
UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering Science and Maths

School of Electronics and Computer Science

Bayesian learning for multi-agent

coordination

by

Mair Allen-Williams

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

March 2009

http://www.soton.ac.uk
http://www.ecs.soton.ac.uk
file:mhaw05r@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

Abstract
Faculty of Engineering Science and Maths

School of Electronics and Computer Science

Doctor of Philosophy

Bayesian learning for agent coordination

by Mair Allen-Williams

Multi-agent systems draw together a number of significant trends in modern technology:

ubiquity, decentralisation, openness, dynamism and uncertainty. As work in these fields

develops, such systems face increasing challenges. Two particular challenges are decision

making in uncertain and partially-observable environments, and coordination with other

agents in such environments. Although uncertainty and coordination have been tackled

as separate problems, formal models for an integrated approach are typically restricted

to simple classes of problem and are not scalable to problems with tens of agents and

millions of states.

We improve on these approaches by extending a principled Bayesian model into more

challenging domains, using Bayesian networks to visualise specific cases of the model and

thus as an aid in deriving the update equations for the system. One approach which

has been shown to scale well for networked offline problems uses finite state machines to

model other agents. We used this insight to develop an approximate scalable algorithm

applicable to our general model, in combination with adapting a number of existing

approximation techniques, including state clustering.

We examine the performance of this approximate algorithm on several cases of an

urban rescue problem with respect to differing problem parameters. Specifically, we

consider first scenarios where agents are aware of the complete situation, but are not

certain about the behaviour of others; that is, our model with all elements but the

actions observable. Secondly, we examine the more complex case where agents can see

the actions of others, but cannot see the full state and thus are not sure about the

beliefs of others. Finally, we look at the performance of the partially observable state

model when the system is dynamic or open. We find that our best response algorithm

consistently outperforms a handwritten strategy for the problem, more noticeably as the

number of agents and the number of states involved in the problem increase.

http://www.soton.ac.uk
http://www.ecs.soton.ac.uk
file:mhaw05r@ecs.soton.ac.uk

Contents

Abstract i

List of Figures vi

List of Examples viii

List of Algorithms ix

Acknowledgements xi

Abbreviations xii

Notation xiii

Key terms xv

1 Introduction 1

1.1 Multi-agent systems . 3

1.2 Disaster response as a multi-agent system 6

1.3 Coordinated decision making . 9

1.3.1 Decision making under uncertainty 9

1.3.2 Approaches to coordination 11

1.3.3 Bayesian learning for scalable coordination 13

1.4 Research contributions . 14

1.5 Thesis structure . 16

2 Literature Review 18

2.1 Autonomous agents . 18

2.2 Markov decision processes . 20

2.2.1 Partially observable Markov decision processes 25

2.2.2 Reinforcement learning . 28

2.2.3 Bayesian reinforcement learning 30

2.3 Multi-agent learning . 33

2.3.1 Partially observable stochastic games 37

2.3.2 Learning about other agents 42

2.4 Extending MDP techniques to larger scale systems 43

2.4.1 State abstractions . 44

ii

Contents iii

2.4.2 Policy approximations . 48

2.5 Summary . 50

3 A Bayesian model of partially observable multi-agent systems 52

3.1 Definitions . 52

3.2 Bayesian MDPs . 54

3.3 Belief networks . 58

3.4 Improving efficiency . 65

3.4.1 Finite-horizon Q-computation 66

3.4.2 State abstraction using statistical clustering 69

3.4.2.1 The partially observable state model 72

3.4.3 Policy abstraction using finite state machines 74

3.4.3.1 Definitions . 74

3.4.3.2 A polynomial FSM learning algorithm 75

3.4.3.3 An online learning algorithm 80

3.4.4 Efficient sampling techniques 82

3.4.4.1 Sparse priors . 82

3.4.4.2 Weighted sampling 84

3.4.4.3 Sampling with repair 86

3.5 Summary . 87

4 The ambulance rescue problem 89

4.1 Model instantiation . 90

4.2 Summary . 101

5 Coordination in the presence of partially observable actions 102

5.1 Evaluating the general model with partially observable actions . . . 103

5.1.1 Performing the updates . 105

5.1.2 Best response computation 107

5.1.3 Exploiting reward structure 109

5.2 Ambulance rescue with partially observable actions 111

5.2.1 Experimental setup . 111

5.2.2 Experimental evaluation . 113

5.2.2.1 Alternative implementations 113

5.2.2.2 Varying the sample size 117

5.2.2.3 Varying the move predictability 118

5.2.2.4 Varying the number of agents 120

5.2.2.5 Varying the board size 122

5.3 Ambulance rescue making use of reward information 123

5.3.1 Experimental setup . 124

5.3.2 Experimental evaluation . 124

5.3.2.1 Varying the sample size 125

5.3.2.2 Varying the move predictability 126

5.3.2.3 Varying the number of agents 126

5.3.2.4 Varying the board size 127

Contents iv

5.4 Summary . 128

6 Coordination in the presence of partially observable states 130

6.1 Evaluating the general model with partially observable states 131

6.2 Ambulance rescue with partially observable states 135

6.2.1 Experimental setup . 135

6.2.2 Experimental evaluation . 136

6.2.2.1 Finite state machine properties 137

6.2.2.2 Examining the learning rate 146

6.2.2.3 Varying the visibility 147

6.2.2.4 Varying the victim arrival rate 149

6.2.2.5 Varying problem size factors 149

6.3 Summary . 154

7 Coordination in the presence of dynamism and openness 156

7.1 Modelling dynamic and open domains 157

7.2 Ambulance rescue in dynamic domains 158

7.2.1 Experimental setup . 158

7.2.2 Experimental evaluation . 162

7.2.2.1 Single, one off changes 162

7.2.2.2 Multiple, oneoff changes 166

7.2.2.3 Multiple, gradual changes 166

7.3 Ambulance rescue problem in open domains 172

7.3.1 Experimental setup . 173

7.3.2 Experimental evaluation . 174

7.3.2.1 Single changes . 175

7.3.2.2 Multiple changes 178

7.4 Summary . 182

8 Conclusions 183

8.1 Thesis Summary . 183

8.2 Research contributions . 185

8.2.1 A general model for partially observable multi-agent systems 185

8.2.2 Partially observable actions 187

8.2.3 Partially observable states 187

8.2.4 Open and dynamic domains 188

8.3 Future work . 189

8.3.1 Scaling up using sophisticated approximation techniques . . 189

8.3.2 Finite state machine properties and improvements 191

8.3.3 Theoretical properties . 191

8.3.4 Incorporating graphical model techniques 192

8.3.5 Future trends . 193

References 195

List of Figures

1.1 Spheres of influence on a waterbed 3

2.1 Tamptono, after an earthquake . 20

2.2 Markov decision process progression 22

2.3 Partially observable Markov decision process 24

2.4 Partially observable Markov decision process 25

2.5 POMDP inducing a Bayesian belief state MDP 26

3.1 MDP, POMDP, and belief-MDP . 55

3.2 Example Bayesian network, with the CPTs for the fire and victim
nodes . 59

3.3 Simple MDP belief network . 62

3.4 Bayes networks for the multi-agent MDP, with the equations for
determining the likelihood of the two unknown nodes shown. 63

3.5 Single-agent POMDP, with update equations shown 64

3.6 Complete partially observable multi-agent network 66

4.1 One step of the rescue problem on a 4x4 grid with three agents . . . 91

4.2 One agent’s view of the situation shown in figure 4.1 96

5.1 Partially observable actions: Bayes network 104

5.2 Bayesian network diagrams for different reward cases of the same
transition function, in a scenario with observable states and par-
tially observable actions . 109

5.3 Comparing the best response policy with variants and the smart
policy . 115

5.4 Time taken to complete one run of 400 steps 115

5.5 Comparing the full best response policy with variants and the
smart policy, with a maximum step time of 1 second 116

5.6 Effect of varying the sampling size 118

5.7 Effect of varying the sample size for several sizes of problem 119

5.8 Effect of varying move predictability 119

5.9 Time taken to complete one run of 400 steps 121

5.10 Effect of increasing the number of agents 121

5.11 Effect of increasing the number of agents: 3x3 grid 122

5.12 Time taken to complete one run of 400 steps 122

5.13 Effect of increasing the size of the board 123

v

List of Figures vi

5.14 Effect of varying sample size with inference from rewards 125

5.15 Effect of varying move predictability with inference from rewards . . 126

5.16 Effect of increasing numbers of agents with inference from rewards . 127

5.17 Varying board size with inference from rewards 128

6.1 Partially observable states . 131

6.2 Effect of cluster capping over a run 137

6.3 Effect of clustering on two variants of the 7x7 problem 139

6.4 Time taken to complete one run of 1500 steps 140

6.5 Effects of changing the sampling rate with two and three agents . . 141

6.6 Time taken to complete one run of 150 steps 142

6.7 Effect of lengthening observation history 144

6.8 Comparison of two algorithms over time on a 7x7 board with 3 agents145

6.9 Effects of varying visibility . 148

6.10 Effects of varying victim arrival rate 150

6.11 Effects of increasing the number of agents on the results for two
large boards . 151

6.12 Effects of changing the board size on the results for 3 and for 5 agents152

7.1 Single, one off change in the environmental dynamics, making the
problem harder . 163

7.2 Single, one off change in the environmental dynamics, making the
problem easier . 165

7.3 One off changes in the environmental dynamics, making the problem
harder and then easier . 167

7.4 One off changes in the environmental dynamics, making the problem
easier and then harder . 168

7.5 Gradual changes in the environmental dynamics, making the
problem harder and then easier . 169

7.6 Gradual changes in the environmental dynamics, making the
problem easier and then harder . 170

7.7 One off change: increasing the number of agents 176

7.8 One off change: decreasing the number of agents 177

7.9 Increasing the number of agents and then decreasing the number . . 179

7.10 Decreasing the number of agents and then increasing the number . 181

List of Examples

1 Tamptono earthquake scenario . 20

2 Partial observability in the Tamptono earthquake 26

3 Rescue worker in Tamptono old people’s home 29

4 Exploration-exploitation in the Tamptono earthquake 31

5 Ambulance traffic at the Tamptono earthquake 33

6 Heterogeneous agents in Tamptono 34

7 Nash equilibria in the Tamptono earthquake 34

8 Multi-agency ambulance rescue in Tamptono 37

9 Beliefs about the beliefs of others, in the Tamptono disaster 38

10 Partially observable actions in the Tamptono rescue 40

11 Partially observable stochastic games in Tamptono 41

12 Higher-level views of the Tamptono earthquake 43

13 Tamptono rescue agent’s observations 57

vii

List of Algorithms

1 The general belief MDP algorithm 58

2 A finite state machine policy . 75

3 An algorithm for learning a finite state machine from beliefs 77

viii

Declaration of Authorship

I, Mair Allen-Williams, declare that this thesis titled, ‘Bayesian learning for multi-

agent coordination’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

ix

Acknowledgements

Thanks are due to many people for the production of this thesis...

• many thanks are due to my supervisor Nicholas Jennings for his patience

and excellent help and advice.

• ... to BAE Systems and EPSRC for providing funding under the Aladdin

Project

• ... to Paul for helping to edit a number of the diagrams

• ... to my sister Catrin for friendship, chocolate and proofreading

• ... to ECSWomen and Reena Pau for support along the way

• ... to Mike for many cheering emails

• ... to my godfamily for their homes

• ... to my family for their support through many years of education

• ... to the many people on IRC far and near who have listened to me rant

late into the night

x

Abbreviations

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

POSG Partially Observable Stochastic Game

RL Reinforcement Learning

NE Nash Equilibrium

FSM Finite State Machine

CPT Conditional Probability Table

HMM Hidden Markov Model

DBN Dynamic Bayesian Network

xi

Notation

ai, a, A the action of agent i, a joint action, the set of actions

Act(n) the action associated with node n of a finite state machine

bi, b the belief state of agent i, a belief state

BRi(Σ, b) agent i’s best response to (Σ, b)

C a cluster (of states, observations, ...)

C(s) the equivalence class for a string s

F a finite state machine

g state (of a “grand MDP”) comprising underlying state,

parameters, models

h historical information

li, L location of an agent, set of locations

or length of i, size of an observation space (in sparse prior

formulation)

M a model

n the node of a finite state machine

nx the number of x

o, oi, oa,i (or obs), O an observation, the observation of agent i, the observation of

agent i about variable a, the set of observations

Of an observation function

Obs(s) the observations which can arise from state s

os, OS a string (sequence) of observations, the set of observation strings

P (x) probability of x

p, P prior beliefs, the set of prior beliefs

Q(a, s) the long-term value of being in state s and executing action a

r, R a reward, the set of rewards

Rf a reward function (from states or transitions to rewards)

s, S a state, the set of states

t time

Tf a transition function

V (s) the long-term value of state s

xii

Notation xiii

wi, w, W weight of an individual value in a multinomial distribution,

weight vector, variable referring to weight vectors

z a normalising constant

α the Dirichlet parameter vector, or a learning rate

γ an agent’s degree of ‘myopia’

δ(A = B) the delta function

πj the strategy of the single agent j

θ the environmental dynamics

Key terms

Agent An agent receives input from the environment through its sensors and

interacts with the environment to try and achieve some goal: it may be a

person, an organisation, or an automatic device such as an intelligent sensor

or a robot.

Bayesian probability is an interpretation of probability which describes proba-

bility as a “personal belief”, based on combining any prior information with

observed information.

Bayes’ rule is the equation specifying how to update beliefs about the world,

given new information:

P (world = w|observations) ∝ P (observations|world = w)P (world = w)

Belief state A belief state encapsulates the beliefs an agent has about its current

state: that is, probability distributions for each variable within the state.

Coordination If several agents are interacting with the same environment, their

actions affect one another, directly or indirectly—this is coordination.

Disaster Response Large-scale disasters include earthquake, fire and terrorist

attack, and require a timely coordinated multi-agency response.

Finite state machine A finite state machine has a set of internal states,

and rules for movement between these internal states. When describing

the behaviour of an intelligent agent, internal states prescribe actions,

and movement between states is conditioned on observations from the

environment.

