on the agents’ internal coordination models. In any large system, such as

our focus domain, there must be some form of communication in order to

share information between agents; it will be impossible for any one agent to

20 Chapter 1 Introduction

sense all the information it needs to function effectively in context (Dutta

et al., 2004). However, we expect to make limited use of communication

beyond this information-sharing, as the bandwidth restrictions will preclude

it in most cases.

Learning techniques extend the single agent learning outlined previously into

the multi-agent domain. The uncertainties of our target domain make learn-

ing techniques a natural approach to problems within this domain—agents

must learn about the situation they are in. Such techniques offer potential

for evolving coordinated polices within uncertain state spaces, either with

a group of learners exploring the space and converging towards an equilib-

rium (as in (Claus and Boutilier, 1998) and (Littman, 1994)), or by one agent

explicitly learning about the behaviour of others in order to adapt its own ap-

propriately (Chalkiadakis and Boutilier, 2003). These learning methods may

incorporate learning about what and when to communicate (Dutta et al.,

2007), or learning about conventions (Kazakov and Bartlett, 2004). Con-

ventions could also be used to provide strong prior assumptions about other

agent behaviour within a Bayesian learning model such as (Chalkiadakis and

Boutilier, 2003) (the multi-agent extension to the model of Dearden et al.

(1999) previously discussed).

Furthermore, agents may apply learning methods to only parts of a coordi-

nation problem; for example, learning to act given a fixed communication

protocol, learning to communicate given a fixed action model, or learning

to choose between specific coordination protocols based on the tradeoffs be-

tween setup costs and effectiveness in the current environment (Excelente-

Toledo and Jennings, 2005). Therefore, even given the complexity of apply-

ing a learning technique to a complete problem, it may be appropriate to

consider learning for a part of the problem, especially in uncertain or dy-

namic conditions. This motivates our focus on learning techniques in this

report.

As well as the three approaches to coordination identified above, another research

domain which investigates coordination from a theoretical angle is game theory

(Leslie, 2004). Agents which are playing some game try and derive, through exact

evaluation or learning, a best response to the strategies of the other players in the

game. If all the players iteratively keep playing best responses, and if strategies

are mixed (stochastic) the play will converge to a (mixed) equilibrium. One of the

challenges of game theory is to direct play so that convergence is not just to any

Chapter 1 Introduction 21

equilibrium but to an optimal one (Claus and Boutilier, 1998). In our context this

may be expressed as, say, leaving a disaster scene with all lives saved, rather than

all lives lost.

Within the domain of game theory, multi-agent learning in which the agents main-

tain explicit models of the other agents may be considered to be learning in stochas-

tic games. An effective approach to extending single-agent reinforcement learning

into this setting is the win-or-learn-fast (WoLF) approach: an agent’s learning

rate is adjusted according to its current performance. (Chalkiadakis and Boutilier,

2003), already mentioned, builds on (Dearden et al., 1999) to improves upon WoLF

techniques using a Bayesian model: agents maintain beliefs about the behaviour

of the other agents, as well as a probability distribution over world models. This

eliminates the need for the use of heuristically determined learning rates, as well

as allowing the use of prior information about agents.

Considering the above coordination techniques in the light of our domain require-

ments; particularly uncertainty, partial observability, dynamism and openness, we

conclude that “acting” and “coordinating” in uncertain systems should be com-

pletely integrated. That is, rather than an explicit coordination mechanism, agents

should include their beliefs about other agents’ behaviour in their action selection

mechanism, adjusting their own behaviour according to their beliefs about the

other agents. Moreover, we believe that such an integrated approach should be

based on sound theoretical principles. Such a basis allows us to reason about prop-

erties of the approach, such as optimality or convergence (of agent behaviour).

In uncertain and dynamic domains, this motivates the use of multi-agent learning

models, since these provide a basis for such coordinated action selection and are

designed for uncertain domains. Furthermore, although in large domains it may

be impractical to learn a complete solution in real time, we have explained that

learning methods can be used on top of other coordination mechanisms to provide

adaptability on top of known conventions or communication languages, to select

between coordination mechanisms, or to use learning for some subproblem. We

therefore believe that it will be advantageous to explore the application of multi-

agent models to domains with the properties outlined in section 1.1.

In particular, as a point of departure we consider the model of (Chalkiadakis and

Boutilier, 2003) in which agents maintain probability distributions over models.

This has been proven to be effective on small test problems, including some prob-

lems not handled well by previous multi-agent learning mechanisms (see (Chalki-

adakis and Boutilier, 2003) for more details). However, the model is only defined

22 Chapter 1 Introduction

for the fully observable case: agents can see the actions of all the other agents,

and ascertain deterministically what the current state is. Furthermore, it has not

yet been tested on large domains; the sample problems have two agents and half a

dozen states. In our work, we address in detail the former shortcoming, and out-

line a possible approach to address the latter. In the following section we outline

this research contribution in more detail.

1.4 Research contributions

In this report we shed some light on the issues associated with coordination in

challenging domains as defined above, and go on, in particular, to describe an

approach to coordinating in uncertain domains which fuses, in a principled way,

the dual problems of learning about the domain and learning about the other

agents.

Our approach is completely decentralized and is particularly applicable to uncer-

tain, bandwidth-limited scenarios involving heterogeneous agents. Although our

model assumes a static situation for guarantees to hold, in section 3 we discuss

briefly the implications of applying the model to certain classes of dynamic sce-

nario. In our work, the agents are completely cooperative—that is, they have

identical goals. However, in section 5.2 we show how the approach could be ex-

tended to domains in which there are competitive agents. We also suggest a way of

extending our model to open systems. Through this work, we make the following

novel contributions to the state of the art:

• An extension of the model in (Chalkiadakis and Boutilier, 2003) to multi-

agent systems in which the actions of other agents are partially observable.

This covers two cases: First, agent actions are only sometimes observable,

but inferences can be made about likely actions from observable state changes

(for example, if a pile of rubbish goes flying past my window, it is likely that

someone is flinging rubbish from one of the the windows above). Second,

the effects of agent actions are consistently observable, and the agent has

a model of the likely effects given an action. This could arise, say, in a

disaster occurring at sea, where a rescue plane drops rescue packages. From

the wind conditions and the progress of the packages, the intended targets

for the packages can be modelled. This might be useful, for example, for

another ’plane which is coordinating with the first over a period of time, to

Chapter 1 Introduction 23

estimate where packages will be dropped at the next disaster location and

so plan its own actions.

• Previous work on coordination in uncertain and partially observable domains

treats the other agents as a part of the environment. Using the above mod-

els, we demonstrate that explicitly modelling the other agents’ behaviour

can result in effective learning, thereby extending and improving upon the

previous work.

• An extension of the model in (Chalkiadakis and Boutilier, 2003) to the case

where states may be partially observable. As discussed, in many realistic

domains it is unreasonable to assume that the agents will be able to fully

observe their situation. However, the existing formal work on coordinating in

uncertain domains with such partial observability is limited to non-learning

environments (e.g. (Emery-Montemerlo et al., 2004), (Matsuno et al., 2001)).

By extending the Bayesian learning model into such domains, we provide a

basis for a principled approach to coordinated action in these domains.

Since this model is sufficiently complex to be impractical for use, we outline

the use of state abstraction and approximation techniques into order to apply

our model to a practical problem.

The combination of these contributions is a model for coordinated decision making

in rich and challenging domains, with high levels of uncertainty. This model is

based on a well-founded approach, giving us confidence in its correctness and a

set of guarantees about its behaviour in small systems. The model is extended

into larger-scale systems using abstraction techniques, demonstrating its practical

effectiveness. The system is intended to be very flexible in its applicability, guiding

all or part of agent behaviour in both cooperative and competitive systems. In

section 5.2 we discuss several interesting directions for development of this work.

1.5 Report structure

The rest of this report is structured as follows:

• In section 2, we begin by describing the salient features of the kinds of agents

we will use. We then discuss the techniques which enable such agents to plan

and act under uncertainty, and give an overview of how the state of the art

24 Chapter 1 Introduction

extends these models into partially-observable multi-agent domains. Within

this section, we focus on a particular Bayesian learning system (Chalkiadakis

and Boutilier, 2003) and discuss its suitability in our target domain. Since

applying learning techniques in complex state spaces typically involves some

approximations or abstractions of the state space, we outline some effective

techniques for achieving this. We also describe other approaches to coordi-

nation and their relation to multi-agent learning.

• In section 3, we extend the previously described Bayesian learning system

to partially observable systems and propose a state abstraction algorithm to

make the model tractable for potentially large problems.

• In section 4, we instantiate the model of section 3 on a simple coordination

problems (section 4), providing a preliminary demonstration of its effective-

ness as a solution technique.

• Section 5 concludes the report. We outline the way in which our model

could be extended to address more of the domain requirements in section

1.1, suggesting a number of directions for further study (section 5.2) and

giving a timeline for the immediate work (section 5.3).

Chapter 2

Literature Review

In this chapter, we detail the current state of the art for agents acting in the context

of uncertain multi-agent systems with the features discussed in section 1.1. We

begin by outlining key properties of the intelligent agents which act in such systems

(section 2.1). This provides a background for the rest of the chapter. In section

2.2 we describe learning models for decision making under uncertainty. Section

2.3 then develops these techniques into the multi-agent domain and discusses the

coordination therein. In section 2.4 we discuss the general issue of how problems

with large state spaces can use approximation techniques to render them tractable.

Finally, section 2.5 summarises the chapter and motivates the work described over

the rest of the report.

2.1 Autonomous agents

For the purposes of our work, we assume that an agent is an entity which is situated

in some environment and reacts to that environment, in order to try and achieve

some objective or goal (this definition is based on (Wooldridge, 2002), chapter 1).

Such agents will be able to logically reason about their actions and their effects

with respect to the current state of the world and the agent’s goal. At times,

inconsistencies and conflicts in agent goals and beliefs may crop up; the agent’s

reasoning mechanisms must have some means of resolving these. We believe that

probabilistic methods provide a realistic way to do this for a number of reasons.

First, such techniques are effective for reasoning in uncertain scenarios where an

agent may want to reason over some degree of belief in a particular property.

25

26 Chapter 2 Literature Review

Second, probabilistic representations are typically more compact than their logic-

based counterparts for both the input data and the agent models (Stenning and

van Lambalgen, 2005).

This reasoning mechanism will concern both the signal the agent receives from its

environment, and the effects of its own actions. The agent may form an explicit

world model or it may leave the model implicit as it reasons about plans. Explicit

models have more potential for reasoning about states and behaviours as they

store more information explicitly. However, maintaining explicit models may be

computationally and memory intensive (Excelente-Toledo and Jennings, 2005).

Despite this, we believe that the aforementioned benefits of explicit models justify

their use where practical. In section 2.2, where we describe the use of learning for

decision making under uncertainty, we revisit this issue in the context of specific

learning models. If, as in many disaster arenas, the world is large and detailed,

agents may only be able to model explicitly small parts of it accurately, due to

space constraints. In such worlds, it is therefore appropriate either to use a model

which can store information at different levels of detail, or to reason in a simplified

abstract world. In section 2.4 we explain the possibilities for achieving either of

these.

Finally, as well as reasoning about their environment, agents in a multi-agent

system will interact with each other. This interaction can be modelled by defining

a (hyper-)sphere of influence for each agent within the environment. Overlapping

spheres of influence indicate interactions between agents (Wooldridge, 2002). A

model of how different spheres interact will form a part of the agent’s model of the

system, as will models of the behaviour of the other agents. Once again, there will

be tradeoffs between making these models explicit or implicit. Making decisions

in the context of these other agents is the fundamental principle of coordination

(Durfee, 1999). Clearly, this is a central part of a reasoning agent in a multi-

agent system. In section 2.3 we show how to extend models for reasoning under

uncertainty to incorporate explicit considerations of the other agents.

Thus, the in following sections we expand in detail on the dual aspects of mak-

ing reasoned decisions under uncertainty, and making coordinated decisions in

uncertain scenarios.

Chapter 2 Literature Review 27

Example 2.1 Fire-damaged building

A fireman searches an old people’s home after a fire. As he works his way up
the building, he takes increasing care how he treads, as there is no knowing what
kind of structural damage the fire may have caused to the building. At any
point, placing his foot on a beam or floorboard may cause parts of the building
to collapse. As part of his search, the fireman is removing valuables from the
building. Different wings of the building provided different levels of comfort and
were correspondingly priced. The rooms in the more expensive wings contain far
more valuables than those in the cheaper areas, hence are typically more rewarding
for the fireman to search. However, he does not initially know which wings are
which, only slowly discovering the rewarding areas as he makes his way through
the building.

2.2 Decision making under uncertainty

Example 2.1 demonstrates a scenario in which an agent may have to act with-

out initially knowing the consequences of his actions. In the next subsection we

introduce reinforcement learning as a means of incorporating experiences into a

world model in order to make reasoned decisions under this type of uncertainty.

We highlight a Bayesian (probabilistic) technique as a principled approach to re-

inforcement learning. We then go on in subsection 2.2.3 to discuss the extension

of these techniques into partially observable domains.

2.2.1 Reinforcement learning

We consider, as in example 2.1, a single agent acting in an environment. The agent

perceives its state through some kind of sensory inputs, and makes a decision about

how to act based on the state. As a result of the agent’s action, the world will

transition into a new state. After each action, the agent may accrue some reward.

A key feature of such problems is the notion of delayed reward—states which

have no or negative reward, but which ultimately lead to higher rewards. This is

a common feature of many real world problems (the fireman may travel through

many rooms, potentially slipping and hurting himself, before he finds a wing where

many valuables are salvageable).

Determining the reward achieved from a particular action may be straightforward—

the fireman above may receive a point for each valuable he retrieves. However, in

some kinds of problem deciding a reward function may be trickier. For example,

following an earthquake, buildings may be burning while humans are buried and

28 Chapter 2 Literature Review

trapped. A reward function for a team simultaneously rescuing humans and extin-

guishing buildings may try and put relative values on the buildings and the human

lives, supplying some reward for unburnt buildings and some for live humans. We

do not discuss this issue further, but simply suppose the existence of a known

reward function (which in disaster response scenarios will typically be defined in

terms of human lives).

Given this context, the goal for the agent is to maximise some function based on

the reward obtained. This may be (Sutton and Barto, 1998):

• over a fixed time horizon

• during an episode in which the agent continues to act until some termination

condition is reached

• the average reward over an indefinite time period, or

• the total reward over some time period

In the last case, more recent rewards may be valued more highly than earlier

rewards—in particular, this encourages adaptation to nonstationary environments.

In disaster scenarios, we may consider either the total reward accrued (perhaps

in number of lives saved) when some termination condition is reached (the scene

is cleared up), or we may consider how efficiently our agents can act to accrue

reward over a fixed time period. For the purposes of this work, at the moment

we focus on the former which we believe is a natural formulation for this kind

of scenario—rescue agents will typically work towards a particular termination

condition rather than for a fixed time period.

Specifically, in a reinforcement learning problem we define a finite set of states S,

a finite set of actions A, and a finite set of rewards R. The environment dynamics

are then defined by:

1. A transition probability function, P (s′|s, a). This defines the probability of

reaching state s′ from state s given that the action performed was a.

2. A reward probability function P (r|s, a). This defines the reward achieved

by taking action a from state s.