Markov decision process In a Markov Decision Process, changes in the en-

vironment in response to an agent’s actions are determined only by the

immediate state and actions, and not by any historical information.

Uncertainty An agent in an uncertain environment does not know of all the

parameters within that environment.

xiv

“It is not the place where you are that is the important

thing. It is the intensity of your presence there.”

Michael Quoist: A biography. Quoted in ‘The Choice’, Sister Kirsty

For the daisies on the wayside.

xv

Chapter 1

Introduction

A multi-agent system is a system of interacting intelligent actors, or agents,

responding to their environment. Among other things, multi-agent technology

can be used to model or to implement large decentralised systems. As computing

power and ubiquity increase, many organisations are making use of such systems:

example application areas are as diverse as modelling eBay auctions (Rogers,

David, Schiff, & Jennings, 2007), modelling social structures (Sun & Naveh, 2004),

or creating fight scenes in films (for example, agent systems were used in The

Lord of the Rings1). Consequently, scalable multi-agent technology is becoming

increasingly important and multi-agent research is a lively and growing area facing

many challenges. In particular, the inherent dynamism in many of these problems

calls not for offline computation of solutions to problems, but rather timely online

responses to new, unknown scenarios.

In more detail, agents acting in such unknown scenarios will frequently be

uncertain, both about the current environment and about the behaviour of other

agents. Specifically, when agents are not able to see all aspects of their current

situation, the scenario is described as partially observable (Kaelbling, Littman,

& Cassandra, 1998). In a partially observable setting, the agents must carry

out a discovery phase to learn about the scenario before they can focus directly

on their goals. As the scenario becomes clearer, the agent must strike a balance

1http://www.massivesoftware.com/

1

http://www.massivesoftware.com/

Chapter 1 Introduction 2

between exploiting its current knowledge, and exploring further: the “exploration-

exploitation” tradeoff (Sutton & Barto, 1998). Now, a principled way to address

this tradeoff is to make use of Bayesian techniques, which provide a way to

incorporate the probable value of information into computations about action

quality (Dearden, Friedman, & Andre, 1999).

Now, in a multi-agent system, an agent is always acting in the context of other

agents, and so it must adapt its plans according to its expectations of the others.

This need to take others into account, coordination, is therefore a key issue in a

multi-agent system. In particular, in uncertain and open systems, the protocols for

coordination must function against a background where agents are not fully aware

of the situation, the resources available to them, or the presence or goals of the

other agents. Just as exploration and exploitation are entwined, so the negotiation

of coordinated behaviour in such systems is intertwined with the discovery phase,

including discovering the other agents and learning about their behaviour.

Considering these interlinked issues of uncertainty and coordination, we will

build upon existing techniques for decision making under uncertainty, including

explicit models of other agents, thus tackling the problem of providing coordinated

behaviour in uncertain and partially observable multi-agent systems. Moreover,

acknowledging the growth of multi-agent systems in real and increasingly large

applications, we will endeavour to factor issues associated with scalability into our

solutions. First, in section 1.1, we introduce multi-agent systems in more detail,

going on to identify the disaster response domain as a grounding example. Section

1.2 highlights the salient features of this domain. Given this background, in section

1.3 we introduce Bayesian learning as a suitable technique for learning and acting

in multi-agent systems and in section 1.4 identify our contributions to the state of

the art in this area. Finally, section 1.5 outlines the rest of the thesis.

Chapter 1 Introduction 3

The woman’s greater weight causes her to have a much larger sphere of influence
than the man. Each time she moves he will be affected by her actions, and have

to act himself if he is to maintain a comfortable position. (Image from
http://babbyhageman.blogspot.com with thanks)

Figure 1.1: Spheres of influence on a waterbed

1.1 Multi-agent systems

In an agent system, an intelligent agent is functioning in a dynamic environment.

This environment provides stimulation to the agent’s senses, to which the agent

responds by acting on the environment. If the system is a multi-agent system, then

many agents coexist in the same environment, and the actions of one agent can

cause perceptible changes in another’s environment (figure 1.1). Such multi-agent

systems are becoming increasingly prevalent, as a result of a number of significant

trends in modern technology (Wooldridge, 2002):

• Ubiquity: As computing chips become smaller and cheaper, it is possible

to add computational power and intelligence to many kinds of devices in

almost any location. Systems made of networks of these ubiquitous devices

have much greater possibilities than individual devices. These systems may

http://babbyhageman.blogspot.com

Chapter 1 Introduction 4

be mobile, in which case they must be able to adapt quickly to changing

surroundings.

• Decentralisation: With the advent of the world wide web and other

computing networks, such as grid computing and peer-to-peer networks,

systems that distribute data and tasks among a network of machines are

increasingly common.

• Openness and dynamism: Open systems are those in which agents may

enter or leave at any time, while in dynamic systems the environment

properties may change at any time. Many real-world systems are both open

and dynamic and there has been a corresponding trend in computing towards

providing interactive systems which are able to respond to a changing

environment.

• Uncertainty: Uncertainty plays a large part in systems which respond to

environmental or sensor inputs. Moreover, a trend towards increasingly large

and complex systems means that frequently systems are effectively uncertain,

even if they are technically deterministic.

The combination of these features describes a broad class of complex, dynamic,

large-scale systems which may be implemented or modelled as multi-agent systems.

As well as having the features above—decentralisation, openness and dynamism,

and uncertainty—these multi-agent systems may be heterogeneous, containing

agents with a variety of capabilities and goals representing different nodes in the

system. For example, a sensor network may contain wind sensors, temperature

sensors, and pressure sensors. Each sensor may have to make decisions about when

and what to sense based on its own battery power, with different sensors having

different kinds of battery. In another example, if the heterogeneous agents have

conflicting goals—such as two PDA devices interacting on behalf of two professors,

one of whom wants a free day to do some marking while the other wants to set up

a meeting—then the agents are considered to be competitive (Tambe et al., 2006).

Finally, networked systems operating under time constraints may have bandwidth

Chapter 1 Introduction 5

limitations which must be taken into consideration by the agents (Becker, Lesser,

& Zilberstein, 2005) (Dutta, Goldman, & Jennings, 2007).

Clearly, there are many challenges when working in such domains. However, the

essential task of any agent operating in a multi-agent system is to process the

inputs it receives, and to plan how to act, in the context of other agents (Durfee,

1999). The central tasks for the agent are, therefore, (i) information processing

and (ii) coordinated decision-making (including decisions about information

gathering).

The first of these two tasks, information processing, is, in its fullest sense, the task

of forming a coherent world view from scattered, incomplete, potentially error-

prone, even conflicting messages which the agent receives at different times from

heterogeneous sources. The extent to which the agent actually needs a complete

world model will depend on its decision making policy. For example, if agents

in a disaster situation are organised in such a way that each agent is allocated

to a particular region (in the UK, this might be a county) and functions only in

that region, it may choose to maintain a model only of that region and discard

messages which concern other regions (National Research Council, 2005).

However, since our focus is on multi-agent systems, our primary interest is the

second task: how such agents gather and then make use of their information in

a multi-agent setting. Acting optimally in such settings involves the integration

of two established disciplines: decision making under uncertainty, and agent co-

ordination (Boutilier, 1996). The fusion of these disciplines results in coordinated

decision making, which will be the focus of this thesis.

Before discussing this discipline in more detail in section 1.3, we will provide

a focus for our research in this area, considering a domain which has all the

characteristics relevant to the growing field of multi-agent research: disaster

response. The importance of this domain is highlighted by recent events such

as the Asian tsunami in 2004, the London bombings in July 2005 and Hurricane

Katrina in 2005. Consequently, the Aladdin Project, which was the wider project

providing the context for this work, focused on disaster response. Furthermore, the

Chapter 1 Introduction 6

importance of finding effective behaviours in disaster response scenarios has led to

the development of the Robocup Rescue earthquake simulation and competition.

This simulation would provide inspiration for our own work and includes a

testbed for coordination algorithms2. Thus, this challenging domain highlights the

importance of online coordination algorithms within large multi-agent systems.

1.2 Disaster response as a multi-agent system

In disaster situations such as terrorist attacks, floods or earthquakes, many

different teams from a number of organisations must cooperate to attempt to

recover the situation. However, their work may be interrupted by self-interested

actors such as journalists, scavengers, or even terrorists. Moreover, some of the

cooperating organisations may have conflicting subgoals—for example, suppose

during an aeroplane crash an injured person is trapped in the wreckage very close to

the “black box”. The police will wish to keep the black box intact for the purposes

of determining what caused the crash, while ambulance teams are concerned only

with removing the injured person, perhaps necessitating the destruction of the

black box unless they are very careful. The overall goal of both, of course, is

something loosely akin to maintaining the wellbeing of the people affected by the

disaster or who might be affected by related disasters.

Scenarios of this nature provide rich grounds for the implementation of agent

systems, such as the Robocup Rescue system3, the DEFACTO system (Schurr,

Marecki, Lewis, Tambe, & Scerri, 2005) and others (e.g. (Burke, 2003), (Takeuchi,

Kakumoto, & Goto, 2003)). In such applications, the extent of computer

intervention may be anything from a fully automatic multi-agent system, to

a human-managed system receiving advice from an agent-powered device. In

between these extremes, agents may be used to implement some parts of a complete

system, for example managing resources such as bandwidth (Bigham, Cuthbert,

Yang, Lu, & Ryan, 2004). At one end of this scale, multi-agent systems can model

2http://www.aladdinproject.org/ecskernel/index.html
3http://www.rescuesystem.org/robocuprescue/

http://www.aladdinproject.org/ecskernel/index.html
http://www.rescuesystem.org/robocuprescue/

Chapter 1 Introduction 7

every aspect of the disaster response, simulating the disaster, the affected humans,

and the response agents. Robocup Rescue is an example of such a system. In the

future, these systems could be taken further, deploying actual robots at the scene

of the disaster. Indeed, there is already some work on human-robot teams (Schurr

et al., 2005). At the other end of the scale, agent systems can be used alongside

the human response teams, processing data and interactively suggesting courses

of action (Dorais, Bonasso, Kortenkamp, Pell, & Schreckenghost, 1998). In the

middle of the scale can be found agents who defer to humans in scenarios they are

uncertain about (Scerri, Sycara, & Tambe, 2004).

The focus in this work is on the use of multi-agent systems for modelling aspects of

a complete disaster response. We choose this perspective because it provides the

broadest view of the problem. Complete solutions can be sought, and the resulting

models used in more human-interactive applications. For example, software on a

networked PDA can propose courses of action to be explored by the human user.

Another use for such models is to aid in training human teams. For example, the

Auckland urban search and rescue department are working together with Robocup

Rescue developers to develop new strategic models for their own rescue services4.

Now, taking this complete disaster response problem as an illustrative domain for

exploring multi-agent systems, we identify all the properties of scalable multi-agent

systems discussed above:

Decentralised: After a large disaster, it may be impossible for any one agent

to have a complete view of the system. Rescue teams which find their way

to a particular location will operate as a unit rather than taking precise

instructions from some central authority. Different teams may be guided

by different authorities, and individuals nearby may try and help without

communicating centrally at all.

Dynamic: It is unreasonable to assume that a realistic system will be static.

Environmental conditions are subject to constant change and agents must

4http://www.auckland.ac.nz/uoa/about/news/articles/2004/06/0011.cfm

http://www.auckland.ac.nz/uoa/about/news/articles/2004/06/0011.cfm

Chapter 1 Introduction 8

be able to adapt to these changes. In disaster recovery scenarios agents must

react to changing weather, unexpected events such as building collapse or

fires and constantly moving traffic, among many other changing conditions.

Open: Disaster scenarios will have people or units moving in and out of the

system constantly. In the worst case, agents are liable to die, hence vanishing

suddenly. On the other hand, as volunteers and taskforces from elsewhere

rush to contribute help, new agents will enter the response system.

Uncertain: As previously discussed, in disaster recovery scenarios taking place

over broad areas, it is unlikely that any one agent will have a complete view

of the situation. Moreover, information which reaches the agent may be

error-prone, increasing the uncertainty. At a different level of granularity,

environmental conditions such as the expected weather or the height of a

tide can be equally uncertain.

Heterogeneous: There are many different types of agents involved in a disaster

response scenario, with a variety of capabilities and (potentially conflicting)

goals. At a minimum there will be the rescue teams, each with distinct

tasks: ambulances, police, helicopter teams, and there will be the people

affected by the disaster. Also involved may be journalists, crime teams, and

environmental agencies, to name but a few.

Competitive: As discussed, the actors at a disaster situation may have conflict-

ing goals or subgoals, as in the example above. Furthermore, self-interested

agents have no reason to attempt to resolve the conflicts cooperatively.

Bandwidth-limited: One characteristic which is common in disaster scenarios

is limited communication (National Research Council, 2005). For example,

mobile phone networks may become jammed, rescue units from different

areas or departments, may have radios set to different frequencies, and finally,

the need for timely responses will limit the amount of information which can

be exchanged between rescue workers or teams before they must act.

Chapter 1 Introduction 9

Large: Disaster recovery scenarios may involve hundreds or thousands of distinct

actors, organisations or teams, operating over a wide area.

Clearly, disaster response can provide rich examples of multi-agent systems which

will guide our research and inspire test scenarios. This is the domain which we

will keep in mind, as we discuss approaches to coordinated decision making.

1.3 Coordinated decision making

In this section, we discuss two sub-disciplines. First, consider a single agent whose

model of the world is uncertain: each variable within the model is associated

with a probability distribution over values, rather than a single value. Given this

uncertainty, how can the agent decide on an optimal action? This decision-making

under uncertainty forms the first sub-discipline and is discussed in section 1.3.1.

Now, consider a group of agents acting within the same environment, each of

whom must make decisions about how to interact with the others. The process

by which the agents make such decisions is their coordination protocol, and we

discuss coordination protocols in section 1.3.2.

However, bringing together these two ideas, when agents are coordinating in an

uncertain scenario, their coordination decisions are made in the context of their

uncertainty. In fact, by including other agents as variables in the world model,

the single-agent decision making processes can be used to carry out coordinated

decision making in multi-agent problems. Section 1.3.3 will explain this idea in

more detail.

1.3.1 Decision making under uncertainty

In a very simple model, the agent perceives the state of the world through some

kind of sensory inputs, and makes a decision about how to act based on this state.

Following the agent’s action, the world transitions into a new state, and the agent

Chapter 1 Introduction 10

may receive some reward. This model forms the basis for reinforcement learning

theory (Sutton & Barto, 1998). Underlying reinforcement learning theory is the

assumption that the immediate next state is dependent only on the previous state

and choice of action—the Markov assumption. While this property does not hold

for many realistic scenarios, it is a sufficiently good approximation that the learning

techniques which arise from this theory often get good results, as demonstrated

by many practical examples (such as (Hoar, 1996) (Smith, 2002), (Abul, Polat, &

Alhajj, 2000)).

With the Markov assumption, if the transition and reward models are completely

known to the agent, the system can be solved, using the recursive Bellman

equations (Sutton & Barto, 1998) (described in more detail in 2.2), to determine

the expected optimal action from each world state. However, when there is

uncertainty about these models, the agent must integrate the learning of the

models (exploration) with acting to obtain rewards (exploitation).

There are two classes of learning techniques: model-based and model-free, both

described in more detail in section 2.2.2. In the former, the agent aims to learn

the environmental model and then calculate an optimal action given that model.

In the latter, the agent learns a direct mapping from the state to the optimal

action. Model-free learning typically involves simple updates at each step and

is consequently often more efficient for one-off problems. By comparison, model-

based methods can be used to carry out many simulation steps alongside each

real-time step, taking advantage of otherwise idle CPU cycles in relatively slow-

progressing problems. Another advantage of model-based methods is the ability

to bias the system towards a particular real model, using domain knowledge to

guide beliefs. Given this, we focus on model-based methods particularly because

of these two properties: in scenarios such as disaster response we will have initial

beliefs about the system based on the domain or similar disasters and would like

to incorporate those beliefs into our solutions.

Most model-based learning methods—such as Q-learning, TD(λ), SARSA (Sutton

& Barto, 1998)—maintain a point estimate of the learned model. This estimate

Chapter 1 Introduction 11

is used to compute the optimal action in an exploitation step. Exploration steps,

in which a random action is selected, are inserted at heuristically determined

intervals. By contrast, a Bayesian learning method will maintain a probability

distribution over all possible models, in the form of a belief state. A set of models is

sampled, and an action chosen for each sampled model. The action taken is decided

from these sample actions, each weighted by the probability of the associated

model (Dearden et al., 1999). Such methods provide a principled solution to the

exploration-exploitation problem. In general, the more certain the agent is about

its current model, the more likely it should be to take the currently optimal action

rather than an exploratory action. The Bayesian reinforcement learning model

pins this intuition down mathematically and so is the basis for the work in this

thesis. We introduce existing Bayesian learning models in section 2.2.3. In section

3.2 we will extend these models into a general case.

1.3.2 Approaches to coordination

Above, we have discussed agents reasoning about their environments. However,

as well as reasoning about their environment, agents in a multi-agent system will

be interacting with each other. This interaction can be modelled by defining

a (hyper)sphere of influence for each agent within the environment (figure 1.1).

Overlapping spheres of influence indicate interactions between agents (Wooldridge,

2002). Moreover, a model of how different spheres interact will form a part of

the agent’s model of the system, as will models of the behaviour of the other

agents. Given this, making decisions in the context of these other agents is the

fundamental principle of coordination (Durfee, 1999). Clearly, this is a central part

of a reasoning agent in a multi-agent system. Thus, in what follows we expand

on how agents can reason about the behaviour of others and incorporate that

reasoning into their own behaviour.

Three, potentially overlapping, coordination mechanisms are identified by (Boutilier,

1996): conventions, communication, and learning. Firstly, conventions are

typically the simplest form of coordination. In a convention-based system, there

Chapter 1 Introduction 12

are a number of assumed “social rules” describing ways for agents to interact when

they are aware of other agents. Coordination by convention is typically simple,

scalable and requires no setup time (Fitoussi & Tennenholtz, 2000). However, it

is inflexible, and relies on all participants knowing the conventions and complying

with them. Secondly, communication is used for coordination in many kinds of

system. Coordination through communication has a small setup time and some

bandwidth costs. In most large systems there will be some form of communication

in order to share information between agents; it will be impossible for any one

agent to sense all the information it needs to function effectively in context (Dutta,

Dasmahapatra, Gunn, Jennings, & Moreau, 2004). However, we expect to make

limited use of communication beyond information-sharing, as the bandwidth and

timeliness constraints will typically preclude it. Finally, it is possible to extend

single agent learning into the multi-agent domain. The uncertainties of our

target domain make learning techniques a natural approach to problems within

this domain. In this context, learning techniques are especially appealing since

they enable agents to evolve coordinated policies within uncertain state spaces.

Approaches to multi-agent learning are described in more detail in section 2.3. In

general, however, learning techniques may consist of a group of learners exploring

the space and converging towards an equilibrium (as in (Claus & Boutilier, 1998)

and (Littman, 1994)), or by one agent explicitly learning about the behaviour

of others in order to adapt its own appropriately (Chalkiadakis & Boutilier,

2003). The latter, maintaining models of the other agents separately from the

environment, has the benefits of model-based learning. Additionally these models

need not be treated as Markovian and agent models can be reused separately from

environmental models. Therefore, this paradigm of computing “best responses”

(Leslie, 2004) to agents within their environment is appropriate for our domain,

and will be more flexible than treating other agents implicitly. For these reasons,

this will be our approach, explained within the general model in section 3.2 and

evaluated in the experimental chapters 5 and 6.

Finally, we recall the requirement that our approach to coordination should be

scalable. This means that as the state space increases, it is neither feasible nor

Chapter 1 Introduction 13

necessary to model the space in precise detail. Given this, abstractions can enable

the state space to be reduced by combining several detailed states into one higher

level state. This may be achieved by partitioning or clustering the state space

in some way (Sutton & Barto, 1998), or it may be achieved by mapping a high-

dimensional space into a lower dimensional one (Roy & Gordon, 2002)—these

approaches are discussed in more detail in section 2.4.1. In an unknown situation,

such as those we are considering, suitable partitions may not be known at the

outset so that an online abstraction technique is required. Statistical clustering

is one such technique, assigning states to clusters probabilistically based on their

binary features (Hoar, 1996) and using the clusters as the abstract states. This

dovetails well with the probabilistic techniques we have highlighted above, so this

is the point of departure for our work, detailed in section 3.4.2.

Now, as well as abstracting state space, in a multi-agent learning scenario we

may find that the strategy space of the other agents is too large for searching

effectively. This is true especially when the situation is not completely observed

and an agent’s policy is a mapping from a (continuous) distribution over possible

states to actions. To combat this, one way of reducing the strategy space is

to assume that agent strategies are restricted to being within a particular class

of strategies. In particular, finite state machines describe one such class and

have been used effectively to solve offline multi-agent learning problems (Marecki,

Gupta, Varakantham, & Tambe, 2008). Thus, in our work, we will explore how the

use of finite state machines can be extended to online learning problems. Section

2.4.2 provides more background on the use of finite state machines, and in section

3.4.3 we outline the algorithm which will be evaluated in chapter 6.

1.3.3 Bayesian learning for scalable coordination

Bringing together the ideas of the previous two sections, in the light of our domain

requirements, we believe that “acting” and “coordinating” in uncertain systems

should be completely integrated. That is, rather than use an explicit coordination

layer, agents should include their beliefs about other agents’ behaviour in their

Chapter 1 Introduction 14

action selection mechanism, and adjust their own action according to their beliefs

about the other agents. By doing this, agents can make efficient decisions about

coordinated actions. Moreover, we believe that this integrated approach should

be based on sound theoretical principles and not heuristic techniques. Thus

we motivate the use of multi-agent learning models, since these provide a basis

for such coordinated action selection and are designed for uncertain domains.

We therefore explore the application of multi-agent learning models to dynamic,

partially observable domains.

In particular, as a point of departure we consider the Bayesian learning model of

(Chalkiadakis & Boutilier, 2003) in which agents maintain probability distribu-

tions over models. This has been proven to be effective on small test problems,

including some problems not handled well by previous multi-agent learning

mechanisms. However, this model is only defined for the fully observable case:

agents can see the actions of all the other agents, and ascertain deterministically

what the current state is. Furthermore, it has not yet been tested on large domains;

the sample problems have two agents and half a dozen states. In our work, we

address these shortcomings. The next section outlines our research contributions

in more detail.

1.4 Research contributions

In this thesis we extend the state of the art as follows:

• We describe a principled Bayesian model for coordinated decision making

in partially observable systems. This model generalises the models of

(Chalkiadakis & Boutilier, 2003), (Ross, Chaib-draa, & Pineau, 2008) and

(Emery-Montemerlo, Gordon, Schneider, & Thrun, 2004) and is the first

explicit formalisation for learning over all partially observable multi-agent

systems. We then implement three special cases of this general model:

Chapter 1 Introduction 15

• Firstly, we demonstrate that explicitly modelling the other agents’ behaviour

results in effective learning. This algorithm is the first to consider explicit

models of the other agents in a partially observable Bayesian learning

environment, and we show that it is better than the existing techniques,

which treat the other agents as a part of the environment.

• Secondly, we extend the model with finite state machines for policy

abstraction, developing a new efficient online decision process for partially

observable multi-agent scenarios. This algorithm is the first principled online

approach which is able to generalise up to millions of states and tens of

agents, and it outperforms a solution hand-designed for our disaster response

problem.

• Finally, we show that our model-based solution is effective in scenarios

with changes in the world—agents leaving and entering (open domains) and

changes in the environment (dynamic domains), the first online learning

solution to explicitly consider these cases.

The combination of these contributions is a model for coordinated decision making

in rich and challenging domains, with high levels of uncertainty. This model is

based on a well-founded approach, giving us confidence in its correctness and a

set of guarantees about its behaviour in small systems. The model is extended

into larger-scale systems using abstraction techniques, demonstrating its practical

effectiveness. The system is intended to be very flexible in its applicability, guiding

all or part of agent behaviour in both cooperative and competitive systems. In

undertaking this work the following publications have been made to date:

1. Allen-Williams, M. and Jennings, N. R. (Forthcoming in 2009). Bayesian

learning for cooperation in multi-agent systems. In C. L. Mumford and L. C.

Jain, editors, Studies in Computational Intelligence: Collaboration, Fusion

and Emergence. Springer-Verlag, London, UK. (Allen-Williams & Jennings,

Forthcoming in 2009b)

Chapter 1 Introduction 16

2. Allen-Williams, M. and Jennings, N. R. (Forthcoming in 2009). Bayesian

adaptation for complex dynamic systems. In M. Wang and Z. Sun,

editors, Handbook of Research on Complex Dynamic Process Management:

Techniques for Adaptability in Turbulent Environments. IGI Global. (Allen-

Williams & Jennings, Forthcoming in 2009a)

1.5 Thesis structure

In this thesis we expand on each of the above contributions in turn:

• In chapter 2 we examine in detail the background to our research, highlight-

ing our key decisions and how they arise from the state of the art.

• Chapter 3 extends existing Bayesian learning systems into the general case

and demonstrates the use of Bayesian network diagrams as a visual aid

in understanding specific cases of the model. In order to make the model

tractable for large problems, we propose the use of state abstractions using

clustering, and policy abstractions using finite state machines.

• In chapter 4 we instantiate the above models on a specific problem from

the disaster response domain, motivated by Robocup Rescue. Using this

instantiation, the ensuing chapters evaluate the model of chapter 3 for the

three cases highlighted above:

• In chapter 5, we implement the special case where just actions are

partially observable, comparing it with state of the art multi-agent learning

algorithms.

• In chapter 6, we implement the special case where just states are partially

observable, evaluating the properties of our model over several scaling

parameters and comparing the model with a handwritten policy for the same

scenario.

Chapter 1 Introduction 17

• Finally, in chapter 7 we extend the above case to scenarios in which the

environment or the available agents may change during the online solution.

• Chapter 8 concludes the thesis, outlining ways in which the model could

be extended to address more of the domain requirements in section 1.2 and

suggesting a number of directions for future study.

Chapter 2

Literature Review

This chapter introduces the background to the work contained in this thesis,

explaining the way in which the multi-agent approach to partially observable

systems is developed from single-agent decision theory and justifying the decisions

we have made at each step in building on the state of the art. We begin, in section

2.1, by introducing the conceptual underpinnings: the agents and environments

we use. Section 2.2 will then outline the theory about agent decision making in

a particular kind of environment, the Markov decision process, and will explain

how these processes are relevant to our research. Then, in section 2.3 we look

at extending agent decision making processes in multi-agent scenarios. Finally,

section 2.4 describes some approaches to scaling up multi-agent systems.

2.1 Autonomous agents

In this thesis, we assume that an agent is an entity which is situated in some

environment and reacts to that environment, in order to try and achieve some

objective or goal (this definition is based on (Wooldridge, 2002), chapter 1). Such

agents will be able to reason logically about their actions and the effects of the

actions on the current state of the world, relating this to their goal. At times,

inconsistencies and conflicts in agent goals and beliefs may crop up; the agent’s

18

Chapter 2 Literature Review 19

reasoning mechanisms must have some means of resolving these. We believe that

probabilistic methods provide a realistic way to do this for two reasons. First, such

techniques are effective for reasoning in uncertain scenarios where an agent may

want to reason using its belief in a particular property (Mackay, 2003). Second,

probabilistic representations are typically more compact than their logic-based

counterparts for both the input data and the agent models (Toni & Bentahar,

2008) (Stenning & Lambalgen, 2005).

Given such a reasoning mechanism, this mechanism must consider both the signal

the agent receives from its environment, and the effects of its own actions.

When reasoning, the agent may maintain an explicit world model or it may

leave the model implicit as it reasons about plans. In this setting, explicit

models have more potential for reasoning about states and behaviours, as they

store more information explicitly. However, maintaining explicit models may

be computationally and memory intensive (Excelente-Toledo & Jennings, 2005).

Despite this, we believe that the aforementioned benefits of explicit models justify

their use where practical. Now, if, as in many disaster arenas, the world is large

and detailed, agents may only be able to create such explicit models for small

parts of the world, due to memory constraints. In such worlds, it is therefore

appropriate either to use a model which can store information at different levels of

detail, or to reason in a simplified abstract world. In section 2.4 we discuss some

possibilities for achieving each of these.