The agent’s decisions are made according to a policy π, where π(s, a) defines the

probability the agent will take action a from state s.

Chapter 2 Literature Review 29

In this model, the probability of transitioning to a particular state, or achieving

a particular reward, are conditioned only on the current state, and not on any

previous states or actions. This is therefore a Markov decision process as described

in section 1.2. Within a Markov decision process, if the transition and reward

probability functions are known, then it is possible to derive the optimal policy

using the recursive Bellman equations:

Vπ(s) =
∑

a π(s, a)
∑

s′ P (s′|s, a){E[rt+1] + γVπ(s′)} (2.1)

V ∗(s) = maxπ Vπ(s) for all s ∈ S (2.2)

and

Qπ(s, a) = E{rt+1 + γVπ(st+1)} (2.3)

where V (s) denotes the value to the agent of being in state s, given both its

immediate reward and the discounted future rewards it may achieve from that

state. Q(s, a) denotes the value to the agent of being in state s and taking action

a, given the immediate reward and the expected value of the resulting state. γ

is a problem-specific discount factor determining how “farsighted” or “myopic”

the agent is. In each state s, the action a is chosen which maximises Q∗(s, a). If

the model of the environment is available, these equations form, in principle, a

soluble system of simultaneous equations. Such systems can be solved iteratively,

for example using dynamic programming techniques (Sutton and Barto, 1998).

This provides a theoretical grounding. However, in our example domain the dy-

namics of the environment are likely to be unknown to the agent, the inherent

uncertainty of any large system possibly exacerbated by the effects of the disaster.

Thus, it must learn the optimal policy through exploration of the state space.

As discussed in section 1.2, in this context learning algorithms may be categorised

as model-based or model-free. Model-free algorithms are the more popular ap-

proach, requiring simple updates to Q(s, a) or V (s) estimates at each step. Ex-

amples include Q-learning, TD(λ) and SARSA (Sutton and Barto, 1998), all of

which provide variations on how to adjust the estimate given the most recent ex-

perience. However, in section 2.1 we argued that model-based methods can be

more powerful. Specifically, in many applications, agents may have spare cpu cy-

cles during a timestep; for example while waiting for environmental input, while

30 Chapter 2 Literature Review

carrying out a motor action, or if a timestep corresponds to some fixed unit of real

time. In such applications, agents that maintain a model of the environment may

use these spare cycles to simulate actions based on their model, and refine their

policies accordingly. Providing the models are sufficiently accurate, this can result

in much faster convergence to the optimal policy (Sutton and Barto, 1998).

Furthermore, model-based algorithms permit the use of a prior model to guide

agent learning—although doing so can be a disadvantage if unwanted bias is in-

troduced (Dearden et al., 1999) (Sutton and Barto, 1998). In a disaster scenario

problem, such a prior model may be advantageous because agents can enter the

scenario with some initial model based on previous knowledge of the area and

previous disaster experiences, and then learn from the current experience to refine

this model and hence their behaviour.

Finally, model-based algorithms may use the Bellman equations above to derive

the optimal behaviour for the estimated model, or the iterative techniques derived

from these equations (Sutton and Barto, 1998). However, deciding behaviour

based on a point estimate of the model ignores a key variant: the agent’s uncer-

tainty about its estimate. The uncertainty in the estimate should affect both the

caution with which the agent behaves, and the decisions it makes about trading

exploratory actions (investigating unknown regions of the environment) with ex-

ploitative actions (those which it believes will accrue high reward). We refer back

to example 2.1 as a demonstration of each of these points. Firstly, if the fireman is

unsure about his estimated model of his current region, he must step forward cau-

tiously so as to jump back if a board falls away underfoot. Secondly, if the fireman

has found a wing filled with jewellery, but has left two wings unexplored, it may

be that one of those wings contains far more expensive jewellery than the current

one. In the following section we describe a Bayesian model-based technique which

explicitly includes these uncertainties in the agent model.

2.2.2 Bayesian model-based learning

Example 2.2 gives another example of the exploration-exploitation tradeoff. As

the agent continues to explore the state-action space and so its model becomes

more accurate, it should tend towards exploiting its knowledge and away from

exploration. In point-based estimation models, various heuristics are used to select

actions, selecting the action believed best (the “greedy” action) some fraction of

the time (where the fraction depends on problem parameters) and exploratory

Chapter 2 Literature Review 31

Example 2.2 Exploration-exploitation in New York

An earthquake occurs in New York, destroying many of the buildings on the east
side of the Hudson. Ambulances from the west side rush to the rescue. Unfortu-
nately, the earthquake has also destroyed several of the bridges across the river.
An ambulance arriving at the riverside early after the disaster learns over the ra-
dio that there is a bridge still standing two miles downriver. However, there is
no data about the bridges upriver. The ambulance driver knows that there is a
bridge only half a mile away, if it is still standing, and another a mile and half away,
but then no more bridges for five miles. The decision the ambulance driver must
make about whether to travel in the uncertain direction, or head straight for the
bridge which is known to be standing, is an example of an exploration-exploitation
problem.

actions the rest of the time (Sutton and Barto, 1998). However, if the agent

maintains, rather than a point model of the dynamics, a probability distribution

over possible models, then the optimal action, whether exploitative or exploratory,

can be determined without recourse to heuristics or problem-specific parameters.

Specifically, the expected value of a particular action is given by:

E[Q(s, a)] =

∫
M

Q(s, a|M)P (M)

where M denotes a possible model, and Q(s, a|M) is the Q-value given that par-

ticular model.

For an agent maintaining a probability distribution over models in this way, the

Markov decision process is defined by the transition from probability distribution

to probability distribution. Each state in this process is a probability distribution

over states in the world; such states are described as belief states. The transitions

between belief states are determined by Bayes’ rule:

P (model|observations) ∝ P (observations|model)P (model)

with the observations being the state and reward signals arising from each envi-

ronmental transition. However, these MDPs do not have a finite state space, so

cannot be solved using reinforcement learning techniques for finite state spaces.

Instead, it is necessary to use some means of approximating a solution—for exam-

ple in (Dearden et al., 1999), sampling techniques are used, using a finite number

of candidate MDPs at each step when estimating the optimal action from the

current state.

32 Chapter 2 Literature Review

This probabilistic model is a well-founded approach to decision making within

single-agent problems in which the state of the world is known at all times, but

the environmental dynamics and in particular the effects of agent actions are

uncertain. However, the scope of our illustrative domain is broader than this: in

particular, we expect that frequently agents will not be able to observe the full

state of the world but must make inferences based on partial observations. In the

next section, we discuss approaches to decision making in systems where the state

of the world is uncertain.

2.2.3 Partial observability

Example 2.3 London bombings

On 7 July 2005, a coordinated attack took place covering several locations in
London. As events progressed, observers at each of the locations only gradually
developed a picture of what was happening. At each incident, it was not initially
clear what had occurred—a bomb, a fault? The connections between incidents
came later and gradually. Similarly, natural disasters such as earthquakes lead to
high degrees of uncertainty about the environment, both localised (the number of
people trapped in a particular building) and widespread (the structure of roads
may change completely).

Figure 2.1: A simple POMDP

In the previous examples, the agent’s learning concerned the effect of its actions

on the environment and the rewards resulting from its actions. However, in many

problems, as illustrated in example 2.3, it is not the effects of actions on the world

state which are unknown, but the world state itself. In these partially observable

problems (POMDPs), we assume the existence of a fixed, known model P (s|o)
where o is the current set of observations and s is a possible state. Although

Chapter 2 Literature Review 33

the sequence of states is defined by an MDP, the sequence of observations is not.

Consider the simple example in figure 2.1: if the current observation is O2, then

the probability that the next observation will be O5 differs depending on whether

the previous observation was O3 or O1.

The correct approach to finding the optimal policy in a POMDP is to maintain a

continuous belief state containing the (Bayesian) probability of being in each state

given the current observations (Kaelbling et al., 1998). Given the current belief

state and an observation obs, we can obtain the new belief state by computing the

probability of each possible state t:

P (t|obs, b) ∝ P (obs|t, b)P (t|b)

= P (obs|t)
∑

s

P (t|s)P (s|b)

where s denotes a previous state and the belief state b defines P (s|b). The belief

state is the resulting pdf P (t). Hence, a sequence of belief states does have the

Markov property, thus forming a continuous MDP which can be solved exactly

by exploiting its properties—the value functions are convex and piecewise linear

(Kaelbling et al., 1998). Intuitively, there is a “piece” of linear value function for

the policy tree arising from each possible state, and the value function for the state

is the upper surface of all these segments. The witness algorithm (Kaelbling et al.,

1998) is based around this notion, but does not scale to large problems. Incre-

mental pruning (Cassandra et al., 1997) addresses some of the efficiency problems

with the witness algorithm, but generally exact solution methods do not scale well

and are thus not appropriate for real-world systems of the kind we are trying to

address.

A more scalable approach to solving such continuous MDPs is to compute approx-

imate value functions for belief states, exploiting the intuition that a large part of

the belief space need never be visited. Techniques include point-based sampling

(Izadi and Precup, 2006) and myopic evaluation (only looking ahead at the values

of the next one or two states) (Chalkiadakis and Boutilier, 2003). A more recent

method uses quadratically constrained linear programs to describe locally optimal

policies (Amato et al., 2006), with promising results. Another novel and inter-

esting technique is the use of principal components analysis (PCA)1 to map the

1For an explanation of PCA, see for example (Bishop, 2004), chapter 8

34 Chapter 2 Literature Review

belief space into a low dimensional space, carrying out the planning in this low

dimensional space (Roy and Gordon, 2002).

In this work, we propose to use a combination of techniques, sampling and myopic

evaluation, since high dimensional state spaces will result in high dimensional

belief spaces, necessitating several approximation techniques to become tractable.

In future work, we may investigate the combination of the PCA technique with

other approximation techniques, as it appears to be an elegant way of reducing

the state space while retaining the most important information.

However, none of these techniques are immediately applicable to our problem,

since in the POMDPs described above, the transition probabilities P (t|s) must be

known to the agent. However, an agent entering a new, uncertain scenario will

not necessarily know these probabilities and they may need to be learnt alongside

the computation of the optimal actions.

As in the fully observable case, current solution techniques may be model-based

or model-free. For example, Baxter and Bartlett (2000) propose a direct policy

approach, using gradients to incorporate a performance measure into the learning.

similar techniques are described in (Aberdeen and Baxter, 2002), in which the

agent uses Monte-Carlo methods to learn through interaction with the environ-

ment.

By contrast to such model-free methods, model-based methods are developed

around the insight that a POMDP is a form of hidden Markov model (HMM),

in which a sequence of states gives rise to a sequence of observations. POMDPs

have the added complication of including actions, but HMM solution techniques

such as the recursive Baum-Welch equations (Roweis, 2003) can be adapted. How-

ever, this solution form uses a complete dataset (sequence of observations) and so

is not appropriate to incremental learning. In realistic problems, such as we face

here, an agent must develop and update its policy as it explores the environment,

so some form of online learning is necessary. An alternative to the use of Baum-

Welch updates is the use of short-term memory trees to provide model updates

(Shani et al., 2005). Such trees contain variable-length sequences of observations,

in order to handle the non-Markov properties of POMDPs. This approach can be

integrated with an incrementally improving policy.

The above techniques rely on a number of approximations and assumptions about

the state and hence are not entirely satisfactory. We propose, as an alternative,

to extend the Bayesian model of the previous section (2.2.2) into this POMDP

Chapter 2 Literature Review 35

domain. This formulation falls naturally into the belief-state space of POMDPs,

and will provide the advantages of the Bayesian model-based methods (explicitly

handling uncertainty, making use of prior knowledge) in this domain. In section

3.4.1 we give the details of this model.

However, in many examples of large and partially observable problems, the learn-

ing agent is not acting alone. We must therefore explore the generalisation of the

above approaches into multi-agent systems. This is the focus of the remainder of

this chapter.

2.3 Learning in multi-agent systems

Example 2.4 Traffic jams in New York

Consider again the ambulance driver arriving at the Hudson after an earthquake.
If he is the only ambulance approaching the scene, he may choose not to take the
risk of having to travel many miles up river, and head straight for the bridge which
is known to be standing. However, if he knows that there is a fleet of ambulances
following him, he may choose to head upriver so that he can send back data about
the status of the bridges to later ambulances, enabling them to update their model
without the travel costs. He might also consider that if all the ambulances were to
head for the one bridge, a traffic jam would form there, perhaps wasting precious
time.

Clearly, when several agents are functioning within a system, the interactions

between their behaviour are relevant to the decisions they make. Example 2.4

illustrates this, extending the example of the previous section (2.2.2) into the

multi-agent domain.

Generally speaking, there are two main approaches to the extension of single-agent

learning into such multi-agent systems. The first approach, generally applied to

cooperative systems, is to consider the problem as a whole, with the ultimate aim

of finding optimal joint actions, although the implementation may be decentralized

with each agent learning separately. This is the typical focus of work described

as “multi-agent reinforcement learning” (MARL) (Panait and Luke, 2005). In our

work, the focus is on the way in which an agent (or team of agents) operates

in an environment in the context of other agents. However, as in many disaster

scenarios, this context may be an assortment of agents, each of whose behaviour

is determined by its own controlling algorithm. Furthermore, these agents may

not all be cooperative. Therefore, solutions which rely on all agents behaving the

same way and having the same goal are not appropriate to this kind of problem.

36 Chapter 2 Literature Review

The second approach, more appropriate to our domain, is described as “learning in

games” and arises from the addition of learning methods to game theory, extending

single-agent learning with estimates of best responses to the other agents. In the

case that all the agents in some game are learning best responses, they should

converge to a Nash equilibrium. A further challenge then is to direct the “play”

so that not just any equilibrium is achieved, but an optimal one.

There is a great deal of overlap in the two approaches. Indeed, recent work explic-

itly explores the relationship between them (Rezek et al., 2006), proposing new

algorithms for game play inspired by machine learning techniques, and improv-

ing machine learning techniques with insights from game theory. Over the next

sections, we describe extensions from the single agent into the multi-agent world

and discuss how the techniques relate to the uncertain heterogeneous domains we

introduced in section 1.1.

2.3.1 Learning in games

The first issue to consider as we extend our learning agent models into explicitly

multi-agent domains, is what we hope our agents will achieve (Shoham et al.,

2003). A typical target is the Nash equilibrium of the underlying stochastic game.

However, in large and complex systems, a NE may not be a useful target—finding

an equilibrium may be too costly, for example. Furthermore, finding a NE is

only possible if all the players are adjusting their strategies towards this goal. In

heterogenous settings, such as the disaster response domain, we cannot ignore the

possibility that some agents may have, say, näıve fixed controllers and all we can

do is make our behaviour a best response to these.

More realistically, therefore, we are likely to seek learning algorithms capable of

finding a satisfactory solution which have desirable properties over an indefinite

period of play (Lesser, 1999). Such properties may include: convergence (of re-

wards, of actions, of strategies), rationality, and no-regret—this property means

that a learning algorithm should not allow itself to be exploited by malicious op-

ponents (Bowling, 2005). Which of these are more relevant is problem-specific.

For example, the no-regret property can be ignored if all the agents are known

to be cooperative, while convergence is less important to a constantly changing

scenario.

The WoLF approach, exhibited by (Bowling and Veloso, 2001) and its extension

GIGA-WoLF (Bowling, 2005), is an effective way of adapting single-agent learning

Chapter 2 Literature Review 37

in a multi-agent domain. “Win or learn fast” agents do not explicitly consider the

other players, but adjust their learning rate according to how good the current

policy seems. This results in a particular agent settling into a particular policy if

it seems to be working well, but quickly changing it when other agents adapt to it.

In a cooperative domain where all the agents use the same system, this algorithm

converges to the equilibrium. The algorithm may also be useful useful in open or

dynamic domains as it provides a rule to adapt to changing circumstances without

explicitly modelling the circumstances.

However, the WoLF approach must decide an appropriate learning rate given the

apparent performance of the algorithm, where the learning rate parameters are

problem specific heuristics. Better performance may be achieved by maintaining

a probability distribution over the agent strategies, and taking this distribution

into account in computing a best response (Chalkiadakis and Boutilier, 2003). By

maintaining a distribution rather than a point estimate, the agent can account

for the uncertainty in its beliefs. This is a model-based approach, therefore has

the advantages that have previously been discussed for model-based approaches,

including incorporation of prior knowledge.

In more detail, in the multi-agent system of Chalkiadakis and Boutilier (2003),

explicit models of the other agents are also maintained. The agent’s belief state, b,

now contains: a probability distribution over the environment model, a probability

distribution over strategies, the most recent state and action choices, and a history

trail which contains as much state as is necessary to accurately model the other

agents’ strategies2. At each timestep, the agent (supposing it to be agent i) selects

the action ai which leads to the greatest expected value, given the above beliefs.

In this model, the expected value is computed by the following Bellman equation

over the belief state (Chalkiadakis and Boutilier, 2003):

Q(ai, b) =
∑
a−i

P (a−i|b)
∑

s′

P (s′|ai◦a−i, b)
∑

r

P (r|s′, ai◦a−i, b)[r+γV (b < s, a, r, s′ >)]

where

2Determining the relevant history assumes some knowledge about the other agent strategies.
If the agent maintains insufficient history, then its model of opponent strategies will never be
accurate and thus the results will be suboptimal. In the case where the underlying process is
Markov and where all the agents are learners trying to converge to an equilibrium, we may safely
assume that the previous state contains sufficient history to obtain an accurate model.

38 Chapter 2 Literature Review

V (b) = max
ai

Q(ai, b)

and b < s, a, r, s′ > is the updated belief state which arises from being in the belief

state b, in which the current state is s, and carrying out joint action a, resulting in

new state s′ and reward r. The new history trail and state in this fresh belief state

are trivial. The environmental and strategy models are updated using Bayes’ rule.

One key assumption made by this model, which we have already disputed for the

single-agent case, and which becomes increasingly improbable as the problems get

larger, is full observability. In multi-agent problems agents will frequently have

some local observations which are not available to any other agents. Therefore,

over the next two sections we discuss the extension of POMDPs into the multi-

agent domain (2.3.2), and reinforcement learning algorithms therein (2.3.3).

2.3.2 Multi-agent POMDPs

Example 2.5 Ambulance rescue in New York

Consider once again the ambulance driver of examples 2.2 and 2.4. In example
2.2, the driver received information about the status of each bridge over the radio
as it was discovered. However, suppose that there are several fleets of ambulances
operating on this scene, each using a different radio frequency. Information be-
tween the fleets is no longer completely shared, resulting in each fleet having a
slightly different picture of the scene.

Example 2.5 describes a scenario in which agents may make local observations

which are not known to the other agents. Each agent in such a scenario may have

a distinct estimate of the state, or probability distribution over states, even if all

had the same prior knowledge. As before, we focus on POMDPs as a useful model

with an associated body of theoretical knowledge.

In section 2.2.3 we have already shown that there is considerable complexity in

solving POMDPs. Adapting solutions to the multi-agent environment is there-

fore a challenging problem. However, one of the key differences between multi-

agent and single-agent POMDP solutions is that if the environmental dynamics

are known, single-agent solutions can be computed offline. However, in a multi-

agent environment where agents must respond to the behaviour of others, the

policy must be computed online. The advantage of computing policies online is

that policy searches can be directed only into the regions of the state space which

are actually visited (Paquet et al., 2005).

Chapter 2 Literature Review 39

Just as fully observable single-agent learning can be extended to the multi-agent

case by treating other agents as part of the state (section 2.2.2), so multi-agent

POMDPs can be solved using any online POMDP algorithm, treating knowledge

about the other agents as part of the state. The branch-and-bound algorithm

in (Paquet et al., 2005) is an example of such an algorithm. By incorporating

problem-specific knowledge into the search (for example, treating some variables

as static in the short term), this algorithm is demonstrated to work on larger

scale problems. Other methods can be used to improve efficiency such as local

factorisation (Kim et al., 2006) and Bayesian network representations (Sallans,

2002).

In the ambulance example above, an ambulance driver does not need to visit a

region which has been visited by other ambulances. If he has an explicit model of

the behaviour of the other ambulances, he can combine it with his own observations

of the scene and any nearby vehicles in order to optimise his own behaviour. This

would be an instantiation of a model-based approach. As the problems become

larger (more states, more unknowns, more agents), the difficulties of the model-

based approaches (computational and memory intensity) begin to render them less

useful. Nonetheless, there is some existing work in this area.

In more detail, a formal model-based approach to solving multi-agent POMDPs is

to extend game-theoretic models into partially observable stochastic games (POSGs).

A POSG consists of: a finite set of agents I, a finite set of states S, a finite set

of actions A, a finite set of observations O, an initial state distribtion and a set

of Markovian transition probabilities P (s′,o|s, a), and a set of reward functions,

Ri : S × A → R. If the dynamics of the system are known, then in principle the

POSG can be solved to determine the optimal action for a particular agent given

a set of beliefs about the other agents. Whereas a POMDP is solved by conversion

to a belief-state MDP and then solving the resulting continuous MDP, a POSG

is complicated by the need to include beliefs over the other agents’ belief states.

Hansen et al. (2004) provide a solution method for POSGs which finds an equi-

librium by iterating through all the agents, repeatedly removing any dominated

strategies from the agent’s strategy space. More computationally tractable ap-

proximations have also been proposed, such as (Emery-Montemerlo et al., 2004),

in which the full POSG is approximated by a series of one-step POSGs.

The above POSG solutions, and similar, are offline approaches, and appropriate

only to finding equilibria in cooperative games. Thus they are not immediately

40 Chapter 2 Literature Review

applicable to an agent learning to act in an unfamiliar situation, even where the dy-

namics are known. However, the approximation techniques of (Emery-Montemerlo

et al., 2004) may be useful for problems of the kind we are addressing.

The descriptions above focus on problems in which the state is partially observ-

able. In many kinds of partially observable multi-agent POMDPs, including the

ambulance example (2.5), it may also be impossible to consistently observe the

actions of the other agents. We can classify such scenarios into two types. In

the first type, as in our ambulance example, we simply cannot see the actions of

every agent, for example because the agents have a limited field of vision. In the

second type, we can observe the effects of actions, but not the intended action

itself. For example, in many robotics problems, actions may not be completely

deterministic; an agent aiming to travel in a particular direction will have some

probability of successfully doing so, and some probability of travelling in another

direction. Example 2.6 suggests a rescue scenario with this property.

Example 2.6 Partially observable actions at sea

A shipwreck occurs on a stormy sea as a ship travels around the Western Cape
of South Africa. A ’plane drops rescue packages and inflatable liferafts. Unfortu-
natey, the wind blows the packages about as they fall towards the water and they
often do not reach their intended targets.

Now, in a single-agent problem, the agent would model this second case within

the transition function, the non-determinism of actions swept into the probability

P (s′|s, a). However, in a multi-agent problem, it may be to our advantage to model

the underlying strategy of the opponents. Then, if the agents are upgraded (or in

the shipwreck example, if the weather conditions change) so that P (effect|action)

is changed, but their strategies remain unchanged, the learning agent can adapt

its behaviour as soon as the new P (effect|action) model is known. Of course,

the other agents may well modify their behaviour based on the new model; still,

we hope that having this explicit model may give us a head start in keeping up

with them. Likewise the first case is typically handled by treating the problem

as a single agent problem, and the behaviour of the other agents as a part of the

environment. However, we propose that explicitly modelling the behaviour may

be advantageous, reaping the benefits, already discussed, of explicit models.

Finally, these solution techniques are appropriate only if the environment and

strategy models are known to our agent. Our focus, however, is on uncertain

systems. Furthermore, in a scenario in which the other agents are adapting their

behaviour, it will be necessary for us to constantly update our models of the other

Chapter 2 Literature Review 41

agents’ strategies. Although understanding the case where the models are known

will provide us with useful building blocks, we must explore how agents can learn

strategies in unfamiliar situations. This is the subject of the next section.

2.3.3 Learning in multi-agent POMDPs

Example 2.7 Fire-damaged building: multi-agent extension

Recall the fireman of example 2.1, exploring a fire-damaged old people’s home.
Suppose that instead of acting alone, the fireman is only one of several men car-
rying out such a search. Furthermore, despite all advice to the contrary and their
lack of safety training, two of the old folk have joined in. Alongside the firemen,
two policemen carefully traverse the building looking for indications of arson. In
this example, we have a multi-agent problem in which several types of agent must
interact and take each other into account—for example, permitting each other’s
passage through doorways as they meet, or avoiding putting excess weight on dam-
aged floorboards. Some of the agents aim to cooperate—the firemen spread out,
each searching a different region of the building. Others—the policemen—have
different goals. Not all of the agents behave predictably or rationally; one of the
old folks gets confused at times. Finally, neither the complete state of the building,
nor the location or even number of other people in the building is known to each
agent at any one time.

Finally, we consider agents acting in our target domain: namely a multi-agent

domain where there is uncertainty and partial observability. In example 2.7 we

extend our original example into this domain. Acting in such challenging domains,

we draw on the work in learning and multi-agent learning, in POMDPs and in

POSGs. We may take either multi-agent learning as a starting point, and extend it

to the partially observable domain, or we can consider ways of integrating learning

with our POSG solutions.

In fact, very little of the previous work has been extended to this difficult problem.

However, card games have formed a testing ground for applying learning techniques

to partially observable competitive games. Although in card games such as hearts

(Matsuno et al., 2001) or poker (Shi and Littman, 2002), the environmental model

is known to the agent, the behaviour of the other players is not necessarily known.

Over many games, agents can estimate the behaviour of the other players, and use

these estimates alongside POMDP solution techniques to learn to play effectively.

However, these card game techniques have predictable transition functions, thus

are not directly applicable to our domains with uncertain transition functions.

42 Chapter 2 Literature Review

Furthermore, as we have developed the theory of learning in MDPs through in-

creasing layers of complexity, correct and complete solutions to the problem be-

come ever more intractable. Algorithms use tricks such as factorisations (Sallans,

1999), assume independences (Kim et al., 2006), and repeatedly approximate (Roy

and Gordon, 2002) (Chalkiadakis and Boutilier, 2003), leaving the original prin-

cipled approaches some way behind. If these tricks are executed carefully—if the

factorisations are correct, the assumptions not too far from reality, and the ap-

proximations directed by the problem structure, then the solutions found may not

fall too far behind the optimum. In the next section we discuss ways of reduc-

ing the state space in learning problems, in order to render such problems more

tractable.

2.4 Managing large state spaces

Example 2.8 Earthquake

Following a large earthquake, a fireman observes a number of fires from the watch-
tower at his station. Although he can guess that there will be a number of other
fires across the city, he can also see immediately that large areas of the city are
impassable where roads have collapsed or buildings have collapsed onto the roads.
He therefore concentrates his rescue efforts only on the reachable parts of town.
Once he has decided (perhaps in collaboration with other firefighters) which fire
he will tackle first, and travelled there, his focus grows even narrower, taking in
the details of this fire in as much detail as possible, but requiring no information
about other fires in the area.
At the same time, a helicopter observes the scene from above. The pilot’s task is
to report on the state of the city. Unlike the firefighter on the scene, the pilot is
uninterested in details of the fires, recording only an overview. In the helicopter,
all fires are categorised into a small number of size classes (such as small, medium,
large) and approximate coordinates recorded.

In section 2.2.3 we briefly mentioned approximate methods such as sampling for

computing value functions in continuous MDPs. Example 2.8 illustrates that

frequently agents will either be interested only in a high-level view of the state

space (as the helicopter pilot in the example), or in some particular region of the

state space (as the allocated firefighter). It is therefore reasonable to reduce the

state space in either of these ways, selecting a reduction approach appropriate to

the particular problem.

A related issue in managing large or continuous state spaces is that in similar states

similar behaviours are often appropriate. This permits an agent to estimate an

Chapter 2 Literature Review 43

appropriate action for many unvisited states. In this section, we describe current

techniques for both parts of managing large and/or continuous state spaces.

2.4.1 State space abstractions

In section 1.2.2, we introduced the two related issues of abstractions and function

approximation for managing large or continuous state spaces. There are many

methods for both generalization and function approximation, and work on the

two areas frequently overlaps. However, we will deal with each in turn.

First, abstractions are a mapping from a large intractable space into a smaller

one. There are several spaces which can be mapped in this way within a learning

problem: combining several states into a single abstract state (such as hand type

in poker), combining several actions into a single action, or combining several

rounds (of a game) or timesteps into a single step (Pfeffer et al., 2000). We focus

on state abstraction techniques, since the size of the state space is typically the

bottleneck in the applications we consider. However, many of the approaches we

discuss are equally applicable to other problems.

In more detail, the simplest state abstractions are those in which the state space

is just broken up into tiles or buckets, for example by laying a grid over the state

space. A slightly more sophisticated method of dividing the state space is to

form clusters using standard clustering techniques such as nearest neighbours or

k-means (Hoar, 1996). A slightly more sophisticated clustering technique makes

use of a topological mapping (Smith, 2002b) which exploits the form of the state

space to provide more clusters in denser parts of the space.

As a slightly more intelligent alternative in a high-dimensional input space, the fact

that many combinations of input variables rarely or never occur can be exploited

by mapping the input space into a higher level feature space. Such feature spaces

may also be used to encode intuitive knowledge about the structure of the state

space. Automatic means of encoding include coarse coding (Sutton and Barto,

1998), in which ellipses or other overlapping partitions in the state space repre-

sent binary features, and dimensionality reduction techniques such as PCA (Roy

and Gordon, 2002). Features may also be learned through supervised learning,

exploiting the intuition that humans can recognise abstractions intuitively, but

not always easily define them (Tanner et al., 2007). Alternatively, features can be

manually defined (Fogel, 2002). This manual definition will be sufficient for our

44 Chapter 2 Literature Review

initial work, although we propose to explore more automatic ways of reducing the

state space in the future.

Finally in some kinds of problem, such as that in example 2.8, different levels of

abstraction may be appropriate. This motivates the use of hierarchical learning

techniques (Fischer et al., 2004). Such techniques integrate action and state space

abstractions, mapping high-level states to high-level actions. Depending on the

particular action, its execution may require traversing the hierarchy to consider

more details of the state or of a localised part of the state. In a large real-world

problem such techniques may become necessary, although we do not address them

further in this initial work.

We now turn to functional approximations. The above techniques all define ab-

stractions over the whole state space before beginning to explore that space. How-

ever, we do not always know beforehand what characteristics of a state determine

its “similarity” to other states. Rather than pre-define a set of classifications, we

can use state variables as the inputs to functions which may compute: (1) the

value of the state, (2) if states and actions are input, the value of the state-action

pair or (3) the optimal action for the state. This last case is closely related to

clustering, since essentially the function acts as a classifier.