Finally, as well as reasoning about their environment, agents in a multi-agent

system will interact with each other, as discussed in section 1.3.2. We will therefore

show how to extend models for reasoning under uncertainty to incorporate explicit

considerations of the other agents. Thus, in the following sections we will expand

in detail on the dual aspects of making reasoned decisions under uncertainty, and

making coordinated decisions in uncertain scenarios. This discussion is guided by

the motivating domain of disaster response, as introduced in section 1.2. To help

maintain this focus and illustrate our key ideas, example 1 describes an earthquake

Chapter 2 Literature Review 20

Example 1 Tamptono earthquake scenario

An earthquake has damaged the small town of Tamptono (figure 2.1), including
its hospital and ambulance fleet. Buildings are still collapsing and there may
be aftershocks (dynamism). Ambulance teams from nearby towns converge on
Tamptono, travelling through the damaged streets searching for hurt victims among
the rubble (partial observability). Although the ambulance dispatch stations are
able to communicate with one another, once the ambulances are on the road
to Tamptono, they find the communications networks are blocked (bandwidth
limitations). They must therefore make decisions independently (decentralisation),
leaning out of their windows to warn other ambulance drivers about damaged roads,
exploring parts of town not yet marked by emergency services’ red and white tape,
or going to the aid of ambulance teams working in particularly damaged areas,
such as a collapsed office building. They also need to learn about the capabilities
of ambulances from other towns, who may be equipped differently or even have
different goals—one apparent ambulance turns out to be a concealed news team.
As the ambulances come and go, the system is open.

Figure 2.1: Tamptono, after an earthquake

scenario having many of these features which we will use as a running example in

this chapter1.

2.2 Markov decision processes

The most straightforward of this class of dynamic problems is the single agent

observable Markov decision process (MDP). The MDP forms the theoretical foun-

dation for reinforcement learning problems—when the environmental dynamics

1Tamptono is a fictional place. No real towns were harmed for this thesis.

Chapter 2 Literature Review 21

are unknown—and partially observable problems, both of which we will we go on

to discuss.

In an MDP (figure 2.2), the agent perceives the state of the world s through

its sensory inputs, and decides on its immediate action a based on this state.

Following the agent’s action, the world transitions into a new state s′, and the

agent may receive some reward r. A key feature of such problems is delayed

reward: states which have no or negative reward, but which ultimately lead to

higher rewards (Sutton & Barto, 1998). This is a common feature of many real

life problems—in the Tamptono earthquake, ambulances may use up valuable fuel

for no immediate gain, and rescuers risk being hurt themselves, before the final

goal of a rescue is achieved.

Determining the reward achieved from a particular action may be straightforward—

a rescue worker retrieving valuables from a building may receive a fixed reward for

each valuable he retrieves, or an ambulance team may receive a fixed reward for

each person loaded into an ambulance alive. However, in some kinds of problem

deciding a reward function may be trickier. For example, following an earthquake,

buildings may be burning while humans are buried and trapped. A reward function

for a team simultaneously rescuing humans and extinguishing buildings may try

and put relative values on the buildings and the human lives, supplying some

reward for unburnt buildings and some for live humans. An alternative reward

function might try and assign higher value to some humans—for example, the

prime minister, or people who can be immediately useful to the rescue. We do

not discuss this issue further, but simply suppose that a reward function exists,

supplied by the environment.

These intuitions are pinned down by defining a finite set of states S, a finite set

of actions A, and a finite set of rewards R. The environment dynamics are then

defined by (Sutton & Barto, 1998):

• A transition probability function, Tf = P (s′|s, a). This defines the

probability of reaching state s′ from state s given that the action performed

was a.

Chapter 2 Literature Review 22

Figure 2.2: Markov decision process progression

• A reward probability function Rf = P (r|s, a, s′). This defines the reward

achieved by taking action a from state s, resulting in state s′.

The agent makes decisions according to a policy π, where π(s, a) defines the

probability the agent will take action a from state s.

In this model, the probability of transitioning to a particular state, or achieving a

particular reward, does not depend on any of the history of states and actions. This

Markov property is the fundamental feature of Markov decision theory (Sutton &

Barto, 1998). As discussed in section 1.3.1, this property rarely holds in reality,

but is often an effective approximation.

Given this context, the goal for the agent is to maximise some function based on

the reward obtained. This may be (Sutton & Barto, 1998):

• over a fixed time horizon

• during an episode in which the agent continues to act until some termination

condition is reached

• the average reward over an indefinite time period, or

• the total reward over some time period

In the last case, more recent rewards may be valued more highly than earlier

rewards—in particular, this encourages adaptation to nonstationary environments,

in which the environmental models are changing over time. In disaster scenarios,

we may consider either the total reward accrued (perhaps in number of lives saved)

when some termination condition is reached (the scene is cleared up), or we may

consider how efficiently our agents can act to accrue reward over a fixed time

Chapter 2 Literature Review 23

period. In our experiments we will be looking to see how quickly agents are able

to start accruing the high rewards (since in disaster scenarios, there is no leeway for

a long learning phase), but for ease of implementation we will assume continuous

running of the scenario rather than enforcing a time cutoff. Specifically, in choosing

an action at time t = tT , the agent’s aim is to optimise the expected discounted

future rewards, defined by:

Rγ
T =

∑

t

γtrt (t ranges from T to ∞) (2.1)

where rt ∈ R is the reward at time t. γ is a problem specific parameter which

defines the agent’s myopia; that is, to what extent it considers delayed future

rewards to be important. It balances the importance we place on future states

with our need to accumulate reward now. In practical terms it will be chosen

to express the extent of lookahead appropriate to the problem (consider chess as

an analogy: for the most part, say, 3 steps of lookahead are sufficient to play

adequately (although more may be required during the endgame) (Sadikov &

Bratko, 2006)). Typically, we will use a γ value of around 0.8, making lookahead

negligible after around ten steps into the future—in a fragile disaster scenario we

expect this to be sufficient for most planning purposes, as the agents will have to

adjust their plans to a changing situation within a few steps in any case. It is

most common for reinforcement learning algorithms to set γ between 0.7 and 1,

although the choice will depend on the exact problem (Sutton & Barto, 1998).

Within a Markov decision process, if the transition and reward probability

functions are known, then it is possible to derive the policy which optimises this

reward function, by solving the large simultaneous equations known as the Bellman

Equations (2.2 and 2.3) for V ∗ (2.4). That is, Vπ(s) defines the long term value of

state s to an agent following policy π, and V∗ optimises this value for every state:

Chapter 2 Literature Review 24

Figure 2.3: Partially observable Markov decision process

Qπ(s, a) =
∑

s′

P (s′|s, a)[r(s′) + γVπ(s′)] (2.2)

Vπ(s) =
∑

a

P (a|π)Qπ(s, a) (2.3)

V ∗(s) = max
π

Vπ(s) for all s ∈ S (2.4)

where Vπ(s) denotes the value to the agent of being in state s, given both the

immediate reward and the discounted future rewards it can achieve from that

state if it continues with policy π. Qπ(s, a) denotes the value to the agent of being

in state s and taking action a, given the immediate reward and the expected value

Vπ of the resulting state.

There are various ways of efficiently approximating these solutions in large

problems, and for solving in continuous systems. Briefly, the equations can be

solved iteratively, and efficiency is achieved by (a) updating the states most likely

to have changed first, and (b) updating “nearby” states when a state is updated

(Sutton & Barto, 1998). We do not go into the details of these solution techniques

as realistically we are unlikely to know all the necessary parameters. Rather, we

go on to explain how this model is extended into systems with unknowns.

Chapter 2 Literature Review 25

S1

O1S2

S3

O3S4

S5

O5
. . .

O2

O2

Figure 2.4: Partially observable Markov decision process

2.2.1 Partially observable Markov decision processes

Although MDP models will form the basis of our environment, in large or complex

scenarios it is common for an agent to make local observations which allow it

to form inferences about the current state (example 2), without observing the

complete state directly (although in multi-agent systems, local observations may

be augmented with communicated information). When the underlying process

of moving from global state to global state is still (assumed to be) Markov, the

scenario is described as a partially observable Markov decision process, or POMDP.

Specifically, we assume the existence of a fixed, known model Of = P (s|o) where

o is the current set of observations and s is a possible state (figure 2.3). Although

the sequence of states is defined by an MDP, the sequence of observations is not.

Consider the simple example in figure 2.4: if the current observation is O2, then

the probability that the next observation will be O5 differs depending on whether

the previous observation was O3 or O1.

Chapter 2 Literature Review 26

Example 2 Partial observability in the Tamptono earthquake

Two Tamptono ambulances which survived the earthquake immediately swing into
action. However, beyond the strength that they felt the earthquake to be, they have
no idea of the scale or the detail of the situation. Elsewhere, as an office worker
runs from a crumbling building, an approaching ambulance calls out to ask how
many people were in the building—the answer (an estimate) is information which
will remain local to that ambulance until much later. In other parts of town, other
ambulances will have their own local information. However, the big picture will
not be completed until much later on, if at all.

Figure 2.5: POMDP inducing a Bayesian belief state MDP

To solve a POMDP, we can derive from it a secondary MDP—a belief MDP (figure

2.5). The multi-dimensional states of this secondary MDP have one continuous

variable, b(s), for every possible value s of the underlying state. The value of

b(s) indicates the agent’s belief that the underlying state is s, given the agent’s

prior knowledge and the history of observations and actions. The system proceeds

from b to b′ at each step using Bayes’ rule (equation 2.5) to update the state

probabilities:

P (x|observations) ∝ P (observations|x)P (x) (2.5)

This belief MDP is, therefore, completely known, and can be solved exactly by

exploiting its properties—the value functions are convex and piecewise linear

Chapter 2 Literature Review 27

(Kaelbling et al., 1998). Intuitively, there is a “piece” of linear value function

for the policy tree arising from each possible state, and the value function for the

state is the upper surface of all these segments. The witness algorithm (Kaelbling

et al., 1998) is based around this notion, but does not scale to large problems.

Incremental pruning (Cassandra, Littman, & Zhang, 1997) addresses some of

the efficiency problems with the witness algorithm, but generally exact solution

methods do not scale well and are thus not appropriate for real-world systems of

the kind we are trying to address.

A more scalable approach to solving such continuous MDPs is to compute

approximate value functions for belief states, exploiting the intuition that a

large part of the belief space need never be visited. Techniques include point-

based sampling (Izadi & Precup, 2006) (Virin, Shani, Shimony, & Brafman,

2007), dynamic programming with sampling (Atkeson & Stephens, 2008) and

myopic evaluation (only looking ahead at the values of the next one or two

states) (Chalkiadakis & Boutilier, 2003). A more recent offline method uses

quadratically constrained linear programs to describe locally optimal policies

(Amato, Bernstein, & Zilberstein, 2006), with promising results. Another novel

and interesting technique is the use of principal components analysis (PCA)2 to

map the belief space into a low dimensional space, carrying out the planning in

this low dimensional space (Roy & Gordon, 2002).

An alternative to the above belief-state approaches is to calculate a policy directly

from the observation history, or a subset of the observation history, thus arriving

at an approximate solution. The key to success with such a technique is to make

a good choice of observation history, within the constraints of the memory and

computation power available to the system. For example, the agent can try and

detect ambiguous elements of the history by considering the possible future states

which arise from certain history subsets (Dutech, 2000).

Another popular approach is to construct agent policies as finite state machines

(sometimes called finite state automata or regular automata, and abbreviated to

2For an explanation of PCA, see for example (Bishop, 2004), chapter 8

Chapter 2 Literature Review 28

FSMs). Finite state machines have a set of internal states, or nodes, and actions

associated with each node. Movement from node to node is determined by the

agent’s observations. Using this class of policies, it has been shown that it is

possible to compactly represent good approximations to the optimal agent policy

(Carmel & Markovitch, 1996) (Clark & Thollard, 2004). We revisit finite state

machines in section 2.4.2, however, our interest is in more explicitly model-based

agents. For example, while finite state machines can provide an effective way to

control a single agent, an agent which is calculating its actions from a learned

model can respond more quickly when the model changes.

For our work, we propose to use a combination of solution techniques; sampling

and myopic evaluation, both applicable in online solutions, since high dimensional

state spaces will result in high dimensional belief spaces, necessitating several

approximation techniques to become tractable. Section 3.4.4 outlines these

techniques. In future work, we may investigate the combination of the PCA

technique with other approximation techniques, as it provides an elegant way

to reduce the state space while retaining the most important information (section

8.3.1).

Now, so far we have discussed scenarios in which the environmental dynamics

(Tf , Rf and in the case of POMDPs Of) are known. However, in many scenarios,

these dynamics may be only partially known to the agent. In such cases, the

agent must learn about the scenario online. The next section discusses learning

techniques for MDPs and POMDPs.

2.2.2 Reinforcement learning

When there is uncertainty about the aforementioned models (Tf and Rf), as

in example 3, the agent can learn the optimal actions through experimentation.

As discussed in chapter 1, techniques for learning may be model-free, or model-

based. In model-free learning techniques for Markov decision processes, such as

Q-learning, TD(λ) and SARSA (Sutton & Barto, 1998), the agent stores a mapping

Chapter 2 Literature Review 29

Example 3 Rescue worker in Tamptono old people’s home

A lone rescue worker searches Tamptono’s old people’s home after the earthquake.
As she works her way up the building, she takes increasing care how she
treads, not knowing what structural damage the earthquake may have caused—
the environmental dynamics are uncertain. Some parts of the building were more
heavily populated than others—the dining area was full of both elderly residents
and waiters; most of the bedroom wings are almost empty, but the Violet Wing
was being cleaned by a team of a dozen cleaners. The rescue worker does not
initially know how the building was laid out or which areas were most crowded,
and must discover this as she makes her way through the building.

from each state to the optimal action for that state, updating this mapping based

on experience. In a model-based learning method, the agent’s experience is used

to update the agent’s estimates of Tf and Rf , using the Bellman equations to

derive the optimal action at each point (Sutton & Barto, 1998). For each type of

learning, agents must find a balance between taking what they believe to be the

optimal action, and taking exploratory actions to refine their estimates.