Such functions can be learned by assuming some form for the function, and then

learning the appropriate parameters. It is possible to use any standard method

which is able to handle incremental learning (the accumulated experience forms the

training data) and nonstationarity. In such situations, neural networks are often

used (Sutton and Barto, 1998). In particular, a neural network with two hidden

layers can be used to approximate any function with an arbitrarily small error,

given sufficient training data. Alternatives to neural networks include radial basis

functions or linear approximations (Sutton and Barto, 1998). For most general

problems we consider that neural networks will be satisfactory. In this work, we do

not do any form of functional approximation, but we expect it to prove necessary

in as we experiment in larger domains in the future.

When carrying out functional approximation in this way, the state variables them-

selves may be used as inputs to the function. However, if there are a large number

of state variables it may be helpful to reduce them in some way. Furthermore,

in any difficult problem, the learner may not find a good approximation within a

reasonable time unless the input features are carefully selected to provide guid-

ance (Fogel, 2002). We therefore believe that the abstraction techniques described

above should be combined with functional approximation techniques, using, say,

Chapter 2 Literature Review 45

cluster centres or manually defined features as the inputs to the neural network

(Smith, 2002b), (Fogel, 2002), although we leave this to future work.

2.4.2 Abstractions in POMDPs

State abstraction techniques such as clustering and feature mapping can be applied

in partially observable domains to reduce the underlying state space. However,

methods which operate during exploration can no longer be applied to the underly-

ing state space, as the exploration is being carried out in belief-space. In principle,

any approach suited to continuous space can be used to approximate POMDPs.

However, POMDP belief space has a particularly sparse structure. Typically, given

a particular observation oi, there will be a small set of states Si which could have

given rise to the observation. For a set of observations O = o1, ..., on, the set of

states which could have given rise to the observations is given by SO = ∩i=1..nSi.

Belief in any states other than these will be small or zero. A nice approach to

exploiting this sparsity is to use some form of dimensionality reduction to map

belief space into a lower-dimensional feature space (Roy and Gordon, 2002).

Finally, as well as addressing partial observability, we must use techniques which

are applicable to multi-agent domains. In general, the abstraction techniques of

the single agent domain are equally applicable to multi-agent domains (Abul et al.,

2000). Indeed, in large partially observable domains it is likely that we will only

be able to attempt to find solutions by combining abstraction techniques. One

possible approach would be to first reduce the state space using a learned mapping

from low level percepts into a higher level feature space, then use the variant of

principal components analysis (PCA) described in (Roy and Gordon, 2002) to

reduce the belief space induced over these features, and finally use functional

approximation techniques to estimate the value of states in the reduced space. In

section 3.5 we outline an algorithm which combines abstraction techniques in this

way.

However, a disadvantage of these approaches is that a certain amount of prepro-

cessing is necessary. In the PCA-based algorithm outlined above, it is necessary

to do some sampling of state and belief space before the reduction techniques can

be applied. This is not always feasible in real, dynamic scenarios. Less principled

approaches such as manually defining abstractions from human input may turn

out to be more practical.

46 Chapter 2 Literature Review

2.5 Summary

In this chapter we have emphasized uncertainty as a key requirement which we

intend to address, and discussed agent decision making under uncertainty, high-

lighting a principled Bayesian approach for the single agent problem. Since coor-

dinated multi-agent systems are our goal, we pursue the multi-agent extension to

this approach, emphasizing its correctness and its flexibility. However, in order

to use the complete Bayesian approach on anything other than toy problems, and

especially if we wish to scale it up to large problems, some compromises or approx-

imations will be necessary. To this end, we discuss ways in which the Bayesian

model can be adapted to larger state spaces. However, in these larger state spaces,

agents are unlikely to have full observability, which the models of (Dearden et al.,

1999) and (Chalkiadakis and Boutilier, 2003) both assume.

We have therefore extended the discussion of learning techniques into partially ob-

servable domains, noting that there is very little work on learning within partially

observable domains which explicitly takes into account the behaviour of the other

players—which we believe would lead to better performance. We have considered

other coordination mechanisms which could be used in such domains, and demon-

strated that in large and uncertain domains, learning techniques are likely to be

integrated with any other coordination mechanism.

Given this, we propose to develop a model for Bayesian learning which explic-

itly considers the other agents and which is appropriate to partially observable

domains. In order to render such a model computationally feasible, especially in

domains with large state spaces and many agents, a number of approximations

will be necessary. Using the Bayesian model of (Chalkiadakis and Boutilier, 2003)

as a foundation, we develop the formal principles of our model in the next chapter,

and suggest some simple approximation techniques.

Chapter 3

A Bayesian model for

coordination in partially

observable systems

In the previous chapter we motivated the use of a Bayesian learning model as a

principled approach to the problem of acting under uncertainty, in the context of

other agents. However, previous work on such models focuses on fully observable

problems, while many realistic problems have some degree of partial observability.

In the the rest of this section we describe an extension of the model into partially

observable domains, and suggest a method for managing state space abstraction in

such domains. The chapter is arranged as follows: section 3.1 gives a formal outline

of the problem. In section 3.2 we recap the model which we will extend and explain

the use of Bayesian network diagrams in understanding this and similar models.

Section 3.3 extends the model into domains where actions are partially observable,

while section 3.4 describes the extension of the model into domains where states

are partially observable. Finally, in section 3.5 we outline some approximations to

facilitate computational tractability.

3.1 Problem definition

Formally, we define

• A set of agents (“players”) I = {I1, ..., Ip}.

47

48 Chapter 3 A Bayesian model for coordination in partially observable systems

• A finite set of states S = {s1, ..., sn}.

• A finite set of actions A = {a1, ..., am}. We use light text, ai to refer to an

action selected by a single agent i, and bold text, to refer to a joint action

of all the agents, a = (a1, ...an) ∈ An

• A finite set of rewards, R = {r1, ..., rq}

• A reward pdf P (r = R|s ∈ S, a ∈ Ap) 1.

• A transition pdf P (st+1 = s′|st = s, at = a). Together with the reward pdf,

this describes the environmental dynamics M .

• Strategies for every non-learning agent σ = {σ1, ..., σp}

In uncertain scenarios the first four items above are known to this agent while

the latter three are not. This represents the multi-agent reinforcement learning

problem introduced in previous chapters. We will describe a strategy for a single

learning agent.

Objective: The agent aims to maximise the common expected discounted future

reward:

∞∑
t=0

γtrt

where rt is the reward obtained at time by the system. The parameter γ controls

the tradeoff between immediate and future rewards: if γ is close to 1 then future

rewards are given almost as much importance as current rewards (the agent is said

to be farsighted) while if γ is close to 0 then only immediate rewards are given

much consideration (the agent is said to be myopic). Although ultimately we are

interested in finite-horizon scenarios, this quantity provides a simple objective for

our initial work. We can estimate it by calculating the average discounted reward

over a sequence of timesteps.

As described in previous chapters, we assume that the world evolves in a step-wise

fashion. At every step, each agent selects, based on its current strategy and its

observations from the state around it, an action from the available actions. The

1For the moment, we assume a cooperative system in which all the agents have the same
rewards

Chapter 3 A Bayesian model for coordination in partially observable systems 49

transition model for the environment determines the resulting state, and some

reward is emitted according to the reward model, which all the agents are able to

observe.

In each of the following sections, the underlying intent of our learning agent is to

achieve the given objective using the following variant of the standard learning

algorithm:

1. Initialise prior estimates for M and σ in the form of probability distributions

over possible dynamics and strategies. Let PM be the probability distribution

over models M and Pσ the probability distribution over strategies σ.

2. Specify the current belief state, b, to contain the current state, the aforemen-

tioned distributions and, if appropriate, any state or action history involved

in the strategy models.

3. Determine the action which has the greatest Q-value (as defined in section

2.2.1) given this belief state: if PM is the probability of an MDP M and Pσ

the probability of a strategy σ, then we take

Q(a, b) ≈
∫

M,σ

Q(s, a|M, σ)P (M, σ|b)

4. Carry out this action, and observe the actions of the other agents where

observable, the changes in state (locally or globally), and the reward obtained

5. Given the observations, update the estimates PM and Pσ for all M, σ, using

Bayes’ rule P (M |obs) ∝ P (obs|M)P (M).

6. Return to 2 and repeat.

Over the next sections, we discuss how the Bayesian updates and the definition of

Q(a, b) may vary under differing observability assumptions within the model. We

begin with a recap of the fully-observable case, outlined in section 2.3.1.

3.2 Recap: Bayesian multi-agent learning

The aim of this Bayesian model is to supply a principled approach to the exploration-

exploration problem, explicitly taking into the account the effects of discovery in

50 Chapter 3 A Bayesian model for coordination in partially observable systems

the value estimate for a state. In the multi-agent learning model, the agent’s belief

state, b contains the following:

• A probability distribution over the transition and reward model: a single

model M represents the distribution P (s′, r|s, a) and the belief state contains

P (M) for every such M .

• A probability distribution over strategies for each agent: the strategy σ

for agent j is the set of distributions P (aj|h) (one for each history trail

h = [s1, a1, ...sn, an]) and the belief state contains P (σ) for every such σ.

• The current state s

• The current history trail h = [s1, a1, ...sn, an]

At each timestep, the agent selects the action ai which leads to the greatest ex-

pected value, given its beliefs. The Bellman equation for this system is (Chalki-

adakis and Boutilier, 2003):

Q(ai, b) =
∑
a−i

P (a−i|b)
∑

s′

P (s′|ai◦a−i, b)
∑

r

P (r|s′, ai◦a−i, b)[r+γV (b < s, a, r, s′ >)]

where

V (b) = max
ai

Q(ai, b)

and

P (aj|b) =

∫
σj

P (aj|s, σj)P (σj) (3.1)

P (r, s′|a, b) =

∫
M

P (r, s′|s, a, M) (3.2)

(For any specific model, we assume that we will factorise P (r, s′|s, a, M), comput-

ing P (r|obs) and P (s′|obs separately).

Chapter 3 A Bayesian model for coordination in partially observable systems 51

Finally, b < s, a, r, s′ > defines the belief state which arises from being in the belief

state b in which the current state is s, and carrying out joint action a, resulting in

new state s′ and reward r. The new history trail and state in this fresh belief state

are trivial. The environmental and strategy models are updated using Bayes’ rule

to obtain (Chalkiadakis and Boutilier, 2003):

P (M |obs) ∝ P (s′, r|a, s, M)P (M) (3.3)

P (σj|obs) ∝ P (aj|h, s, σj)P (σj) (3.4)

where obs are the observations: the joint action and the state transition.

To understand this, it may be helpful to consider the Bayesian network diagram

representing the system (figure 3.1). In all our Bayesian network diagrams we use

the convention that clear nodes represent hidden variables and filled nodes repre-

sent observed variables (evidence). For any particular variable set V = v1, ...vn,

with evidence E and hidden variable set H we can compute the marginal proba-

bility:

P (V |E) ∝
∑
H

P (V, H, E)

The sparse Bayesian network offers insights on how to factorise P (V, H, E) to

exploit the conditional independences in the system (see, for example, (Mitchell,

1997), chapter 6 for a full explanation of how to do this). From the figure, we can

see clearly how the two updates (equations 3.3, 3.4) arise.

This completes the specification for the fully-observable multi-agent learning model

using Bayesian belief states, first described in (Chalkiadakis and Boutilier, 2003)

and outlined previously in section 2.3.1. In section 2.3.1 we also identified prop-

erties which may be desirable in a learning algorithm, such as convergence and

no-regret. In particular, in co-operative settings, convergence properties can al-

low us to determine whether a group of learning agents would be guaranteed to

find an optimal solution to the problem. We believe it is useful to investigate all

the important properties (convergence, rationality, no-regret) of a learning model.

Therefore, we now briefly examine the convergence properties of the above model,

leaving further investigation of its properties for future work.

52 Chapter 3 A Bayesian model for coordination in partially observable systems

Figure 3.1: Bayesian network diagram

First, consider the environmental model and the models of the other players sep-

arately within a fully-observable system. If the environmental model is assumed

to be correct, then the algorithm is reduced to simulating fictitious play, and the

agent’s strategy will converge to a stable policy under the same conditions as fic-

titious play algorithms (Fudenberg and Levine, 1998). Conversely, if the other

players’ strategies are known, then the beliefs about the environmental model will

converge to a point estimate providing: (1) The system is static and the Markov

property holds, (2) the learning rate reduces over time, and (3) every (state, ac-

tion) pair is visited sufficiently often (Sutton and Barto, 1998).

In fact, condition (2) is not relevant for our model (which doesn’t have an ex-

plicit learning rate), so providing condition (1) holds for the environment, and the

other agent strategies are such that condition (3) holds, then the environmental

model will converge regardless of the strategy models. Conversely, the strategy

models will converge given the relevant fictitious play conditions, regardless of the

environmental model.

However, in a dynamic system, clearly there are no general guarantees of convergence—

indeed, convergence would be the wrong thing for a dynamic system as there is

no static point to converge to. However, let us consider the special case in which

the environment is static but the agents all have learning strategies. Providing

the strategies include some degree of exploration, the conditions will hold so that

Chapter 3 A Bayesian model for coordination in partially observable systems 53

the environmental model is learned. If the environmental model is known, then

under certain conditions, fictitious play for all the learners will eventually reach a

(mixed) equilibrium (Fudenberg and Levine, 1998). In environments where there

is more than one equilibrium, there is no guarantee that the equilibrium reached

will be optimal.

While this is not ideal, there is no way to force convergence to an optimal equi-

librium in general. However, in many larger problems (as our example domain),

optimality is not necessarily a key concern. Furthermore, convergence itself may

not as important as the speed at which a “satisfactory” solution can be found. For

example, it is of no use figuring out the perfect order for rescuing victims from an

earthquake site long after all the victims have died.

Another factor in larger problems, discussed in section 2.3.2, is that the full ob-

servability assumption made above begins to break down, with neither actions

nor states necessarily being fully observed by any one agent. Instead, agents will

make observations which allow them to make inferences about the unobserved

parts of the process. Over the rest of this chapter, we develop a reinforcement

learning model for partially observable scenarios, extending the above model of

Chalkiadakis and Boutilier (2003).

3.3 Partially observable actions

As discussed in section 2.3.2, it is not always possible to fully observe the actions

of the other agents, however it may be possible to make some inferences about

what the actions were, if we have a partial world model. We therefore modify the

above to account for partial observability of actions. We consider the two cases

discussed in 2.3.2: in section 3.3.1 the case where the underlying action is not

visible, but its effects are, and in section 3.3.2 we outline the case where not all

actions can be observed, but some effects on the state may be visible.

3.3.1 Action-effect model

In this setting, we assume that the agent knows the effect model P (e|a where e

are the observed effects and a is the joint action. The actions themselves are not

observed, only the effects. Figure 3.2 shows the new Bayesian network. In this

case, the agent’s belief state contains the effects, rather than the actions, and the

54 Chapter 3 A Bayesian model for coordination in partially observable systems

Figure 3.2: Bayesian network when action effects are observable

history trail contains a sequence of states and effects. Referring to the diagram,

we obtain the following updates:

P (M |obs) ∝
∑
a,σ

P (M, e, s′, r, a, h, s, σ)

∝ P (M)P (s′, r|M, e, s, h)

P (σ|obs) ∝
∑
a,M

P (M, o, s′, r, a, h, s, σ)

=
∑
a,M

P (s′, r|M, e, s)P (e|a)P (a|σ, h, s)P (M)P (σ)

∝ P (σ)
∑
a

P (e|a)P (a|σ, h, s)

In this case, the environmental MDP and the strategies are independent. Indeed,

it may seem that there is little difference between incorporating effect uncertainty

into the environmental MDP and modelling it separately in this way. However,

if the model P (e|a) is known to the agent (for example, because all agents are of

the same type), then it can be useful to explicitly include it in the model so that

it can be quickly updated independently of other environmental conditions.

Chapter 3 A Bayesian model for coordination in partially observable systems 55

Figure 3.3: Bayesian network when joint actions are not observable

3.3.2 Limited visibility

Figure 3.3 shows the Bayesian network for this setting. It is identical to that of

the fully observable case, except that the joint action is no longer an observed

variable (for ease of reading, we have not included the agent’s own choice of action

separately in the diagram). The agent’s belief state is modified to contain only

the individual agent’s action rather than an observed joint action. The history

trail now consists only of a list of states.

Referring to the Bayesian network to justify the factorisation, we make the follow-

ing modifications to the fully-observable model:

P (M |obs) ∝
∑
a,σ

P (M, s′, r, a, h, s, σ)

=
∑
a,σ

P (s′, r|M, a, s)P (a|σ, h, s)P (M)P (σ)

= P (M)
∑
a

P (s′, r|M, a, s)

∫
σ

P (a|σ, h, s)P (σ)

P (σ|obs) ∝
∑
a,M

P (M, s′, r, a, h, s, σ)

=
∑
a,M

P (s′, r|M, a, s)P (a|σ, h, s)P (M)P (σ)

= P (σ)
∑
a

P (a|σ, h, s)

∫
M

P (s′, r|M, a, s)P (M)

(Although the agent’s belief state no longer contains a joint action, the previous

definition for Q(ai, b), including the belief state with a complete joint action, is

56 Chapter 3 A Bayesian model for coordination in partially observable systems

still applicable, since the latter is only used inside a summation where the joint

action has been defined).

Notice that unlike in the previous case, in the hidden variable model M and σ

are not independent given the available observations. The order in which the two

updates are performed may therefore affect the models. We will perform the two

updates in parallel, so that each update at time t + 1 uses the models from time

t. At this point, we cannot make any guarantees about convergency.

This dependence also makes the problem harder to solve. We expect to use this

formulation only if we know that the transition function can be broken up in

such a way that even the prior can be used to make some inferences about state

information. For example, the state might consist of several variables, of which

one is the location of the agents. This location variable would permit inference

about when an agent had chosen a move action.

3.4 Partially observable states

We now turn to the case where the underlying global state is not visible to the

agent, only some local observations o. We assume that the model P (o|s) is known

to the agent. Furthermore, each state gives rise to a deterministic set of obser-

vations of which the agent will see some subset. This means that for each set of

observations, there will be a known, fixed set of states which may have given rise

to the observations. Each set of observations o is local to a particular agent, so

the agent’s strategy must depend on its own local observations. The belief state

now contains, instead of the current state, the current set of observations and a

distribution over state probabilities.

As discussed in section 2.2.3, although the underlying process is still assumed to

be an MDP (i.e., the current state is dependent only on the previous state and

the action choices), the sequence of observations is no longer Markov. If the en-

vironmental models were completely known, then we could define a probability

distribution over states at each step, and the sequence of such distributions would

itself be Markov. However, in our case the probability distributions are themselves

being estimated. Consequently, the sequence of belief states is non-Markov (alter-

natively, each belief state should contain (and use in the updates), the complete

history trail for the problem).

Chapter 3 A Bayesian model for coordination in partially observable systems 57

Figure 3.4: Bayesian network diagram for a single agent system with partially
observable states

In the models below, we form a sequence of belief states as though the Markov

property holds. However, further investigation is necessary to determine what the

exact properties of these models are. We expect that to demonstrate any kind of

convergence guarantee, it will be necessary at least to include some history trail

in the belief state.

We begin by considering the single-agent case, a Bayesian treatment of learning

in POMDPs, before continuing to the multi-agent model.

3.4.1 Single-agent case

In this section, we apply the Bayesian probability model to an ordinary POMDP,

without explicitly considering the other agents. This extends the POMDP model

with a Bayesian technique for learning the dynamics, providing an intermediate

step between the models of Dearden et al. (1999) and our construction in the

next section (3.4.2). Although the multi-agent construction in section 3.4.2 does

follow directly from that of (Chalkiadakis and Boutilier, 2003), we feel that by

supplying these two alternative progressions, it may be possible to understand the

final construction more easily.

In more detail, figure 3.4 shows the Bayesian network diagram for the system. The

new state is dependent on the observed action, the unknown previous state, and

the unknown model.

58 Chapter 3 A Bayesian model for coordination in partially observable systems

There is only one model update to make,

P (M |obs) ∝
∑
s′,s

P (o′|s′)P (r|s′)P (s′|a, s, M)P (M)P (a|o)P (o|s)P (s)

∝ P (M)
∑

s′

P (o′|s′)P (r|s′)
∑

s

P (s′|a, s, M)P (o|s)P (s)

This appears complicated, but is worth noting that it is slightly less complex than

it may appear at first glance: for any observation o, only a subset of the possible

states can give rise to the observation. For all the rest of the states, P (o|s) is zero,

and there is therefore no need to compute any of the other terms in the equation.

We turn now to the multi-agent case.

3.4.2 Multi-agent case

In the multi-agent case, the learning agent must retain in its own belief state

beliefs about the belief state of the other agents—not other agents’ beliefs about

the models or strategies, but their beliefs about the current underlying state. These

beliefs will depend on the sequence of observations made by those agents, which

will be only partially known to us. We use the “history” variable to represent this,

noting that each agent will have an independent history variable unknown to the

other agents.

Figure 3.5 gives the Bayesian network diagram for a multi-agent system with

partially observable states. In this diagram we have separated the observations

and the actions of the agent under consideration (subscript i) and the other agents

(subscript j). Tracking the network flow downwards, the root node is the original

state, s, giving rise to a visible set of observations for the agent, and unknown sets

of observations for the other players. We assume that the other players update

their belief states given their observations and act accordingly. As previously, the

actions, previous state and the system dynamics determine the next state, which

emits a reward and which all agents make new observations from.

Referring to this diagram, we obtain the following updates (note that obs refers

to all the observations made by our agent, including rewards and actions of other

agents, as distinct from oi the observations made from the state):

Chapter 3 A Bayesian model for coordination in partially observable systems 59

Figure 3.5: Bayesian network diagram for a system of partially observable
states

60 Chapter 3 A Bayesian model for coordination in partially observable systems

P (M |obs) ∝
∑

s,s′,σ,oj ,bj ,h

P (s, s′, σ, oj, bj, h, o′i, oi, r, a, M)

=
∑

s,s′,σ,oj ,bj ,h

P (r, o′i|s′)P (s′|M, a, s)P (M)P (aj|σ, bj)P (bj|oj, h)P (oj|s)P (s)P (σ)

= P (M) ∗ . . .

. . .
∑
s′,s

P (r, o′i|s′)P (s′|M, a, s)P (s)
∑
oj

P (oj|s)
∑
bj ,h

P (bj|oj, h)

∫
σ

P (aj|σ, bj)P (σ)

P (σ|obs) ∝
∑

s,s′,M,oj ,bj ,h

P (s, s′, σ, oj, bj, h, o′i, oi, r, a, M)

= P (σ) ∗ . . .

. . .
∑
s,s′

P (o′i, r|s′)P (s)
∑
bj ,h

P (a|σ, bj)P (bj|oj, h)
∑
oj

P (oj|s)
∫

M

P (s′|M, a, s)P (M)

As before, the definition of Q(ai, bi) remains unchanged. However, we now define

P (aj|b) =
∑
σj ,bj

P (aj|bj, σj)P (bj, σj|b)

=
∑
σj ,bj

P (aj|bj, σj)P (bj|b)P (σj|b)

P (r, s′|a, b) =

∫
M

P (r, s′|o, a, M) (3.5)

where

P (bj|b) =
∑
h,oj

P (bj|h, oj)P (h|b)
∑

s

P (oj|s)P (s|b)

and

P (r, s′|o, a, M) =
∑

s

P (r, s′|s, a, M)P (s|a, M)

∝
∑

s

P (r, s′|s, a, M)
∑

b

P (a|b)P (b|s)P (s)

Chapter 3 A Bayesian model for coordination in partially observable systems 61

(Note that the diagram in figure 3.5 shows the reward dependent on the initial state

and action choice. However, the network (and equations) can be easily modified

to make the reward dependent on the resulting state).

These new equations are more computationally complex than those defined for the

case of partially observable actions, and impractical to evaluate on any realistic

problem. Notice that P (M |obs) is no longer independent of the strategy model,

despite the action observability. This is because we are using the action choice

to make inferences about the state, which then affect our estimate for M, making

the model rather more involved. This Bayesian approach to multi-agent strategies

is similar to the approach described by Emery-Montemerlo et al. (discussed in

section 2.4). However, Emery-Montemerlo et. al only consider games with known

dynamics. Despite this, several approximations are required to make computation

feasible in our model. Thus for us also, several approximations are necessary. In

the next section we identify some possible approximations.

3.5 Approximations

As discussed, the models above, in particular the last, cannot be practically solved.

We use a combination of techniques to render the system tractable. Firstly, we

use the approximation techniques—sampling and myopic evaluation—described

by Dearden et al. (section 2.2.1) and Chalkiadakis and Boutilier (section 2.2.3).

Secondly, where possible we manually define a set of abstract states with corre-

sponding abstract actions, and the mapping from states to abstract states and

from abstract actions to actual actions. These approximations are sufficient to

permit us to evaluate the partially observable action model on smaller examples.

In our immediate work, we do not go beyond this. However, to evaluate this model

in larger systems, or to begin to contemplate evaluation of the partially observable

state model, more powerful approximation techniques are needed. We propose for

future work that in addition to the previous approximations, some combination of

the following may be practical:

1. The approximation of (Emery-Montemerlo et al., 2004) models POSGs as a

series of Bayesian games: that is, fully observable systems in which agents

may have private information. Investigation of how this model would extend

into a learning system appears a natural step.

62 Chapter 3 A Bayesian model for coordination in partially observable systems

2. The principal components analysis-based technique of Roy and Gordon (sec-

tion 2.4.1) provides a principled way to reduce large or continuous state

spaces.

3. Hierarchical models, as described in section 2.4.1, are natural to large and

complex systems, permitting several layers of abstraction.

4. In any large state space described by a series of variables, known indepdences

between variables can be exploited to simplify the model (e.g. Hoey (2001)

describes a way to do this within a hierarchical model, for a single agent

system. We do not anticipate any particular difficulty in extending the

model to a multi-agent system).

3.6 Summary

Firstly, we have defined Bayesian models for multi-agent reinforcement learning in

for two different cases of partially observable actions. In order to render the latter

model computationally tractable, we have proposed a sequence of approximation

techniques. Secondly, we have described the Bayesian model for reinforcement

learning in a partially observable multi-agent system. This model is computation-

ally intractable, and we have outlined some possible approximation techniques

which might permit solving such models. In the next chapter we evaluate the ef-

fectiveness of the former model on an example problem and sketch an instantiation

of the latter.

Chapter 4

Demonstration and evaluation of

the Bayesian model

In chapter 3 we proposed Bayesian exploration models for two cases of partial

observability in an uncertain system. Firstly, we considered a system in which the

actions of other the agents cannot be fully observed, but where some inferences

about the actions can be made. Secondly, we considered a system in which the

state itself cannot be fully observed. In this chapter, we evaluate a demonstration

of the first model. At the end of the chapter we outline a potential instantiation

of the second model and discuss some of the issues involved in its implementation,

although the implementation itself is left to future work.

4.1 Partially observable actions

The first case of partially observable actions which we discussed (section 3.3.1)

was that in which the effects are observable but the underlying strategy is not.

In a static scenario, this is equivalent to the fully-observable multi-agent problem

with a factorised transition pdf. We have proposed scenarios in which explicitly

separating knowledge about strategies from knowledge about effects may be ben-

eficial (for example 2.6 in section 2.3.2) . However, there is nothing new to test

beyond factorised transition functions, so we do not discuss the implementation

of these scenarios further in this section.

However, many disaster scenarios have the property of limited visibility of other

agents, while coordinating with them. Consider, for example, a simple scene where

63

64 Chapter 4 Demonstration and evaluation of the Bayesian model

Figure 4.1: An illustrative state in the well problem

a rescue worker is digging at a pile of rubble to try and find trapped victims, while

other rescue workers dig at the same pile of rubble from around the other side.

We use an abstract problem inspired by this kind of scene to test the partially

observable action model.

In more detail, we consider the following simple coordination problem:

• Each agent is digging a “well”

• At each turn, each agent may “dig” or “fill” its well

• Each time all the wells are at the same depth, reward is emitted

• For every well which is at the maximum or minimum depth, there is a penalty

Figure 4.1 illustrates a sample state within this problem. In the state depicted,

two of the wells (those associated with I2 and I3) obtain the penalty. No reward is

achieved. The total reward is therefore negative: 2*penalty. In more detail, this

model contains :

• A set of agents. We begin by considering the problem with just two agents,

I = {I1, I2}

• A state space describing for each well the depth of the well. We suppose that

there may be five different depths to each well i (where well i is associated

with agent Ii): di = {0, 1, 2, 3, 4}. For two agents, this gives rise to 52 = 25

distinct states.

• A set of actions available to the agents. In this case, there are two actions,

“dig” or “fill”. These are expected to alter the depth of the well by one level,

except that “dig” in a maximum-depth well or “fill” in a zero-depth well will

be no-ops. We use d′ = Act(d, a) to refer to this deterministic function,

where d and d’ refer to the old and new depths of the well respectively, and

a is the action performed by the agent associated with the well.

Chapter 4 Demonstration and evaluation of the Bayesian model 65

• A deterministic reward function. The total reward r is computed by r =

rs +
∑

i ri,d, where rs = 10 if all depths are the same, otherwise 0, while

ri,d = −5 if agent i is at depth 0 or depth 4, otherwise 0.

• A transition pdf for each well, describing the possibilities of wall-collapse

(decreasing the depth) or sinkage (increasing the depth) for each well. We

write this as Pt(d
′
i|di), where i identifies the well. The collapse and the action

are assumed to take place at the same time. The overall depth change

is determined by summing the effect of the action and the effect of the

unprovoked movement: P (di,t+1|di,t, ai) = Pt(di,t+1|Act(di,t, ai))

Initially, we consider a transition pdf in which the probability of unprovoked

movement is the same for each well and the same for either sinkage or col-

lapse. We vary this probability between 0.5 and 0. We use the value ’delta’ to

refer to the probability of no unprovoked movement, varying delta between

0.5 and 1.

We implemented this problem along with with several sets of agents functioning

within the system, in order to compare learning agents using our model of section

3.3 with other agents. In the next section we discuss our experiments on this

problem in detail.