We argued in section 1.3.1 that model-based methods can be more powerful.

Specifically, in many applications, agents may have spare CPU cycles during a

timestep; for example while waiting for environmental input, while carrying out

a motor action, or if a timestep corresponds to some fixed unit of real time. In

such applications, agents that maintain a model of the environment may use these

spare cycles to simulate actions based on their model, and refine their policies

accordingly. Providing the models are sufficiently accurate, this can result in

much faster convergence to the optimal policy (Sutton & Barto, 1998).

Furthermore, model-based algorithms permit the use of a prior model to guide

agent learning—although doing so can be a disadvantage if unwanted bias is

introduced (Dearden et al., 1999) (Sutton & Barto, 1998). In a disaster scenario

problem, such a prior model may be advantageous because agents can enter the

scenario with some initial model based on previous knowledge of the area and

previous disaster experiences, and then learn from the current experience to refine

this model and hence their behaviour.

Finally, model-based algorithms may use the Bellman equations to derive the

Chapter 2 Literature Review 30

optimal behaviour for the estimated model, or the iterative techniques derived from

these equations (Sutton & Barto, 1998). However, deciding behaviour based on a

point estimate of the model ignores a key variant: the agent’s uncertainty about

its estimate. The uncertainty in the estimate should affect both the caution with

which the agent behaves, and the decisions it makes about trading exploratory

actions (investigating unknown regions of the environment) with exploitative

actions (those which it believes will accrue high reward) (example 4). We refer

back to example 3 as a demonstration of each of these points. Firstly, if the rescuer

is unsure about her estimated model of her current region, she must step forward

cautiously so as to jump back if a board falls away underfoot. Secondly, if she has

found an occupied wing, but has left two wings unexplored, it may be that one of

those wings contains many more people or more disabled people than the current

one. More recently, Bayesian model-based techniques have been developed which

explicitly include these uncertainties in the agent model.

2.2.3 Bayesian reinforcement learning

With Bayesian learning techniques, an agent stores a probability distribution

over all possible models, in the form of a belief state (Dearden et al., 1999).

The underlying (unknown) MDP thus induces a belief-state MDP. The transition

function from belief state to belief state is defined by Bayes’ rule, with the

observations being the state and reward signals arising from each environmental

transition.

Now, these MDPs do not have a finite state space, so cannot be solved using MDP

solution techniques for finite state spaces. Specifically, the expected value of a

particular action is given by:

E[Q(s, a)] =

∫

M

Q(s, a|M)P (M)

where M denotes a possible model (M = (Tf , Rf)), and Q(s, a|M) is the Q-

value given that particular model. There are corresponding continuous versions

Chapter 2 Literature Review 31

Example 4 Exploration-exploitation in the Tamptono earthquake

The river Tam runs to the East of Tamptono. As ambulances rush in to the rescue
from the East, they find that the earthquake has also destroyed several of the bridges
across the river. An ambulance arriving at the riverside early after the disaster is
able to learn over the radio that there is a bridge still standing two miles downriver.
However, there is no data about the bridges upriver. The ambulance driver knows
that there is a bridge only half a mile away, if it is still standing, and another a
mile and half away, but then there are no more bridges for five miles. The decision
the ambulance driver must make about whether to travel in the uncertain direction,
or head straight for the bridge which is known to be standing, is an example of an
exploration-exploitation problem.

of the Bellman equations. To solve these, it is necessary to use some means

of approximating a solution. For example in (Dearden et al., 1999), sampling

techniques are used, using a finite number of candidate MDPs at each step when

estimating the optimal action given the current state.

Now, for an agent maintaining a probability distribution over models in this way,

the transition from probability distribution to probability distribution defines a

continuous Markov decision process. Each state in this process is a probability

distribution over states in the world; such states are described as belief states. The

transitions between belief states are determined by Bayes’ rule.

Subject to the aforementioned approximations, the Bayesian model is a well-

founded approach to decision making within single-agent problems in which the

state of the world is known at all times, but the environmental dynamics and, in

particular, the effects of agent actions are uncertain. Consequently, several forms

of Bayesian reinforcement learning have received recent attention. For example,

one approach uses linear programming with sampling (Castro & Precup, 2007) to

maximise the current Q-value. Another recent approach uses Gaussian processes

(Rasmussen & Williams, 2006) to maintain the value function in online learning

(Reisinger, Stone, & Miikkulainen, 2008).

However, the scope of our illustrative domain is broader than the fully observable

world investigated by these techniques: in particular, we expect that frequently

agents will not be able to observe the full state of the world but will be acting

within POMDPs.

Chapter 2 Literature Review 32

As in the fully observable case, learning techniques for POMDPs may be model-

based or model-free. For example, (Baxter & Bartlett, 2000) propose an approach

for learning a policy directly, using gradients to incorporate a performance measure

into the learning. Several similar techniques are described in (Aberdeen & Baxter,

2002), in which the agent uses Monte-Carlo methods to learn through interaction

with the environment.

By contrast to such model-free methods, model-based methods are developed

around the insight that a POMDP is a form of hidden Markov model (HMM),

in which a sequence of states gives rise to a sequence of observations. POMDPs

have the added complication over HMMs of including actions, but HMM solution

techniques such as the recursive Baum-Welch equations (Roweis, 2003) can be

adapted ((Nikovski & Nourbakhsh, 1999), (Chrisman, 1992)). However, this

solution form requires a complete dataset (sequence of observations) and so is

not appropriate to incremental learning. In realistic problems, such as those we

are addressing, an agent must develop and update its policy as it explores the

environment, so some form of online learning is necessary. An alternative to the

use of Baum-Welch updates is the use of short-term memory trees to provide

model updates (Shani, Brafman, & Shimony, 2005). Such trees contain variable-

length sequences of observations, in order to handle the non-Markov properties

of POMDPs. This approach can be integrated with an incrementally improving

policy.

To sum up, all of these techniques rely on a number of approximations and

assumptions about the state and hence are not entirely satisfactory. We propose,

as an alternative, to extend the Bayesian model of section 2.2.3 into this POMDP

domain. This formulation falls naturally into the belief-state space of POMDPs,

and will provide the advantages of the Bayesian model-based methods (explicitly

handling uncertainty and making use of prior knowledge) in this domain. In

section 3.2 we give the details of this model. However, in many examples of large

and partially observable problems, the learning agent is not acting alone. We

must therefore explore the generalisation of the above approaches into multi-agent

systems. This is the focus of the remainder of this chapter.

Chapter 2 Literature Review 33

Example 5 Ambulance traffic at the Tamptono earthquake

Consider again the ambulance driver arriving at the River Tam after the Tamptono
earthquake. If he is the only ambulance approaching the scene, he may choose not
to take the risk of having to travel many miles upriver, and head straight for the
bridge which is known to be standing. However, if he knows that there is a fleet of
ambulances following him, he may choose to head upriver so that he can (subject
to communication networks functioning) send back data about the status of the
bridges to later ambulances, enabling them to update their model without the travel
costs. He might also consider that if all the ambulances were to head for the single
bridge, a traffic jam would form there, perhaps wasting precious time.

2.3 Multi-agent learning

Clearly, when several agents are functioning within a system, the interactions

between their behaviour are relevant to the decisions they make. Example 5

illustrates this, extending the example of the previous section (4) into the

multi-agent domain. In section 1.3.2 we described some common approaches to

coordinating these interactions and motivated the use of multi-agent learning.

There are two main approaches to the extension of single-agent learning into such

multi-agent systems. The first approach, generally applied to cooperative systems,

is to consider the problem as a whole, with the ultimate aim of finding optimal

joint actions, although the implementation may be decentralised with each agent

learning separately. This is the typical focus of work described as “multi-agent

reinforcement learning” (MARL) (Panait & Luke, 2005). By contrast, our work

will focus on the way in which a single agent (or team of agents) operates, in

the context of other agents. In disaster scenarios, there may be an assortment of

agents, each of whose behaviour is determined by its own controlling algorithm

(and not necessarily rational, as demonstrated in example 6). Furthermore, these

agents may not all be cooperative. Therefore, solutions which rely on all agents

behaving the same way and having the same goal are not appropriate to this kind

of problem.

Instead, an approach more appropriate to our domain, usually described as

“learning in games” (Fudenberg & Levine, 1998), arises from the addition of

learning methods to game theory. When agents treat a multi-agent problem as a

Chapter 2 Literature Review 34

Example 6 Heterogeneous agents in Tamptono

A team of rescue workers join the lone rescuer in the old people’s home.
Furthermore, despite all advice to the contrary and their lack of safety training,
two of the old folk have also joined in. Alongside the rescue team, two policemen
carefully traverse the building looking out for looting kids. In this example, we
have a multi-agent problem in which several types of agent must interact and take
each other into account—for example, negotiating the passage through doorways
as they meet, or avoiding putting excess weight on damaged floorboards. Some of
the agents are aiming to cooperate; the rescue workers spread, each searching a
different region of the building. The policemen have different goals and do not
contribute to the rescuers search. Not all of the agents behave predictably or
rationally; one of the old folk gets confused at times.

Example 7 Nash equilibria in the Tamptono earthquake

Ambulances from two different hospitals are approaching a victim trapped in an
unstable tunnel. If one of the ambulances attempts the rescue alone, then they
risk the tunnel collapsing: rocks fall, everyone dies. If both ambulances contribute
to the rescue then one ambulance can maintain stability in the tunnel while the
other completes the rescue. The table below shows the payoff matrix, with the table
entries being the payoffs for (Ambulance 1, Ambulance 2). The penalty for leaving
for each ambulance is the cost of its wasted fuel. The Nash equilibria are at (Leave,
Leave) and (Stay, Stay), with (Stay, Stay) an optimal equilibrium.

Ambulance 1
Leave Stay to help rescue

Ambulance 2 Leave (-5,-9) (-100, -9)
Stay to help rescue (-5, -100) (50,50)

stochastic game, solving the problem revolves around finding a best response to the

other players of the game; that is, finding the action which gives the single agent

the best reward it can achieve, given the actions chosen by the others. When the

action of every agent is a best response to the others, then the system is said to

be at a Nash equilibrium (NE) (Fudenberg & Levine, 1998). There may be more

than one NE in a system, and some equilibria may be better than others (example

7).

In game-theoretic formulations, if all the players iteratively keep playing best

responses and if their strategies are mixed (stochastic), then the play will converge

to a (mixed) equilibrium, in which every player’s strategy is a best response

to every other player—this is a cooperative problem solving approach. One of

Chapter 2 Literature Review 35

the challenges is then to direct the play so that convergence is not just to any

equilibrium but to an optimal one (Claus & Boutilier, 1998). Alternatives to the

simple best response approach include the Bully strategy which selects an action

which minimises the opponents’ best response, and the tit-for-tat strategy. Such

strategies can sometimes converge to better equilibria than the traditional best

response strategy (Littman & Stone, 2001) (Powers & Shoham, 2005).

However, in large and complex systems, a NE may not even be a useful target—

finding an equilibrium may be too costly, for example. Furthermore, finding a NE

is only possible if all the players are adjusting their strategies towards this goal.

In heterogeneous settings, such as the disaster response domain, we cannot ignore

the possibility that some agents may have, say, näıve fixed controllers and all we

can do is make our behaviour a best response to these (Powers, Shoham, & Vu,

2007).

More realistic for our domain, therefore, will be to find a multi-agent learning

algorithm capable of finding a satisfactory solution which has desirable properties

over an indefinite period of play (Lesser, 1999). Such properties may include:

convergence (of rewards, of actions, of strategies), rationality, and no-regret—

this latter property means that a learning algorithm should not allow itself to

be exploited by malicious opponents (Bowling, 2005). Which of these are more

relevant is problem-specific. For example, the no-regret property can be ignored

if all the agents are known to be cooperative, while convergence is less important

to a constantly changing scenario. For our dynamic domains, convergence is not a

key property since there is no guarantee of anything to converge to. (Other criteria

have been proposed targetting small repeated games, such as safety (similar to no-

regret) and compatibility (the agent plays well against itself) (Powers & Shoham,

2005). These are of less interest to us in our large, primarily cooperative, settings)

Given this, one effective approach to extending single-agent reinforcement learning

into this game theoretic setting is the win-or-learn-fast (WoLF) approach: an

agent’s learning rate is adjusted according to its current performance, without

explicitly modelling the other agents (Bowling & Veloso, 2001). A WoLF variant

Chapter 2 Literature Review 36

which uses gradients to control the learning rate achieves no-regret (Bowling,

2005). Like their single-agent counterparts, WoLF techniques can be improved

upon by using a Bayesian model in which agents maintain beliefs about the

behaviour of the other agents, separately from the world models (Tesauro, 2004)

(Chalkiadakis & Boutilier, 2003) (Burkov & Chaib-draa, 2007). The need for

heuristically determined learning rates is then eliminated, while prior information

about agents can be incorporated.

In more detail, in the multi-agent Q-learning systems of (Tesauro, 2004) and

(Burkov & Chaib-draa, 2007), explicit history-based models of the other agents

are maintained, and incorporated into the Q-update at each step. (Chalkiadakis

& Boutilier, 2003) is the model-based version of these, extending the Bayesian

learning technique discussed in section 2.2.3. In this multi-agent model, the agent’s

belief state, b, now contains: a probability distribution over the environmental

dynamics, a probability distribution over strategies, the most recent state and

action choices, and a history trail which contains as much state as is necessary

to accurately model the other agents’ strategies3. At each timestep, the agent

(supposing it to be agent i) selects the action ai which leads to the greatest

expected value, given the above beliefs. In this model, the expected value is

computed by a Bellman equation over the belief state (equation 2.6).

Q(ai, b) =
∑

a−i

P (a−i|b)
∑

s′

P (s′|ai ◦a−i, b)
∑

r

P (r|s′, ai ◦a−i, b)[r + γV (b < s,a, r, s′ >)]

(2.6)

where

V (b) = max
ai

Q(ai, b)

and b < s, a, r, s′ > is the updated belief state which arises from being in the belief

state b, in which the current state is s, and carrying out joint action a, resulting

in new state s′ and reward r. The environmental and strategy models are updated

using Bayes’ rule.