4.1.1 Experiments

We compared our model with two learners: a standard single-agent Q-learner (run

by all the agents, using varying learning rates to avoid cycling) and a multi-agent

learner based on the model of Chalkiadakis and Boutilier described in section 3.2,

which is able to observe all the actions.

In order to make the system more computationally tractable, we made a further

simplification to the model of section 3.3.2: rather than sum probabilities over

all possible actions, we estimate the maximum likelihood action given the current

belief state, and perform updates as though this action had been carried out. More

precisely, instead of computing (equation 3.5 in section 3.3.2):

P (M |obs) =
∑
a

P (s′, r|M, a, s)

∫
σ

P (a|σ, h, s)P (σ)

we compute:

66 Chapter 4 Demonstration and evaluation of the Bayesian model

aML = max
a

P (a|s, s′, b)

= max
a

P (s′|a, s, b)P (a|s, b)

P (M |obs) = P (s′, r|M, aML, s)

∫
σ

P (aML|σ, h, s)P (σ)

As well as reducing the depth of summation necessary, this approximation allows

us to use the Dirichlet priors and posteriors as described in (Chalkiadakis and

Boutilier, 2003).

Despite this simplification, we found the system to be unfeasibly slow to run with

more than two agents (taking several days to run a single experiment of three

runs, on a desktop PC) or when using many samples (above 100 samples inside

the double integral in the best response computation) to estimate integrals. This

could be mitigated in the future by using a more efficient language for implemen-

tation (we used MATLAB for convenience); by using the sparse priors described in

(Dearden et al., 1999), and ultimately by using a set of approximations as outlined

in section 3.5.

Subject to these resource constraints, we also paid attention to the following pa-

rameters:

Number of agents We believe that the effects of using our explicitly multi-agent

model over a single agent model should become more marked as the number

of agents increases. However, for this problem the number of states, hence

the computational complexity, increases exponentially with the number of

agents, making it infeasible for us to test on many agents. In fact, we limited

our experiments to just two agents, but we believe that future work should

begin by making the system more computationally efficient and trialling it

with up to five agents.

Number of steps Of interest to us is not just whether the system manages to

settle to a good stable strategy, but how quickly this occurs. We found that

for the two agent 300 steps was typically sufficient for the system to stabilise.

Once again due to resource constraints, most of our tests were limited to 120

steps, which we found sufficient to get past initialisation effect and compare

the behaviour of the algorithms.

Chapter 4 Demonstration and evaluation of the Bayesian model 67

Delta We investigated different values for delta between 0.5 and 1.0. When vary-

ing the sample size, we fixed delta at 0.65, as a middle ground with some

randomness but not so much that nothing can be learned.

Sample size In our partially observable action model, it is necessary to estimate

a double integral (over all models for the dynamics and all models for the

strategies). We chose to do this by taking sample size samples from possible

dynamics and sample size samples from possible strategies, and evaluating

best responses over all possible combinations of these, so that for a cho-

sen sample size we in fact evaluated sample size2 models. For the fully

observable comparison, we used the same sample size as the current par-

tially observable tests. We experimented with sample sizes of 7, 10 and 15.

However, the experiments with sample size 15 never completed.

Other parameters For the q-learner, it is necessary to set a learning rate. After

experimenting to find good configurations for both two and three agents, we

chose a base learning rate α of 0.2, and set the learning rate for each agent

to be αi = α ∗ 0.1(i−1). We used ε-greedy action selection (as described in

section 1.2) with a fixed ε of 0.1 (again, after experimenting with several

fixed and varying values). Finally, we set γ, the agents’ myopia to be 0.75.

This means that they allocate only a quarter of the original importance to

states five steps in the future, and by ten steps the contribution of new

states is negligible. We expect this to reflect this digging problem with a

small number of states.

Number of runs For each setting (sample size and delta), we ran four tests,

averaging the results over these tests. In the next section we also discuss the

variation in the results and show the t-tests for them.

4.1.2 Results

A complete set of results is supplied in the appendix (A). Here, we discuss a

selection of the more interesting results. For each of the reward graphs, the average

total discounted reward has been computed for each run, and the mean of these

over the set of runs is shown. The errorbar charts show the standard deviation

over the set of runs. Finally, we performed t-tests on the outputs as follows: for

each time step a t-test was carried out comparing our partially-observable model

with the q-learner and separately with the fully-observable model. The results of

these tests were then plotted, and the relevant values for 60% confidence and 75%

68 Chapter 4 Demonstration and evaluation of the Bayesian model

(a) Agent scores: Delta=0.65. Sample size 72 (left), 102 (right)

(b) t-test results: Delta=0.65. Sample size 72 (left), 102 (right)

Figure 4.2: Agent scores and t-tests for two different sample sizes

confidence have been dotted onto the graphs. These are unusually low confidence

rates for determining statistical significance. However, as we will discuss within

the following sections, the low sampling rates and small number of runs mean that

most of our experiments fall within these confidences.

In all the figures included, ’q’ refers to the q-learner, ’ma’ to the fully observable

multi-agent learner, and ’poa’ to the partially observable action learner.

Effect of sample size Figure 4.2 shows the scores and the t-test results for

sample sizes of 7 and 10. Although the q-learner behaves the same in each case,

the two multi-agent learners both perform better with the larger sample size, as

is to be expected from the greater accuracy in evaluating the best response at

Chapter 4 Demonstration and evaluation of the Bayesian model 69

each step. From the t-tests below we can also see that the performance is less

variable with the larger sample size; the results for the same number of runs are

more significant. Again this is a consequence of the increased accuracy of the

evaluation of the best response.

In this case, our learner does not perform as well as the q-learner although both

are still improving at the end of the run. However, as our learner has improved

with the larger number of samples, we would expect this trend to continue as

improve again with a still larger number. More investigation would demonstrate

how many samples might profitably be used before the improvements ceased to

be sufficient to justify the computational cost. Ultimately, rather than having

a fixed sample rate, we might at each step compute the confidence interval for

the estimated Q-values, and sample until the confidence reached some predefined

threshold. We could try and reduce the number of samples necessary by using

techniques such as importance sampling (described in (Chalkiadakis and Boutilier,

2003) and (Dearden et al., 1999)).

Effect of delta Fixing the sample size at 7, we next ran tests with different

values of delta. Figures 4.3 and 4.4 show the agent scores and the t-tests for

these experiments respectively. From figure 4.4 we can see that as the delta value

was increased, making the system more deterministic, the differences between

algorithms become correspondingly more significant. In particular, the q-learner’s

performance improves rapidly as the system becomes more deterministic. By

comparison, the multi-agent learners are slightly less susceptible to randomness in

the system than the q-learner. This is because they separate randomness due to the

other agents from randomness due to the delta parameter, and consequently have

to learn several relatively simple functions rather than one complex (combined)

one.

However, their performance is consistently less good rather than consistently bet-

ter. As discussed, higher sampling rates would improve the performance.

Changing delta Figure 4.5 shows the mean of three longer runs, using a sam-

ple size of 10 in which the delta value was altered from 0.81 to 0.5 after 100

time steps. This represents a scenario where the environmental conditions change

unexpectedly—for example, in the rescue plane scenario of section 1.4, the wind

might change rapidly. In a digging scenario, perhaps there has been some earth-

quake or a rainstorm loosening the earth. From the figure we can see the q-learner’s

70 Chapter 4 Demonstration and evaluation of the Bayesian model

(a) Sample size 72; delta=0.5 (b) Sample size 72; delta=0.65

(c) Sample size 72; delta=0.8 (d) Sample size 72; delta=1.0

Figure 4.3: Varying delta: agent scores

scores promptly droppping where the change is made, only slowly beginning to

climb again after many timesteps. By contrast, neither the multi-agent learner

nor the partially-observable action learner appear to suffer, again because they

are learning the transition function separately from the agent functions and are

so able to quickly identify changes in the environment (which are distinct from

changes in agent strategy and in this problem should not cause a change in strat-

egy).

Error bar shape Characteristic of all the error graphs is a high deviation

early on, followed by a momentary reduction to negligible deviation and then a

return to a slowly reducing high deviation. Figure 4.6 shows two examples. The

Chapter 4 Demonstration and evaluation of the Bayesian model 71

(a) Sample size 72; delta=0.5 (b) Sample size 72; delta=0.65

(c) Sample size 72; delta=0.8 (d) Sample size 72; delta=1.0

Figure 4.4: Varying delta: t-test results

reduction to negligible deviation is unexpected and the reason for it is not clear.

Furthermore, in the q-learner there can often be seen what appear to be cycles

of increasing and decreasing deviation (figure 4.7). Since these graphs are only

measuring deviation over a small number of runs, we propose that the behaviour

should be more fully investigated with larger numbers of runs and higher sampling

rates for the multi-agent algorithms.

Summary The above graphs demonstrate that even with low sample rates, our

agent is able to perform close to the q-learner on this simple problem. However, we

also note that in all cases the scores are tending to be around 0, indicating that

the agents in each case are successfully keeping away from the penalties at the

72 Chapter 4 Demonstration and evaluation of the Bayesian model

Figure 4.5: Effect of changing delta from 0.81 to 0.5 after 100 time steps
(sample size: 10)

(a) Sample size 102; delta=0.5. partially-observable algorithm (b) Sample size 72; delta=0.5. partially-observable algorithm

Figure 4.6: Example error graphs

edge, but not necessarily coordinating effectively. A simple handwritten strategy

for this problem which selects “fill” if the agent’s well is deeper than 3, “dig” if

the agent’s well is shallower than 3, and randomly when the well is at depth 3,

achieves average scores of around 1 for the two-agent problem. So there is room

for improvement with all the learners.

From the above we also observe that our agent appears to be less susceptible

than the q-learner to the variations in transition function. We expect this effect

to become more marked when there are larger numbers of agents, and propose

to investigate this further when a more efficient implementation of the system is

Chapter 4 Demonstration and evaluation of the Bayesian model 73

Figure 4.7: Sample size 102; delta=0.8 → 0.5. q-learner

available. Finally, there is a noticeable improvement in the behaviour of our agents

as the number of samples is increased and once again we propose to investigate

this effect further with a more efficient implementation.

4.2 Partially observable states: Example from

the disaster response domain

In this section, we instantiate the model of section 3.4 on a larger coordination

problem in which the agents are only able to observe part of the current state. We

suppose that there has been some disaster such as an earthquake and a team of

ambulances is deployed to find and rescue victims who have been trapped under

the debris. However, initially the locations of the victims are not known to the

ambulances and they have a restricted range of vision and hearing as they travel

around the region. Furthermore, further shock waves may result in more victims

being buried. This problem is inspired by the ambulance sub-problem of Robocup

Rescue1.

In more detail, we propose the following grid world of victims and ambulances:

State space We use a factorized state space containing the following variables:

• Number of victims nv : between 0 and 2k where k is the number of grid

squares

1http://www.rescuesystem.org/robocuprescue/

http://www.rescuesystem.org/robocuprescue/

74 Chapter 4 Demonstration and evaluation of the Bayesian model

• Location (grid square) of each victim lv

• Buried depth of each victim dv : an integer value between 1 and 100

• Number of ambulances na : between 1 and l where l is the length of

the longest side of the grid

• Location (grid square) of each ambulance la

• It is assumed that ambulances cannot be buried.

Initial state We initialise the scenario as follows:

• A grid is defined with length gl and width gw, hence k = gl ∗ gw grid

squares.

• nv is selected from a Dirichlet distribution peaking around
√

(k).

• nv victims are distributed uniformly across the grid (index all the grid

squares and select (with replacement) a grid square from a uniform

distribution).

• Each victim is assigned a depth, selecting integers from a uniform dis-

tribution between 1 and 100.

• na is defined between 1 and max(gl, gw).

• na ambulances are distributed uniformly across the grid.

Initial information From the outset, every ambulance knows:

• The structure of the world (length and width of the grid)

• Its own position in the grid

• The number and location of other ambulances

Observations At each turn the agent makes some action and is able to observe:

• The locations and depths of any civilians in its current square, to its

immediate left or right, above or below it.

• The locations (after acting) of every other ambulance.

Therefore, for any given state, where the state includes the locations of the

agents, the observations available to each agent can be exactly determined.

(Conversely, for a particular set of observations, there may be many consis-

tent states, as the observations will not necessarily cover all states).

Actions The actions available to the agents are:

Chapter 4 Demonstration and evaluation of the Bayesian model 75

• Move (Left, Right, Up, Down)

• Dig

Transitions The states and actions give rise to a probabilistic transition function

as follows:

• Move actions: the requested move is performed unless it would take the

agent off the grid, in which case no action is performed. Traffic: We

assume infinite road space. However, a possible adjustment would be

to assume that two agents cannot occupy the same grid square unless

there is a buried victim there, so that if two agents aim to move to the

same location only one of them will succeed.

• Dig actions: for each dig action at a location where a victim is buried,

the buried depth of the civilian is reduced by five levels until it reaches

zero, whereupon the victim ceases to be a victim and is no longer of

interest to the ambulances. If more than one ambulance is digging at

a particular locatiom a victim at that location can be released more

quickly than if one ambulance were digging alone.

• Every turn: each victim’s depth is altered by a random amount selected

from a Gaussian with a mean of five levels (and then discretized).

Reward Finally, each ambulance is able to observe the score at each step which

is determined by the number of victims who have been rescued (brought to

depth 0), N, with deterministic reward r = Nn for some small n. It will be

necessary to experiment to determine a suitable value for n which efficiently

enables the agent to maximise the score over time.

We have implemented such a world in MATLAB, alongside a simple handwritten

strategy. In order to test our model on it, we must define an agent’s belief state,

with prior beliefs and update rules for the belief state. We do this below.

4.2.1 Applying the model of section 3.4

We define an agent’s belief state, and then specify the prior beliefs and update

rules for each part of the belief state.

76 Chapter 4 Demonstration and evaluation of the Bayesian model

Belief state In this world, the ambulance’s belief state holds:

1. Its knowledge about the locations of other agents

2. Its beliefs about the number of victims

3. Its beliefs about the distribution and depths of victims across the grid (the

above three items define its belief about the state)

4. Its beliefs about the consequences of moving or digging

5. Its beliefs about the unprovoked transitions of victims (this combined with

the previous defines its belief about the transition function)

6. Its beliefs about the beliefs of the other ambulances: this refers only to

ambulance beliefs about the distribution and depths of civilians, and not

other agent strategies.

7. Its beliefs about the strategies of the other ambulances

Prior beliefs We initialise the agents with the belief that the number of vic-

tims lies between 0 and 2k where k is the total number of grid squares. We can

describe this belief using a Dirichlet distribution. The posterior is then a multino-

mial describing the likelihood that the number of victims is v, or equivalently the

number of victims per square is v/k. We propose to use a prior which peaks at

around
√

(k) (i.e., if the grid were square there would be around one victim per

row), with a longer tail towards the 2k end.

The agent’s initial beliefs about the distributions of the victims depend on its

belief about the number of victims, with a uniform initial prior assigning equal

likelihood of n/k victims to each grid square, where n is the mean of the Dirichlet

distribution estimating the number of victims and k is still the total number of grid

squares. That is, the victims’ locations are selected (independent and identically

distributed) from a uniform distribution. The joint probability distribution for

the locations of all victims is the product of the independent distributions for each

victim. Then computing the probability of ns victims being in a particular square

s is achieved by summing the probabilities of all joint allocations which place ns

victims in that square.

As long as moving and digging are deterministic and there are no traffic rules,

the beliefs in 4 are straightforward: it expects move actions to affect the location

Chapter 4 Demonstration and evaluation of the Bayesian model 77

of the moving agent as requested, except where the action will move the agent

off the grid, and digging actions to reduce the buried depth of the agent by five

levels. The agent assumes a (discretized) Gaussian for unprovoked transitions,

with mean µ and variance σ. The mean may be assumed to have a Gaussian

distribution, initially with mean, variance of 0 and 1, and the variance to have a

gamma distribution initially with shape parameter of 0.5 and scale parameter of

1.0.

All the probability belonging to invalid transitions (to depths of less than 0 or

greater than 100) is assigned to the nearest valid depth.

Finally, we consider the beliefs about the strategies of the other ambulances. In

this problem, the other ambulances are assumed to be cooperative since they all

aim to maximise the same shared score. However, the strategies of the other agents

are unknown; in particular they are not known to be rational. Therefore, we do

not try and initialise ambulances with any particular bias concerning strategies,

assuming uniform priors (i.e. any action is equally likely, regardless of state).

Belief updates These beliefs are updated at each time step based on the

observations, using the Bayesian update rules as described in section 3.4:

When a previously unvisited square is visited In this problem, we assume

a uniform distribution of victims across the map. We can therefore assume

that the distribution of victims across observed squares will provide informa-

tion about the distribution of vicims across the unvisited squares. Gradually

the strength of information from observed squares will outweigh the prior in-

formation.

We can update first the estimated number of victims:

P (nv = n|obs) ∝ P (obs|nv = n)P (nv = n)

where obs is the mean number of victims observed per observed square. We

can then update the likelihood of seeing a victim in an unobserved square

using the uniform distribution for location of victims as described in the prior

beliefs section, but using the new distribution for estimating the number of

victims.

Future adaptations to the problem might suppose that victims are likely to

be found in clusters (for example, all the victims which were in a building

78 Chapter 4 Demonstration and evaluation of the Bayesian model

which has collapsed will be close together). This update must then be ad-

justed accordingly, assigning more probability to unobserved squares close

to observed victims. The density of victims in unobserved squares will no

longer necessarily match the density in observed squares. Indeed, even if we

begin with the assumption of a uniform spread of victims, we might after

some exploration form beliefs about the spread of victims.

When a known victim is observed to change depth As long as digs are de-

terministic, effects due to agent actions can be deterministically observed.

The agent can therefore precisely identify the effect due to unprovoked fluc-

tuation and update its estimate of the random fluctuation function, assumed

to be a Gaussian with mean µ and variance s.

P (µ, s|obs) = P (obs|µ, s)P (µ, s)

Updating the distribution P (µ, s) is not straightforward, because the param-

eters µ and s are not independent and the joint distribution does not have a

simple form. We propose therefore that we can estimate the mean using the

technique described in (David et al., 2007): discretize the possible values for

(µ, s) (µ has a known maximum of 99; we must estimate a maximum for s),

and then assign P (µ, s|obs) numerically.

Note further that the depths of all observed victims are not observed at every

time step. Rather the random fluctuation function must be iterated over the

number of steps since a victim was last observed in order to estimate the

current depth of a victim.

Finally, we assume that this function is not depth or location dependent, but

future adaptations of the function may have different fluctuation pdfs for

each depth and location. Assuming some continuity in these, we might use

some form of function approximation such as a neural network to learn them,

rather than trying to learn by visiting every depth and location individually.

When an agent is observed to dig at location l or move between locations

We must update our beliefs about the agent’s strategy σ, based on an esti-

mate of its belief state. For agent i observing agent j performing action actj

and making state observations obsi:

P (σj|actj, obsi, bi) ∝
∑
bj

P (actj|σj, bj)P (bj|obsi, bi)

Chapter 4 Demonstration and evaluation of the Bayesian model 79

Figure 4.8: Bayesian diagram for belief states

where bi and bj refer to the belief states of agents i and j respectively.

We may then update our own belief state based on our beliefs about the

agent’s strategy. For simplicity, we do not propose to do this update initially.

By not using this available information we will converge more slowly than

we would have otherwise, but will not become “more wrong”.

Finally, we can update our beliefs about the other agents’ belief state (beliefs

about the state, but not about the models). These must be maintained in

order to be used above. We assume that other agents update their beliefs

about the state based on their observations using the same updates we have

just described for this agent. Referring to the Bayesian diagram in figure 4.8

(as discussed in section 3.4):

P (b′j|oi) =
∑

s

P (s|oi)
∑
oj

P (bj|oj)P (oj|s)

Since the observations for every agent are known if the state is known, P (oj|s)
is 1 for exactly one set of observations, and 0 otherwise. Writing oj = O(s, j)

for the true set of observations allows us to simplify the update to

P (b′j|oi) =
∑

s

P (s|oi)P (bj|O(s, j))

80 Chapter 4 Demonstration and evaluation of the Bayesian model

The order of the previous updates may affect the behaviour of the system.

We choose to assume that they are all performed simultaneously, consistently

using the beliefs from the previous step.

4.2.2 Practical considerations

Like the small well problem, this problem has a score function which is determin-

istic given the resulting state. Also like the small well problem, the transition

function in this system is factorised into several variables which have some in-

dependences among them, with some of the variable updates being deterministic.

However, the partial state observability in this problem makes it significantly more

complex than the well problem, even with a fairly trivial transition function, pri-

marily because we try to make inferences about the distribution of victims based

on the behaviour of other agents, while simultaneously learning about that be-

haviour.

Furthermore, the problem as stated provides more information than might be

realistic; in practice the movements of agents are likely to be observable only within

the same limits as victims are observable—if all agent actions are observable, then

this may be because the agents are in radio communication with each other and

they may convey information about their local observations. The scenario could

be further complicated by the conveyance of partial of false information.

Finally, we note that although we have supplied a mostly-uniform set of priors,

we would expect that disaster response teams would collect information up from

many different disasters, and use a meta-learning technique to learn appropriate

priors both for the scenario and to learn about the behaviour of other agents.

4.3 Discussion

The initial results in section 4.1 serve as no more than a proof of concept, and

there is a great deal more investigation to be done in order to fully exploit our

new models. In the above work, we used low sampling rates, did not supply strong

priors, and did not investigate with transporting agents into new environments,

or transporting new agents into the same environment, which we have argued are

key applications for this model. The effects of the various approximations should

be more carefully investigated, and more sophisticated sampling methods could

Chapter 4 Demonstration and evaluation of the Bayesian model 81

be used. However, from the preliminary results we have shown that our model

can perform almost as effectively as a fully-observable model, at least in this toy

example.

For the more challenging scenario of partially observable states, we have outlined

a potential example problem and shown how this example problem maps to the

model described in section 3.4. However, this system is challenging to implement

and would be computationally infeasible without use of a good set of approxi-

mations. In the next section we propose a schedule for extending the current

experiments, defining such approximations and further testing and developing our

model.

Chapter 5

Conclusions

5.1 Summary

Over the preceding sections we have highlighted the problem of coordination in

uncertain multi-agent systems, and motivated the use of Bayesian learning models

as a possible approach to this problem. We proposed using abstraction techniques

from more traditional reinforcement learning to make such solutions scalable. We

then described a particular Bayesian model capable of handling systems in which

actions are partially observable, and demonstrated our model working on some

test cases. Although we have shown that the model is usable for these cases and

in some kinds of scenario is competitive with alternative techniques, these results

are very prelimary and there is scope for a good deal more work in this area. In

the following sections we identify several specific areas for this future work (section

5.2) and propose a timeline for the work (section 5.3)

5.2 Future work

In section 1.1 we defined several key properties of the disaster response domain,

our focus domain. We took uncertainty as a key motivator for developing learning

based models which explicitly take uncertainty into account. We proposed that

by explicitly modelling other agents, we would pave the way for better adaptation

to heterogenous, open systems and possibly dynamic systems. Our schedule for

future work proposes to investigate more thoroughly the behaviour of our model in

such heterogeneous, dynamic systems and its suitability for large-scale scenarios.

83

84 Chapter 5 Conclusions

In more detail, we propose the following areas for investigation:

Properties In section 2.3.1 we described several guarantees which may be de-

sirable in multi-agent learning algorithms: convergence, no-regret and ra-

tionality. As we have extended our model into more complex state spaces,

we have not investigated what properties hold, or under what conditions

these desirable properties may hold. Such an investigation should include

the implications of the various approximations we have used.

Dynamic systems Another key requirement in section 1.1 was that the system

should be usable in dynamic scenarios. Many reinforcement learning systems

can be effectively applied to dynamic scenarios, adjusting the discount factor

and the learning rate to give more weight to recent findings. This applies

also to the model of Chalkiadakis and Boutilier (2003), with a dynamic

environment, or if the strategies of the other agents. We have discussed the

special case of dynamic strategies where all the agents are learners; further

investigation should take place, investigating how an agent can determine if

the scenario is changing rapidly and adjust its behaviour accordingly, and in

what circumstances some kinds of guarantees may be available.

Approximations In order to test our model even in small scenarios it has been

necessary to use many approximations, and we have put together an ad-hoc

collection of approximations and generalisations to achieve this. However,

we should investigate the properties of these various approximations and

determine a formal model for combining approximation techniques more ef-

fectively.

Large scale Extending the previous point, in section 1.1 we said that we should

explore approaches capable of operating in larger systems with hundreds or

thousands of actors. However, the complexity of the approach as it stands

makes it intractable for large systems. By implementing some of the tech-

niques discussed in section 2.4 we hope to be able to render the problem

more tractable in larger scenarios. For example, in large systems, agents will

typically not need detailed information about most of the system, and so a hi-

erarchical system of approximations could be used, with agents maintaining

only very approximate information about parts of the problem not relevant

to them, and more detailed solutions for parts of the problem which be-

come relevant. Furthermore, information sharing (Dutta et al., 2004) could

be used between agents as they move around and require information about

Chapter 5 Conclusions 85

new subproblems. As discussed in Dutta et al. (2007), bandwidth limitations

mean that this information sharing must prioritise vital information. Such

a scenario might be analogised by the fireman entering a building receiving

information from a fireman exiting the building, “rescue the old lady on the

top right first” or “beware of the landing on the third floor, it’s about to

go”. Finally, using the approximation and state generalization techniques,

and extensions thereof, we should be able to handle continuous state, action

and reward spaces.

Reasoning about rewards When actions or states are only partially observ-

able, it may be possible to reason about their likelihood using the observed

reward. In particular, in many cases rewards are deterministic functions of

the state. Even if these functions are not precisely known at the outset, the

probability from them can contribute to the likelihood of a particular state

having occurred. We should develop this model formally, and investigate its

use under different kinds of reward functions.

Individual goals Rather than consider only cooperative systems in which there

is a single shared reward at each step, we would also like to investigate

systems in which each agent has a distinct individual reward. In some cases,

rewards may be identical or positively correlated for a set of agents. Other

agents may be directly competing. Initially, we will assume that all rewards

are visible to all agents. We expect this model to be particularly applicable

to the partially observable case. This is because in the fully observable case

we need only consider our own reward whether or not it is cooperative, but

in the partially observable case we may use information about rewards to

reason about our estimates of the other agents’ strategies.

Partially observable rewards This extension perhaps contrasts with the previ-

ous: we may not always know what individual reward another agent receives

from certain behaviour. However, if we are able to make assumptions such

as rationality in the agent (which may not always be possible), we can begin

to guess at its reward function from its behaviour. Whether this will prove

useful within our target environments will also be subject to investigation.

Open systems In disaster scenarios such as those described in section 1.1, or

simpler rescue scenarios therein, it is likely that agents will be continually

entering or leaving the domain. With our separate models for each agent, it

should be possible to discard models as agents leave and create new ones for

new agents entering the domain. A further challenge in such systems would

86 Chapter 5 Conclusions

be to try and determine similarity of the new agents to the agents already

modelled, and thus form accurate models of their behaviour more quickly.

For example, when driving in a particular country, one can assume that all

drivers conform to similar social rules. Once those rules have been discovered

through observation of a subset of the drivers, they can be applied to any

new vehicles encountered on the roads. In a UK rescue scenario, one might

assume that all teams from a particular county, or a particular hospital,

have had similar training, and will respond similarly to a particular problem.

Finally, information sharing as mentioned previously could also contribute

to faster learning about the changing scenario.

Combining partial action and partial state observability In sections 2 and

4 we proposed example scenarios where the state is known, but agent ac-

tions are concealed. Equivalently, we can envisage disaster response scenes

in which the complete state is built from observations at a number of vantage

points. Unless there are agents at every vantage point, the complete state

will be unknown even while all agents’ actions are fully observable (perhaps

because they transmit them over broadcast radio). However, a more common

case for partially observable problems is a problem in which each agent has

a limited field of view. In such cases, it is likely that not only the states, but

the actions will be partially observable. Handling cases where both states

and actions are partially observable will be a prerequisite for extending our

model into our target domain.

5.3 Timeline

We propose to address the above issues as follows:

• Immediately, we will investigate the theoretical properties of our current

models, determining what convergence and regret guarantees may exist, or

what conditions are required for such guarantees. In particular, we will focus

on the implications of dynamic systems and dynamic agent strategies.

• Concurrently with the theoretical investigation, we will work on better ways

to approximate the model, in order to extend the system into larger domains.

• We will then extend the model to include non-cooperative domains in which

agents may have distinct individual rewards.

Chapter 5 Conclusions 87

Table 5.1: Work plan

• Next, we will extend the model to glean information about likely transitions

or actions from the observed rewards.

• Continuing the theme of experimenting with reward structure, we will model

systems where the rewards may be partially observable, in particular het-

erogeneous systems.

• Building on the use of individual agent models, we will investigate open

domains in which new agents must be discovered and learned about, while

the loss of known agents must be accounted for. Within these systems, we

will make use of techniques for sharing knowledge about the other agents

between the agents (e.g. (Dutta et al., 2004)).

• Finally, bringing together and extending the above approximation tech-

niques, knowledge sharing, and our various models of partial observability,

we will implement our model in a large scale, open, competitive domain.

Table 5.1 gives a timeline for the work.

Appendix A

Results

The following graphs show the results of several experiments comparing a q-learner

(‘q’), a Bayesian partially observable multi-agent learner (‘poa’) (our learner), and

a Bayesian multi-agent learner which is able to fully observe the actions of other

agents (‘ma’), on the small well problem of chapter 4.

The first set of graphs (figure A.1) shows the effect of varying the randomness

parameter in the system, gradually reducing the randomness to 0. The q-learner’s

performance increases dramatically as the randomness is reduced; by contrast

there is little change in the behaviour of the multi-agent learners.

The second set of graphs (figure A.2) shows experiments with alterating the ran-

domness parameter part way through the experiment, simulating a change in en-

vironmental conditions. For these experiments, the sample size has been increased

from 7 for each model in the belief state (transition model and opponent model) to

10. This affects the multi-agent learners, improving the accuracy of their estimates

at each step, and their behaviour is correspondingly improved.

The third and fourth sets of graphs (figures A.3 and A.4) show the results of

paired t-tests between our learner and the two comparison learners, for the seven

experiments described above. From these we can take away that particularly with

a sample rate of 7 the confidence in our results is not very high, although as

the environmental randomness is increased the variability of the results reduces,

increasing confidence. As the sample rate is increased, so does the confidence in

the results. We would expect this trend to continue.