3Determining the relevant history assumes some knowledge about the other agent strategies.
If the agent maintains insufficient history, then its model of opponent strategies will never be
accurate and thus the results will be suboptimal. In the case where the underlying process is
Markov and where all the agents are learners trying to converge to an equilibrium, we may safely
assume that the previous state contains sufficient history to obtain an accurate model.

Chapter 2 Literature Review 37

Example 8 Multi-agency ambulance rescue in Tamptono

In example 4, we saw an ambulance driver receiving information about the status
of the each bridge on the Tam as the bridge was visited. However, suppose that two
fleets of ambulances are approaching Tamptono—the regular fleet from the South
and West, and a fleet of army ambulances from the North. The army ambulances
use a different radio frequency from the Tamptono regional fleet. Information
between the two fleets is therefore no longer shared, except by word of mouth as
ambulances pass one another, resulting in ambulances from different fleets having
different models of the scene.

Now, this model assumes full observability, an assumption which we have already

disputed for the single-agent case, and which becomes increasingly improbable

as the problems get larger. In fact, in multi-agent problems agents will usually

have local observations which are not available to any other agents and can

only be partially shared by communication. Therefore, we must extend these

fully observable solutions with techniques from the POMDP solutions previously

discussed. This is the focus of the next section.

2.3.1 Partially observable stochastic games

Example 8 describes a scenario in which agents may make local observations which

are not known to the other agents. Even if all the agents begin with the same

prior knowledge, each agent in such a scenario will have a different estimate of the

state, or a different probability distribution over states.

Formally, the extension of the model-based approaches into such multi-agent

POMDPs, or partially observable stochastic games (POSGs) (Emery-Montemerlo

et al., 2004), consists of: a finite set of agents I, a finite set of states S, a finite set

of actions A, a finite set of observations O, an initial state distribution and a set

of Markovian transition probabilities P (s′, o|s, a), and a set of reward functions,

Ri : S × A → R. If the dynamics of the system are known, then in principle the

POSG can be solved to determine the optimal action for a particular agent given

a set of beliefs about the other agents (Gmytrasiewicz & Doshi, 2005). However,

we have already seen that there is considerable complexity in solving POMDPs;

adapting these solutions to the multi-agent environment is a challenging problem.

Chapter 2 Literature Review 38

Example 9 Beliefs about the beliefs of others, in the Tamptono disaster

A very sick victim has been found at one of the disaster sites. This victim can
only be rescued from the site if she is carried out on a stretcher, thus requiring
two rescue agents. She is likely to die within minutes if no rescue is effected.
Ambulanceman Archie has found this victim and is wondering whether to wait
with her for another ambulance, or to give her up as a lost cause and search the
nearby site. Archie can see another ambulance, Bob, in the distance, but does not
know whether Bob is on his radio frequency, or not. Thus, Archie does not know
whether Bob has heard his urgent call and might come over to the victim in time,
or whether Bob believes that this site is clear.

In particular, whereas a POMDP is solved by conversion to a belief-state MDP and

then solving the resulting continuous MDP, a POSG is complicated by the need to

include beliefs over the other agents’ belief states (see example 9). The dynamic

programming solution method for POSGs finds an equilibrium by iterating through

all the agents, repeatedly removing any dominated strategies from the agent’s

strategy space (Hansen, Bernstein, & Zilberstein, 2004). An anytime improvement

on dynamic programming, the MAA* algorithm, carries out a heuristically-guided

A* search through policy space (Szer, Charpillet, & Zilberstein, 2005) (Oliehoek &

Vlassis, 2007). Empirically, the authors have found that optimal policies are often

returned early on. However, with the exception of (Oliehoek & Vlassis, 2007) which

can be applied to infinite-horizon games, these approaches find offline solutions

to small finite-horizon POSGs. Other approaches such as (Nair, Tambe, Yokoo,

Pynadath, & Marsella, 2003) (Yuichi, Makoto, & Atsushi, 2007) approximate by

finding locally optimal policies.

More recently, a special case of much larger POSGs, the networked POSG,

has attracted some interest (Kim, Nair, Varakantham, Tambe, & Yokoo, 2006)

(Varakantham, Marecki, Yabu, Tambe, & Yokoo, 2007). In the case where the

agents are networked according to a specific structure—such as a sensor network—

it is possible to exploit this structure to develop more sophisticated strategies for

agents located in critical parts of the network, and simpler strategies for agents

located in less critical regions (Marecki et al., 2008).

Solutions such as the above are offline approaches, and appropriate only to finding

equilibria in cooperative games. Thus they are not immediately applicable to an

Chapter 2 Literature Review 39

agent learning to act in an unfamiliar situation, even where the dynamics are

known. However, the approximation techniques of (Marecki et al., 2008) may be

useful for problems of the kind we are addressing. In one online approximate

algorithm (Emery-Montemerlo et al., 2004), each agent tries to compute the

jointly optimal action for that step and then executes its own part of the joint

action. Providing that all agents are initialised with the same information (in

particular, they should share a random seed), every agent will compute the same

approximately optimal action so that the actions are truly cooperative. Although

this algorithm is theoretically sound, it is computationally intensive and has only

been tested on relatively small POSGs.

An alternative approach mirrors the extension of fully observable single-agent

learning to the multi-agent case by treating other agents as part of a grand

state: multi-agent POMDPs can be solved using any online POMDP algorithm

by treating models of the other agents as part of the state. The branch-and-

bound algorithm in (Paquet, Tobin, & Chaib-draa, 2005) is an example of such

an algorithm. By incorporating problem-specific knowledge into the search (for

example, treating some variables as static in the short term), this algorithm is

demonstrated to work on larger scale problems. Other methods can be used to

improve efficiency such as local factorisation (Kim et al., 2006) and Bayesian

network representations (Sallans, 2002).

Now, these descriptions focus on problems in which the state is partially observable.

However, in many kinds of partially observable multi-agent POMDPs, including

the ambulance example (8), it will be impossible to consistently observe the actions

of the other agents. We can classify such scenarios into two types: in the first

type, as in our ambulance example, we simply cannot see the actions of every

agent, for example because the agents have a limited field of vision; while in the

second type, we can observe the effects of actions, but not the intended action

itself. As an example, in many robotics problems, actions may not be completely

deterministic; an agent aiming to travel in a particular direction will have some

probability of successfully doing so, and some probability of travelling in another

direction. Example 10 suggests a rescue scenario with this property.

Chapter 2 Literature Review 40

Example 10 Partially observable actions in the Tamptono rescue

Following a number of minor quakes on the heels of the big earthquake, access to
Tamptono has become so bad that a helicopter is sent to drop rescue supplies and
food to the main town squares and largest buildings. Unfortunately, the wind blows
the packages about as they fall towards the town, and many of them do not reach
their intended target.

In a single-agent problem, the agent can model this second case within the

transition function, the non-determinism of its own actions swept into the

probability P (s′|s, a). However, in a multi-agent problem where other agents’

strategies are being modelled, it may be useful to model the underlying strategy

of the opponents. Then, if the agents are upgraded (or in the helicopter example,

if the weather conditions change) so that P (effect|action) is changed, but their

strategies remain unchanged, the learning agent can adapt its behaviour as soon

as the new P (effect|action) model is known. Of course, the other agents may

well modify their behaviour based on the new model; still, we hope that having

this explicit model may give us a head start in keeping up with them. Likewise the

first case is typically handled by treating the problem as a single agent problem,

and the behaviour of the other agents as a part of the environment. However, we

propose that explicitly modelling the behaviour may be advantageous, reaping the

benefits, already discussed, of explicit models.

Finally, for all the complexity in the above models, we wish to add one more

layer of uncertainty: uncertainty about the environmental dynamics. Consider

again example 6 in section 2.3: In this example, neither the complete state of the

building, nor the numbers or locations of other people in the building is known

to each agent at any one time. Challenging problems of this nature draw on the

work in learning and multi-agent learning, in POMDPs and in POSGs. We may

take either multi-agent learning as a starting point, and extend it to the partially

observable domain, or we can consider ways of integrating learning with our POSG

solutions.

In fact, very little of the previous work has been extended to this difficult domain.

However, card games have formed a testing ground for applying learning techniques

to partially observable competitive games (Shi & Littman, 2002) (Matsuno,

Chapter 2 Literature Review 41

Example 11 Partially observable stochastic games in Tamptono

Twin boys are standing near the old people’s home when the rescue workers leave
it with all the survivors. During the rescue, several parts of the building have
collapsed, and more may go at any moment. The boys know that they can dart
into the building to loot it for jewellery, but if they do, that will be the signal to
the rest of the gang to join them. If the rest of the gang are not put off by the
risk of building collapse, they will surely all want to join in and claim some of
the spoils—greatly increasing the risk of building collapse for all. The twins must
decide how likely the others are to follow them in their dash into the building before
deciding to make it. A possible set of outcomes for the game is summarised below.
In fact, each outcome is associated with some probability and the twins will make
their decision by considering all probabilities.

Outcome for the twins:

Twins
Loot Don’t Loot

Gang Loot BC; -100 S; -20

Don’t Loot J; 100 0

Outcome for the gang:

Twins
Loot Don’t Loot

Gang Loot BC; -100 J; 15

Don’t Loot 0 0

Outcome Buildingcollapse BC = −100

Outcome Jewellery 10 < J < 100

Outcome Lossofstatus S = −20

Yamazaki, Matsuda, & Ishii, 2002) (Amit & Markovitch, 2006). Although in

card games such as hearts (Ishii et al., 2005) or poker (Gilpin & Sandholm, 2007),

the environmental model is known to the agent, the behaviour of the other players

is not necessarily known. Over many games, agents can estimate the behaviour of

the other players, and use these estimates alongside POMDP solution techniques

to learn to play effectively. We look at the issue of learning models of the other

agents in more detail in the next section.

Chapter 2 Literature Review 42

2.3.2 Learning about other agents

Given the aim of learning models of the environment, we have previously discussed

reinforcement learning. However, learning about other agents’ behaviour is

typically a different kind of task from learning about the environment. In a fully

observable domain with the Markov assumption, the optimal action will only ever

depend on the current state. Therefore, agents can learn simple models of the

strategies of the other agents, using multinomial distributions over actions (one

for each state) and updating these distributions either using a simple frequency

count or using Bayes’ rule. In the situation in example 11, this may mean the

twins observing the state (Home empty, Gang in alley) and deciding to loot, or

observing the state (Home empty, Gang at head of alley) and deciding not to risk

it. This is known as fictitious play (Fudenberg & Levine, 1998). Conversely, in

scenarios where the full state is unknown to the agent, simple fictitious play is not

appropriate. Each agent may have knowledge of the environment and a model of

the current world state—but this is not sufficient to respond optimally to the other

agents. To see this, consider a rescue scenario in which some rescue tasks require

several agents: the agents must come to the same conclusions about when these

tasks are approached. If agents have differing views of the situation, they may

not make the same decisions about urgency, resulting in an ineffective dispersal of

agents. Similarly, in example 11, the twins may believe mistakenly that the gang

will realise how unstable the building is, and thus expect the gang to take more

care than it does, or they may not know how desperate one of the gang is for cash.

Furthermore, as we have developed the theory of learning in MDPs through

increasing layers of complexity, correct and complete solutions to the problem

become ever more intractable. Algorithms use tricks such as factorisations

(Sallans, 1999), assume independences (Kim et al., 2006), and repeatedly

approximate (Roy & Gordon, 2002) (Chalkiadakis & Boutilier, 2003), leaving

the original principled approaches some way behind. If these tricks are executed

carefully—if the factorisations are correct, the assumptions not too far from reality,

and the approximations directed by the problem structure, then the solutions

Chapter 2 Literature Review 43

Example 12 Higher-level views of the Tamptono earthquake

Following the Tamptono earthquake, a fireman on watch observes a number of
fires breaking out. Although he can guess that there will be a number of other
fires across the city, he can also see immediately that large areas of the city are
impassable where roads have collapsed or buildings have collapsed onto the roads.
He therefore concentrates his rescue team only on the reachable parts of town. Once
he has decided, in collaboration with other firefighters, which fire he will tackle first,
and travelled there, his focus grows even narrower, taking in the details of this fire
in as much detail as possible, but requiring no information about other fires in the
area.
At the same time, a helicopter observes the scene from above. The pilot’s task is
to report on the state of the city. Unlike the firefighter on the scene, the pilot is
uninterested in details of the fires, recording only an overview. In the helicopter,
all fires are categorised into a small number of size classes (such as small, medium,
large) and approximate coordinates recorded.

found may not fall too far behind the optimum. In the next section we discuss

ways of reducing the state space in learning problems, in order to render such

problems more tractable.

2.4 Extending MDP techniques to larger scale

systems

In section 2.2.1, we briefly mentioned approximate methods such as sampling

for computing value functions in continuous MDPs. Example 12 illustrates that

frequently agents will either be interested only in a high-level view of the state

space (as the helicopter pilot in the example), or in some particular region of the

state space (as the allocated firefighter). It is therefore reasonable to reduce the

state space in either of these ways, selecting a reduction approach appropriate

to the particular problem. Reinforcement learning is a technique inspired by

human behaviour (Rivest, Bengio, & Kalaska, 2005), and we look again to human

behaviour to see how large state spaces may be managed. There are two related

techniques which are important to decision problems with huge state spaces,

function approximation and abstraction. We discuss both of these in section 2.4.1.

Furthermore, when state spaces are large, agent policies are correspondingly large.

Chapter 2 Literature Review 44

In a multi-agent system where an agent is trying to model other agents, it may

become necessary for the agent to approximate their policies and we discuss policy

approximation techniques in section 2.4.2.

2.4.1 State abstractions

In simple reinforcement learning, agents learn tables of states and values.

Function approximation replaces these lookup tables for state values with

functions (such as neural networks or radial basis functions (Sutton & Barto,

1998)) which take state variables as inputs and output a Q-value (in model-

based learning) or an action (in model-free learning). Online supervised learning

techniques such as gradient descent or simulated annealing learn the function

parameters, given the function form, from the experience in (state, value-estimate)

pairs (Mackay, 2003).

In more detail, such functions can be learned by assuming some form for the

function, and then learning the appropriate parameters. Any standard learning

method which is able to handle incremental learning (the accumulated experience

forms the training data) and nonstationarity can be used; neural networks are

common (Sutton & Barto, 1998). In particular, a neural network with two hidden

layers can be used to approximate any function with an arbitrarily small error,

given sufficient training data. Alternatives to neural networks include radial basis

functions or linear approximations (Sutton & Barto, 1998). For most general

problems we expect that neural networks will be sufficient. Therefore, we do not

propose to extend the state of the art in this direction. Consequently, although

function approximation could be used in the future to extend our work into larger

scale or continuous problems (see sections 8.3.1 and 8.3.5), we will not implement

it in our work.

Now, when carrying out function approximation in this way, the state variables

themselves may be used as inputs to the function. However, if there are a

large number of state variables it may be helpful to reduce them in some

Chapter 2 Literature Review 45

way. Furthermore, in any difficult problem, the learner may not find a good

approximation within a reasonable time unless the input features are carefully

selected to provide guidance (Fogel, 2002). To this end, reduction of the state

variables can be achieved using abstraction.

Abstraction refers to taking a high-level or abstract view of the state space.

For example, rather than considering one state for every size of fire, the helicopter

pilot classifying all fires as small, medium or large is carrying out state abstraction.

The simplest state abstractions are those in which the state space is just broken

up into tiles or buckets, for example by laying a grid over the state space. A

less crude method of dividing the state space is to form clusters using standard

clustering techniques such as nearest neighbours or k-means (Hoar, 1996). A more

sophisticated clustering technique makes use of a topological mapping (Smith,

2002) which exploits the form of the state space to provide more clusters in denser

parts of the space.

In a high-dimensional input space, the fact that many combinations of input

variables rarely or never occur can be exploited by mapping the input space into a

higher level feature space. Such feature spaces can also be used to encode intuitive

knowledge about the structure of the state space—for example, fires will never

occur on rivers.

Automatic means of encoding feature spaces include coarse coding (Sutton &

Barto, 1998), in which ellipses or other overlapping partitions in the state space

represent binary features; and dimensionality reduction techniques such as PCA

(Roy & Gordon, 2002) and sparse coding (Lee, Battle, Raina, & Ng, 2007).

Alternatively, features can be learned through supervised learning, exploiting the

intuition that humans can recognise abstractions intuitively, but not always easily

define them (Tanner, Bulitko, Koop, & Paduraru, 2007). Finally, features can be

manually defined (Fogel, 2002).

Now, in any of the above techniques, the agent must have or learn some notion of

similarity between states. With abstraction, “similar” states are treated the same

and given the same action. With generalisation, as well as similarity, the learner

Chapter 2 Literature Review 46

must have an idea about direction: whether the new, unseen state has a higher

or lower value than the known state. In problems such as disaster response where

the environment is new to the agent, this similarity and direction information is

not necessarily known. Consequently, our focus will be on techniques where the

agent can learn the abstractions online and unsupervised.

In order for an abstraction technique to be useful, it must be possible for us to

predict the abstract state for a new state. The agent will not know at the outset

how many abstract states will be appropriate, and so it must be possible to expand

or contract the set of abstract states as the situation progresses—this is especially

the case with a dynamic scenario, in which underlying states may need to be

moved between abstract states.

In this context, statistical clustering describes a class of probabilistic clustering

techniques which can be used to achieve this kind of abstraction. Each state can

be identified by a set of binary features (at minimum, states can be identified by

numbers and the binary features the bits in the state’s number). A cluster is then

described as probabilities over the states in the cluster: C =< p1, p2, . . . , pn >

where pi is the probability that bit i is set, given that the state is in that cluster.

The probability of a new state being assigned to any particular cluster can therefore

be computed using Bayes’ rule. These clusters may be associated with Q-values

(Hoar, 1996) or action choices. The probabilistic nature of statistical clustering

means that it will fit particularly well with our Bayesian modelling techniques, so

will be our choice for this work. To this end, in section 3.4.2 we will outline an

algorithm for using statistical clustering within our model.

Now, these state abstraction techniques can be applied in partially observable

domains to reduce either the underlying state space or the belief space. In problems

where the abstraction is carried out online, only the belief-space can be reduced

since the underlying state is never known. In principle, any approach suited to

continuous space can be used to abstract belief space. However, POMDP belief

space has a particularly sparse structure. Typically, given a particular observation

oi, there will be a small set of states Si which could have given rise to the

Chapter 2 Literature Review 47

observation. For a set of observations O = o1, ..., on, the set of states which

could have given rise to the observations is given by SO = ∩i=1..nSi. Belief in any

states other than these will be small or zero. A nice approach to exploiting this

sparsity is to use some form of dimensionality reduction to map belief space into a

lower-dimensional feature space (Roy & Gordon, 2002). However, a disadvantage

of these approaches is that a certain amount of preprocessing is necessary. In the

PCA-based algorithm outlined above, it is necessary to do some sampling of state

and belief space before the reduction techniques can be applied. This is not always

feasible in real, dynamic scenarios. Less principled approaches such as manually

defining abstractions from human input may turn out to be more practical.

Finally, we note that in some kinds of problem, such as that in example 12, different

levels of abstraction may be appropriate. This motivates the use of hierarchical

learning techniques (Fischer, Rovatsos, & Weiss, 2004). Such techniques integrate

action and state space abstractions, mapping high-level states to high-level actions.

Depending on the particular action, its execution may require traversing the

hierarchy to consider more details of the state or of a localised part of the state

(Naeem & Bigham, 2008). In a large real-world problem such techniques may

become necessary. As with function approximation, we do not propose to extend

the state of the art and thus do not address them in this thesis, but identify a

scheme for future work in section 8.3.1.

However, Bayesian multi-agent POMDPs have a further bottleneck. In principle,

each agent can maintain and update a POMDP in which the unknown POMDP

“state” includes the world state, the other agents’ world models, and behavioural

models for the other agents. In practice, it is not tractable either to update

such a model or to determine a best response within it, without performing some

approximations. In particular, it is intractable to maintain beliefs about all the

other agents’ beliefs about the state. In the next section we discuss approaches to

approximation within problems of this form.

Chapter 2 Literature Review 48

2.4.2 Policy approximations

In general, rather than maintaining beliefs about other agents’ beliefs, and then

beliefs about their strategies based on these beliefs, it is necessary to find some way

to approximate our beliefs about strategies. For example, in one online algorithm

(Emery-Montemerlo et al., 2004), rather than infer over the beliefs of other agents,

all agents are initialised with the same information and the same random seed.

Each agent can then compute an approximation to the joint optimal action for

that step and executing its own part of this joint optimal action. In this algorithm,

the joint optimal action is approximated by projecting just a small number of steps

into the future (a finite horizon search), and using a domain-specific heuristic to

estimate the values of those future states. Although this is theoretically sound, the

algorithm is computationally intensive and has only been tested on small POSGs.

Such finite horizon searches can be refined, using heuristics to search further down

more likely avenues (Ross, Pineau, Paquet, & Chaib-draa, 2008). Providing the

heuristics are good, this allows for deeper searches and thus generally better action

choices without increasing the costs prohibitively. Since our interest is in providing

a general model, we do not propose to consider techniques which require domain-

specific heuristics here.

An alternative is to extend the finite state machine approaches discussed in section

2.2.1 to find a joint approximate policy. For example, the technique of (Bernstein,

Hansen, & Zilberstein, 2005), which uses a finite state machine to describe each

agent, creating dependencies between the FSMs by exploiting shared information

in the style of (Emery-Montemerlo et al., 2004).

Both the above techniques are dependent on shared information and thus not

directly applicable to our decentralised scenario. More recent work has investigated

offline algorithms for a special case of much larger POSGs, the networked POSG.

In the case where the agents are networked according to a specific structure—

such as a sensor network—it is possible to exploit this structure to develop more

sophisticated strategies for agents located in critical parts of the network, and

Chapter 2 Literature Review 49

simpler strategies for agents located in less critical regions (Marecki et al., 2008).

This is achieved by restricting the possible policies for all the agents, with more

restrictions on some than others.

In particular, agent policies are restricted to the class of policies which can be

described by finite state machines. By limiting the maximum number of nodes

which the finite state machine can have, policies can be restricted further (Marecki

et al., 2008). Although we are not considering networked structures, we propose

to take inspiration from this work to develop an online multi-agent strategy in

which an agent maintains explicit models of the system and of the other agents,

but its models of the other agents are approximated as finite state machines.

In more detail, an agent controlled by a finite state machine has a number of

internal states, each associated with an action (or a probability distribution over

actions)—this tells the agent how to act when it reaches this internal state.

After taking an action, the agent’s observations determine its movement to a

new internal state. The finite state machine captures the notion that an agent’s

beliefs can be approximated, for the purposes of decision making, by a variable

but finite sequence of past observations, and examples such as (Vu, Powers, &

Shoham, 2006) (Carmel & Markovitch, 1996) demonstrate that it can be very

effective. Furthermore, approximate best responses to finite state machines can

be computed efficiently (Marecki et al., 2008)—we explain how we will use this

technique in section 3.4.1.

For any set of agent behaviours, there may be several possible FSMs. The least

compact FSM for a finite time period has a distinct node for every time step. The

minimal (most compact) FSM for an agent’s behaviour has the smallest number of

nodes necessary to describe the behaviour exactly. Now, finding the minimal FSM

is an NP-complete problem and cannot be approximated by any polynomial-time

algorithm (Carmel & Markovitch, 1996). However, it is possible to learn compact

FSMs in polynomial time, for many practical problems. In particular, the US-

L* algorithm (Carmel & Markovitch, 1996) has polynomial running time and has

been shown to be effective at finding compact models of agent behaviour on small

Chapter 2 Literature Review 50

agent coordination problems. Given this, we propose to test it on larger problems.

Section 3.4.3 outlines our FSM implementation, which is tested in chapter 6.

2.5 Summary

In this chapter we have emphasised uncertainty as a key requirement which

we intend to address, and discussed agent decision making under uncertainty,

highlighting a principled Bayesian approach for the single agent problem. Since

coordinated multi-agent systems are our goal, we pursue the multi-agent extension

to this approach, emphasising its correctness and its flexibility. However, in order

to use the complete Bayesian approach on anything other than toy problems,

and especially if we wish to scale it up to large problems, some compromises or

approximations are necessary. To this end, we discuss ways in which the Bayesian

model can be adapted to larger state spaces. However, in these larger state spaces,

agents are unlikely to have full observability, which the models of (Dearden et al.,

1999) and (Chalkiadakis & Boutilier, 2003) both assume.

We have therefore extended the discussion of learning techniques into partially

observable domains, noting that there is very little work on learning within

partially observable domains which explicitly takes into account the behaviour

of the other players—which we believe would lead to better performance. We

have considered other coordination mechanisms which could be used in such

domains, such as conventions and negotiation, and we have argued that in large

and uncertain domains, these mechanisms are likely to be integrated with learning

techniques.

Given this, we propose to extend the model of (Chalkiadakis & Boutilier, 2003),

developing a model for Bayesian learning which explicitly considers the other

agents and which is appropriate to partially observable domains. In order to

render such a model computationally feasible, especially in domains with large

state spaces and many agents, a number of approximations will be necessary. In

particular, it will be necessary to perform some kind of state abstraction. Keeping

Chapter 2 Literature Review 51

with our Bayesian model, we will use statistical clustering to gather states together.

In multi-agent problems, with agents adapting to one another’s strategies, it will

also be necessary to model these strategies approximately. Thus we propose to

use finite state machines for this strategy modelling.

Now, to date, previous work using finite state machines focuses on offline solutions

to multi-agent problems, precomputing responses to every possible belief state.

However, it is impossible for every belief state to be reached, since every belief

state which is visited narrows the space of possible future beliefs (at least within a

static environment). For offline solvers without tight time constraints, it may not

be of concern spending time solving for unreachable belief states. Alternatively,

it is possible to make use of the intuition that the belief space need only be

divided into sufficient chunks to determine the next action, for example using

principal components analysis on a discretised state space (Roy & Gordon, 2002).

The alternative to such techniques is to search for solutions online. This is the

only way of approaching very dynamic systems, or systems where the problem

parameters may not be known in time to perform a comprehensive offline search—

as is likely to be the case in our target domain. Online solutions will, of necessity,

be approximate, since any accurate solution projects infinitely far into the future

and thus is effectively an offline solution.

Thus, in the next chapter we describe in detail an algorithm for online cooperative

action in partially observable multi-agent systems in which agent communication

is limited to information-sharing (section 3.2). Our algorithm uses finite state

machines to model the policies of the other agents and each agent computes online

a best response to its beliefs about these finite state machines 3.4.3.

Chapter 3

A Bayesian model of partially

observable multi-agent systems

As outlined in the previous chapter, we will describe a Bayesian model for

coordinated decision making in partially observable multi-agent systems. In

section 3.2 we give the Bayesian MDP model itself. This general, formal model is

not practically useful without further modification: the rest of the chapter explains

how we build from the general model to specific implementations (although the

specific cases themselves will be described in later chapters). First, in section 3.3,

we explain the use of belief networks to aid visualisation of a particular problem,

and how this can be applied to the Bayesian MDP model. Then in section 3.4 we

identify places in which the Bayesian MDP algorithm can be approximated and

explain how to apply them within our model. First, however, section 3.1 defines

the terms we will use throughout this chapter.

3.1 Definitions

We begin with our basic definitions. Throughout, we assume that there is

some underlying world state, s, which changes in response to the joint actions

of the agents. The progression of world states and joint actions forms an

52

Chapter 3 A Bayesian model of partially observable multi-agent systems 53

MDP. We assume that agents are not able to perceive s completely, but make

some observations o from which they make inferences about the state. These

observations may include communications from other agents—we do not treat

those distinctly in this work. More formally, we will make use of the following

definitions:

• I : {I1, . . . Ik}, a set of k agents

• S : {s1, . . . sns
}, a set of ns states. A state will generally be described by a

set of state variables.

• L ⊂ S = {L1, . . . Lk}, a location variable for each agent. These determine

the viewpoint from which agents make local observations.