89

90 Appendix A Results

(a) Sample size 72; delta=0.5 (b) Sample size 72; delta=0.65

(c) Sample size 72; delta=0.8 (d) Sample size 72; delta=1.0

Figure A.1: Two-agent well test: results (1)

The final two sets of graphs (figures A.5 and A.6) show the error bars for the

three learners over the seven experiments, indicating the degree of variability in

the behaviour of the learners.

Appendix A Results 91

(a) Sample size 102; delta=0.65 (b) Sample size 102; delta=0.5 → 0.8

(c) Sample size 102; delta=0.8 → 0.5

Figure A.2: Two-agent well test: results (2)

92 Appendix A Results

(a) Sample size 72; delta=0.5 (b) Sample size 72; delta=0.65

(c) Sample size 72; delta=0.8 (d) Sample size 72; delta=1.0

Figure A.3: Two-agent well test: t-tests (1)

Appendix A Results 93

(a) Sample size 102; delta=0.65 (b) Sample size 102; delta=0.5 → 0.8

(c) Sample size 102; delta=0.8 → 0.5

Figure A.4: Two-agent well test: t-tests (2)

94 Appendix A Results

(a) Sample size 72; delta=0.5. q, poa, ma

(b) Sample size 72; delta=0.65. q, poa, ma

(c) Sample size 72; delta=0.8. q, poa, ma

(d) Sample size 72; delta=1.0. q, poa, ma

Figure A.5: Two-agent well test: error bars (1)

Appendix A Results 95

(a) Sample size 102; delta=0.5. q, poa, ma

(b) Sample size 102; delta=0.5 → 0.8. q, poa, ma

(c) Sample size 102; delta=0.8 → 0.5. q, poa, ma

Figure A.6: Two-agent well test: error bars (2)

Bibliography

Aberdeen, D. and Baxter, J. (2002). Scaling internal-state policy-gradient methods

for POMDPs. In Proceedings of the 19th International Conference on Machine

Learning, volume 2, pages 3–10, Sydney, Australia. Morgan Kaufmann.

Abul, O., Polat, F., and Alhajj, R. (2000). Multiagent reinforcement learning

using function approximation. In IEEE Transactions on Systems, Man, and

Cybernetics, Part C, volume 30, pages 485–497.

Amato, C., Bernstein, D. S., and Zilberstein, S. (2006). Solving POMDPs us-

ing quadratically constrained linear programs. In AAMAS ’06: Proceedings of

the fifth international joint conference on Autonomous agents and multiagent

systems, pages 341–343, New York, NY, USA. ACM Press.

Baxter, J. and Bartlett, P. L. (2000). Reinforcement learning in POMDPs via

direct gradient ascent. In ICML ’00: Proceedings of the Seventeenth Interna-

tional Conference on Machine Learning, pages 41–48, San Francisco, CA, USA.

Morgan Kaufmann Publishers Inc.

Bishop, C. M. (2004). Neural networks for pattern recognition. Oxford University

Press.

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision

processes. In Proceedings of the 6th conference on Theoretical aspects of rational-

ity and knowledge, pages 195–210, San Francisco, CA, USA. Morgan Kaufmann

Publishers Inc.

Bowling, M. (2005). Convergence and no-regret in multiagent learning. In Saul,

L. K., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Pro-

cessing Systems 17, pages 209–216. MIT Press, Cambridge, MA.

Bowling, M. and Veloso, M. (2001). Rational and convergent learning in stochastic

games. In International Joint Conferences on Artificial Intelligence, pages 1021–

1026.

97

98 BIBLIOGRAPHY

Burke, J. (2003). Moonlight in Miami: A Field Study of Human-Robot Interac-

tion in the Context of an Urban Search and Rescue Disaster Response Training

Exercise. PhD thesis, University of South Florida.

Cassandra, A., Littman, M., and Zhang, N. (1997). Incremental pruning: A sim-

ple, fast, exact method for partially observable Markov decision processes. In

Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelli-

gence (UAI-97), pages 54–61, San Francisco, CA. Morgan Kaufmann.

Chalkiadakis, G. and Boutilier, C. (2003). Coordination in multiagent reinforce-

ment learning: a bayesian approach. In AAMAS ’03: Proceedings of the second

international joint conference on Autonomous agents and multiagent systems,

pages 709–716, New York, NY, USA. ACM Press.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in

cooperative multiagent systems. In AAAI ’98/IAAI ’98: Proceedings of the

fifteenth national/tenth conference on Artificial intelligence/Innovative applica-

tions of artificial intelligence, pages 746–752, Menlo Park, CA, USA. American

Association for Artificial Intelligence.

Committee on using IT to Enhance Disaster Management, N. R. C. (2005). Sum-

mary of a workshop on using information technology to enhance disaster man-

agement.

David, E., Rogers, A., Schiff, J., Kraus, S., Rothkopf, M., and Jennings, N. R.

(2007). Optimal design of english auctions with discrete bid levels. ACM Trans-

actions on Internet Technology, 7.

Dearden, R., Friedman, N., and Andre, D. (1999). Model-based Bayesian explo-

ration. In Proceedings of the 15th Annual Conference on Uncertainty in Artificial

Intelligence (UAI-99), pages 150–15, San Francisco, CA. Morgan Kaufmann.

Dorais, G., Bonasso, R., Kortenkamp, D., Pell, P., and Schreckenghost, D. (1998).

Adjustable autonomy for human-centered autonomous systems on Mars. Pre-

sented at the Mars Society Conference.

Durfee, E. H. (1999). Practically coordinating. AI Magazine, 20(1):99–116.

Dutta, P. S., Dasmahapatra, S., Gunn, S. R., Jennings, N., and Moreau, L. (2004).

Cooperative information sharing to improve distributed learning. In Proceed-

ings of The AAMAS 2004 workshop on Learning and Evolution in Agent-Based

Systems, pages 18–23.

BIBLIOGRAPHY 99

Dutta, P. S., Goldman, C. V., and Jennings, N. R. (2007). Communicating effec-

tively in resource-constrained multi-agent systems. In IJCAI, pages 1269–1274.

Emery-Montemerlo, R., Gordon, G., Schneider, J., and Thrun, S. (2004). Approx-

imate solutions for partially observable stochastic games with common payoffs.

In AAMAS ’04: Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 136–143, Washington, DC,

USA. IEEE Computer Society.

Excelente-Toledo, C. B. and Jennings, N. R. (2005). Using reinforcement learning

to coordinate better. Computational Intelligence, 21(3):217–245.

Fischer, F., Rovatsos, M., and Weiss, G. (2004). Hierarchical reinforcement learn-

ing in communication-mediated multiagent coordination. In AAMAS ’04: Pro-

ceedings of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems, pages 1334–1335, Washington, DC, USA. IEEE Computer

Society.

Fischer, F., Rovatsos, M., and Weiss, G. (2005). Acquiring and adapting proba-

bilistic models of agent conversation. In Koenig, S. and Wooldridge, M., editors,

Proceedings of the 4th International Joint Conference on Autonomous Agents

and Multi-Agent Systems (AAMAS), pages 106–113. ACM Press.

Fitoussi, D. and Tennenholtz, M. (2000). Choosing social laws for multi-agent

systems: Minimality and simplicity. Artificial Intelligence, 119(1-2):61–101.

Fogel, D. B. (2002). Blondie24: playing at the edge of AI. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games. MIT

Press.

Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic programming

for partially observable stochastic games. In AAAI, pages 709–715.

Hoar, J. (1996). Reinforcement learning applied to a real robot task. DAI MSc

Dissertion, University of Edinburgh.

Hoey, J. (2001). Hierarchical unsupervised learning of facial expression categories.

ICCV Workshop on Detection and Recognition of Events in Video.

Izadi, M. T. and Precup, D. (2006). Exploration in POMDP belief space and its

impact on value iteration approximation. In European Conference on Artificial

100 BIBLIOGRAPHY

Intelligence, Workshop on Planning, Learning and Monitoring with Uncertainty

and Dynamic Worlds (PLMUDW).

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting

in partially observable stochastic domains. Artif. Intell., 101(1-2):99–134.

Kazakov, D. and Bartlett, M. (2004). Cooperative navigation and the faculty of

language. Applied Artificial Intelligence, 18(9-10):885–901.

Kim, Nair, Varakantham, Tambe, and Yokoo (2006). Exploiting locality of inter-

action in networked distributed pomdps. In Proceedings of the AAAI Spring

Symposium on ”Distributed Plan and Schedule Management”.

Leslie, D. (2004). Reinforcement learning in games. PhD thesis, University of

Bristol.

Lesser, V. (1999). Cooperative Multiagent Systems: A Personal View of the State

of the Art. IEEE Transactions on Knowledge and Data Engineering, 11(1).

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforce-

ment learning. In Proceedings of the 11th International Conference on Machine

Learning (ML-94), pages 157–163, New Brunswick, NJ. Morgan Kaufmann.

Matsuno, Y., Ymazaki, T., Ishii, S., and Matsuno, J. (2001). A multi-agent

reinforcement learning method for a partially-observable competitive game. In

AGENTS ’01: Proceedings of the fifth international conference on Autonomous

agents, pages 39–40, New York, NY, USA. ACM Press.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of

the art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434.

Paquet, S., Tobin, L., and Chaib-draa, B. (2005). An online pomdp algorithm for

complex multiagent environments. In AAMAS ’05: Proceedings of the fourth

international joint conference on Autonomous agents and multiagent systems,

pages 970–977, New York, NY, USA. ACM Press.

Pfeffer, A., Koller, D., and Takusagawa, K. T. (2000). State-space approximations

for extensive form games. Workshop paper at First World Congress on Game

Theory.

BIBLIOGRAPHY 101

Rezek, I., Reece, S., Roberts, S. J., Rogers, A., Dash, R. K., Jennings, N. R.,

and Leslie, D. S. (2006). On similarities between inference in game theory and

machine learning. Machine Learning Journal: to appear.

Rogers, A., David, E., Schiff, J., and Jennings, N. R. (2006). The effects of proxy

bidding and minimum bid increments within ebay auctions. ACM Transactions

on the Web.

Roweis, S. (2003). Hidden markov models. SCIA Tutorial.

Roy, N. and Gordon, G. (2002). Exponential family PCA for belief compres-

sion in POMDPs. In Becker, S., Thrun, S., and Obermayer, K., editors, Ad-

vances in Neural Information Processing 15 (NIPS), pages 1043–1049, Vancou-

ver, Canada.

Sallans, B. A. (1999). Learning factored representations for partially observable

Markov decision processes. In Neural Information Processing Systems, pages

1050–1056.

Sallans, B. A. (2002). Reinforcement learning for factored Markov decision pro-

cesses. PhD thesis, University of Toronto. Adviser-G. E. Hinton.

Scerri, P., Sycara, K., and Tambe, M. (2004). Adjustable autonomy in the con-

text of coordination. In AIAA 3rd Unmanned Unlimited Technical Conference,

Workshop and Exhibit. Invited Paper.

Schurr, N., Marecki, J., Lewis, J. P., Tambe, M., and Scerri, P. (2005). The defacto

system: Coordinating human-agent teams for the future of disaster response. In

Multi-Agent Programming, pages 197–215. Springer.

Shani, G., Brafman, R. I., and Shimony, S. E. (2005). Model-based online learning

of pomdps. In European Conference on Machine Learning, pages 353–364.

Shi, J. and Littman, M. L. (2002). Abstraction methods for game theoretic poker.

In CG ’00: Revised Papers from the Second International Conference on Com-

puters and Games, pages 333–345, London, UK. Springer-Verlag.

Shoham, Y., Powers, R., and Grenager, T. (2003). Multi-agent reinforcement

learning: a critical survey. Technical report, Stanford University.

Smith, A. J. (2002a). Dynamic generalisation of continuous action spaces in re-

inforcement learning: A neurally inspired approach. Ph.D. thesis, Division of

Informatics, Edinburgh University, UK.

102 BIBLIOGRAPHY

Smith, A. J. (2002b). Dynamic generalisation of continuous action spaces in re-

inforcement learning: A neurally inspired approach. Ph.D. thesis, Division of

Informatics, Edinburgh University, UK.

Stenning, K. and van Lambalgen, M. (2005). Semantic interpretation as computa-

tion in nonmonotonic logic: the real meaning of the suppression task. Cognitive

Science, 29(6).

Sun, R. and Naveh, I. (2004). Simulating organizational decision-making using

a cognitively realistic agent model. Journal of Artificial Societies and Social

Simulation, 7(3).

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

MIT Press.

Takeuchi, I., Kakumoto, S., and Goto, Y. (2003). Towards an Integrated Earth-

quake Disaster Simulation System. First International Workshop on Synthetic

Simulation and Robotics to Mitigate Earthquake Disaster.

Tambe, M., Adibi, J., Alonaizon, Y., Erdem, A., Kaminka, G. A., Marsella, S.,

and Muslea, I. (1999). Building agent teams using an explicit teamwork model

and learning. Artificial Intelligence, 110(2):215–239.

Tanner, B., Bulitko, V., Koop, A., and Paduraru, C. (2007). Grounding ab-

stractions in predictive state representations. In Proceedings of the Twentieth

International Joint Conference on Artificial Intelligence (IJCAI 2007), pages

1077–1082.

Wang, F. (2002). Self-organising communities formed by middle agents. In AA-

MAS ’02: Proceedings of the first international joint conference on Autonomous

agents and multiagent systems, pages 1333–1339, New York, NY, USA. ACM

Press.

Wooldridge, M. (2002). An Introduction to Multi-agent Systems. Wiley.

	1 Introduction
	1.1 The disaster response domain
	1.2 Decision making under uncertainty
	1.2.1 Partial observability
	1.2.2 State generalization and function approximation

	1.3 Coordinated decision making
	1.4 Research contributions
	1.5 Report structure

	2 Literature Review
	2.1 Autonomous agents
	2.2 Decision making under uncertainty
	2.2.1 Reinforcement learning
	2.2.2 Bayesian model-based learning
	2.2.3 Partial observability

	2.3 Learning in multi-agent systems
	2.3.1 Learning in games
	2.3.2 Multi-agent POMDPs
	2.3.3 Learning in multi-agent POMDPs

	2.4 Managing large state spaces
	2.4.1 State space abstractions
	2.4.2 Abstractions in POMDPs

	2.5 Summary

	3 A Bayesian model for coordination in partially observable systems
	3.1 Problem definition
	3.2 Recap: Bayesian multi-agent learning
	3.3 Partially observable actions
	3.3.1 Action-effect model
	3.3.2 Limited visibility

	3.4 Partially observable states
	3.4.1 Single-agent case
	3.4.2 Multi-agent case

	3.5 Approximations
	3.6 Summary

	4 Demonstration and evaluation of the Bayesian model
	4.1 Partially observable actions
	4.1.1 Experiments
	4.1.2 Results
	Effect of sample size
	Effect of delta
	Changing delta
	Error bar shape
	Summary

	4.2 Partially observable states: Example from the disaster response domain
	4.2.1 Applying the model of section 3.4
	Belief state
	Prior beliefs
	Belief updates

	4.2.2 Practical considerations

	4.3 Discussion

	5 Conclusions
	5.1 Summary
	5.2 Future work
	5.3 Timeline

	A Results