• A = {a1, . . . ana
}, the set of individual actions. A = Ak is the set of joint

actions. Thus, we differentiate between a single action a and a joint action

a by using bold for the latter, to emphasise that it is a vector. We will also

use a−i to refer to the vector a with the element corresponding to i removed,

and a ◦ a′ to refer to a with a′ integrated.

• O : {oo, . . . ono
}, a set of no possible observations. Each agent’s observations

will be taken from this set.

• Tf : Tf(st+1, s, at) = P (st+1|st, at), the transition function from the state at

time t to the state at time t + 1, where st+1, st ∈ S and a ∈ A. We use the

subscript f here and below to distinguish the functions from sets.

• Of : An no-dimensional function where Of(st, ot)i = P (ot|i, st), the observa-

tion function for agent i, where ot ∈ O and st ∈ S.

• R : {r1,rnr
}, nr ≤ ns, a set of possible rewards which an agent may receive

• Rf : SxAxS → R, a reward function: each agent will have its own reward

function. Typically, the reward will be associated with the immediate state,

but for some problems it may be associated with the transition between

states (for example, if actions have a cost).

Chapter 3 A Bayesian model of partially observable multi-agent systems 54

When taken together, Tf , Rf and Of describe the dynamics of the environment.

We will use θ = (Tf , Rf , Of) to refer to these dynamics as a whole. An individual

agent, A, may also have:

• A (deterministic) policy π : (PxHxO)→ A where h ∈ H defines all relevant

historical information (observation sequences including communications

from other agents), p ∈ P any prior or domain knowledge, ot ∈ O is the

current observation and a ∈ A is a single agent action. Typically, (p, h)

will be compressed to contain the sufficient statistics for a belief state (a

probability distribution over states and unknown parameters).

• Beliefs over unknown parameters: for some variable X taking values

x1, x2, . . ., b(xi) is the probability that X = xi, given the agent’s prior

information and subsequent observations.

• Models of the other agents’ behaviour: P (πi|p, h) where πi has the same

form as π above and (p, h) refer to the prior and historical information of

the agent A. To be clear, we assume that the other agents have deterministic

policies, and our agent maintains beliefs over these deterministic policies.

Taking these definitions, the next section will describe a formal model of learning

in multi-agent systems, extending the Markov decision process defined in section

2.2 to a continuous “Bayesian MDP” and explaining how this Bayesian MDP can

be used to encapsulate partially observable multi-agent systems (section 3.2).

3.2 Bayesian MDPs

To recap, in section 2.2, we outlined the Markov decision process, or MDP,

progressing from state to state (figure 3.1(a)), and the partially observable Markov

decision process, progressing from world state to world state, emitting observations

(figure 3.1(b)). We then showed how to turn a partially observable MDP into a

continuous, fully-observable belief-MDP (figure 3.1(c)).

Chapter 3 A Bayesian model of partially observable multi-agent systems 55

(a) MDP

(b) POMDP

(c) belief MDP

Figure 3.1: MDP, POMDP, and belief-MDP

Chapter 3 A Bayesian model of partially observable multi-agent systems 56

We then discussed a model which uses a belief-MDP formulation to carry out

reinforcement learning in a fully-observable multi-agent system, by treating the

environmental parameters as a part of a partially observable state (Chalkiadakis

& Boutilier, 2003) (figure 2.5). A similar model achieves reinforcement learning

in a partially observable single-agent system (Ross, Chaib-draa, & Pineau, 2008):

figure 3.5. Finally, a related approach treats a partially observable multi-agent

system as a series of Bayesian Games (Emery-Montemerlo et al., 2004): each step

of this system is treated as a game, using Bayesian inference over the other agents’

beliefs.

In fact, all these models can be considered to be special cases of one general model.

Consider all the possible variables and parameters of a partially observable multi-

agent MDP: the world state s, the agents’ actions a, the environmental models

θ = (Tf , Rf , Of), and the agents’ strategies π. We can create a multi-dimensional

“grand state”, which contains all of these things, g = {s, a, θ, π} and describe a

“grand MDP” which proceeds through such states given the single agent action

act:

In this MDP, provided the environment and agent behaviours are static, θ and π

are unchanged between states, while the transitions for the state are determined

by θ—the dynamics for the underlying MDP—and a, and the transitions for the

joint action are described by π—the agent behaviour models—and s. From this

MDP, we can describe a POMDP in exactly the same way as any POMDP is

described from an MDP with partially observable states. In order to define the

POMDP from the MDP we must specify the observations. As in (Ross, Chaib-

draa, & Pineau, 2008), (Emery-Montemerlo et al., 2004), the set of observations

for agent i in this POMDP includes:

Chapter 3 A Bayesian model of partially observable multi-agent systems 57

Example 13 Tamptono rescue agent’s observations

A rescue agent arriving outside a damaged building observes:

• The outside of the building: os (but not the internal state of the building)

• Rubble flying out of a window, from which she infers that an agent is digging
near to the window: oa

• A man hurrying from the building and handing some papers over to a man
nearby, and receiving some money (she can’t see how much): or

• os: observations about the state

• oaj
: observations about agent actions

• ri: the individual agent’s rewards

• orj
: (in a non-cooperative system) observations about the rewards of others

• os → ai ◦ oa → os′: observations about the transitions1.

These are illustrated in example 13. From this POMDP we can define a belief

MDP, again in exactly the same way as we have before: the “belief states” of the

belief MDP contain probability distributions over the variables in the grand state:

we describe the belief state as b(s, {aj}, θ, {bj}, {πj}) where:

• s is the current world state

• {aj} are the immediate actions of the other agents

• θ = Tf , Rf , Of , the environmental dynamics

• {bj} are the beliefs of the other agents about the world state

• {πj} defines the behaviour of the other agents based on their beliefs

These definitions allow us to define a general belief MDP algorithm, algorithm 1

for an agent i in a partially observable multi-agent scenario. In practice, however,

steps 2 and 3 in this procedure may involve complex calculations. In particular,

the update step (step 2) must sum over all the unknowns in the environment,

which is potentially a multi-dimensional summation or integral, while the best

1These observations combine the state and action observations from two consecutive
timesteps. Here we use the → notation to indicate that the state leads to the action choice,
and the actions lead to the state transition (similar to figure 3.1).

Chapter 3 A Bayesian model of partially observable multi-agent systems 58

response step must evaluate over many states, with the evaluation cost increasing

exponentially with each step projected into the future. We therefore look at ways

of approximating algorithm 1 which will be suited to efficient online evaluation.

First, however, we show a different view of the MDPs using graphical models

known as belief networks. The belief network visualisation provides a convenient

way to think about the update step and we will be reusing it in sections 5.1 and

6.1 when we consider two particular instantiations of this model. Additionally,

there are a number of efficient algorithms for calculating within graphical models

and we will discuss in particular the junction tree algorithm for the update step

in section 8.3.4.

Algorithm 1 The general belief MDP algorithm

• The agent initialises its belief state b0 = b(M) where M =
(s, {aj}, θ, {bj}, {πj}), either uniformly or based on domain knowledge.

• At each timestep the agent i:

1. Makes its observations

2. Updates its beliefs over M using Bayes’ rule, resulting in a new belief
state bt.

3. Calculates the action ai which optimises Q(bt, ai), where

Q(bt, ai) =

∫

M

P (M |bt)Q(s, ai|M)

4. Executes this action and makes new observations.

3.3 Belief networks

A Bayesian network, such as figure 3.2, shows dependency relations between

variables, with directed arrows indicating the direction of causality: an arrow

from a node A to a node B indicates “A directly affects B”. Figure 3.2 shows a

simple model for an earthquake: earthquakes are assumed to occur independently

(with some probability), so Earthquake forms a root node in the network. The

likelihood of a fire is dependent on whether or not an earthquake has occurred;

Chapter 3 A Bayesian model of partially observable multi-agent systems 59

this is represented by drawing an arrow “Earthquake affects Fire”. The left-

hand table, called a conditional probability table or CPT, shows the conditional

probability of a fire given that an earthquake did occur (Earthquake=1) or did

not occur (Earthquake=0). Similarly, we have an arrow “Earthquake affects

Buildingcollapse” (the corresponding CPT is omitted). Finally, both fires and

building collapse may result in victims and so we have arrows from each to

V ictims. The right-hand table shows the conditional probabilities for finding

victims given all possible combinations of values for (Fire, Earthquake): the

“parents” of the V ictims node.

Such a diagram encapsulates the dependences between variables and thus the

independence relations between them. Now, in general, in a probabilistic system,

the probability of a particular variable assignment can be factorised using the

product rule:

Earthquake

Fire Building collapse

Victims

Earthquake

Fire 0 1
0 0.9 0.5
1 0.1 0.5

Fire, Earthquake

Victims 0,0 0,1 1,0 1,1
0 0.9 0.3 0.6 0.15
1 0.1 0.7 0.4 0.85

Figure 3.2: Example Bayesian network, with the CPTs for the fire and victim
nodes

Chapter 3 A Bayesian model of partially observable multi-agent systems 60

P (x1, . . . , xn) = Πn
i=1P (xi|xi+1, ..., xn)

Where the conditional independence relationships in the system are known, this

factorisation can be simplified given the fact that P (A|B, C) = P (A|C) if A and

B are conditionally independent given C. Now, the variables can be ordered in

any way before applying the product rule, and some orderings permit more such

simplifications than others. To see this, consider a particular variable assignment;

Fire = f, Earthquake = e, Buildingcollapse = b, V ictims = v over the variables

in figure 3.2. If we order the variables e, f, b, v, then the product rule gives us:

P (f, e, b, v) = P (e|f, b, v)P (f |b, v)P (b|v)P (v)

which permits only one simplification:

P (f, e, b, v) = P (e|f, b)P (f |b, v)P (b|v)P (v)

However, if we order the variables (v, e, b, f), then the product rule gives us:

P (v, e, b, f) = P (v|e, b, f)P (e|b, f)P (b|f)P (f)

which has two simplifications:

P (v, e, b, f) = P (v|b, f)P (e|f)P (b|f)P (f)

Furthermore, there is no general way to find an optimal ordering (Mitchell, 1997).

However, the Bayesian network diagram supplies a way of ordering efficiently.

This is to order the variables so that every variable has a lower number than all

its parents, and then each node need be conditioned only on its parents (see for

example (Mitchell, 1997), chapter 6 for more details).

Now, in any problem, we will have some variables which are observed, and others

which are hidden. We care about the likelihood of some of the unknown variables,

Chapter 3 A Bayesian model of partially observable multi-agent systems 61

but not all. For example, if an earthquake occurs, a disaster response agency will

have ambulances to dispatch to victims, and fire engines to dispatch to fires, but no

services to dispatch to collapsed buildings: collapsed buildings are only of interest

because of their effect on the likelihood of victims. Thus, if the buildings are

not observed there is no need to compute the likelihood of their collapse. Thus,

we marginalise out the unknown variables which do not interest us (summing

over them), and normalise over the observed variables. In the belief network

visualisation, as with the MDP progress diagrams in the previous section, we will

distinguish between the observed variables and the unknown variables by shading

unknown variables gray and leaving observed variables unshaded.

Bringing together these techniques gives rise to the following standard algorithm

for calculating the probability of a hidden variable v in a system:

1. Identify all the variables and parameters in the system

2. Draw up a Bayesian network diagram with a node for each variable or

parameter, indicating the “directly affects” relationship between nodes.

3. Shade the nodes which correspond to hidden variables or unknown parame-

ters.

4. For the node corresponding to the variable of interest, write down its

probability, conditioning on the observed (unshaded) nodes {obs1, obs2, ...}

and summing over all the other hidden (shaded) nodes {v1, v2, ...}:

P (v|obs1, obs2, ...) ∝
∑

j=1,2...

P (v1, v2, . . . , v, obs1, obs2, ...)

5. Using the Bayes network as a guide, factorise and simplify

P (v1, v2, . . . , v, obs1, obs2, ...), removing any constant factors (i.e., factors

independent of v) as these can be normalised over later. To achieve this

factorisation, first, note that the term within the sum contains every node

in the system. Begin at the leaves of the network and for each leaf l, write

down the term P (l|parents(l)) where parents(l) refers to those nodes which

Chapter 3 A Bayesian model of partially observable multi-agent systems 62

directly affect l. Then, for each node p in parents(l), write down the term

P (p|parents(p)). Continue in this way until you have included a term for

every node in the system. This gives the factorisation. To simplify the

equation, move any terms which contain no summed-over nodes outside the

sum. Any terms which contain only observed variables may be removed as

constant factors.

ai

g

g′

Figure 3.3: Simple MDP belief network

Now, we propose to apply this technique to our MDP system. To do this, we draw

up one agent’s belief network. This network will contain variables for the current

state g, the agent’s action, and the future state (3.3). In practice, rather than

use a single variable g to represent the grand state, we can separate out each of

the variables in the grand state, thus making explicit the dependencies between

variables and allowing us to exploit any conditional independences.

Figure 3.4 shows the belief networks which correspond to a fully observable

multi-agent MDP with known environmental and agent models (3.4(a)) and with

unknown models (3.4(b)): the latter is the model of (Chalkiadakis & Boutilier,

2003). In both these networks, the single leaf is the (state, reward) observations

for the new state s′. These depend on my action ai, the actions of others aj (which

together form a joint action ai ◦ aj), the previous state s, and the environment

dynamics θ. My own action is assumed to be independent because its CPT is

under my control, but the actions of others depend on the previous state s and on

Chapter 3 A Bayesian model of partially observable multi-agent systems 63

s

aiθ

s′, r

πj

aj

(a) Fully observable multi-agent MDP

ai

s

θ

s′, r

πj

aj

(b) Multi-agent MDP with unknown models

P (θ|obs) ∝ P (θ)P (s′, r|s, θ, ai ◦ aj)

P (πj|obs) ∝ P (aj|s, πj)P (πj)

Figure 3.4: Bayes networks for the multi-agent MDP, with the equations for
determining the likelihood of the two unknown nodes shown.

their behaviour models πj
2. The only difference between the two models in figure

3.4(a) and 3.4(b) is what is observed, indicated by the shading.

Given the network in 3.4(b), with its two hidden nodes, we can apply the algorithm

described above during the update step of algorithm 1 to calculate separately the

probability distribution for the unknown node π and the probability distribution

for the unknown node θ. The factorised equations derived by the above algorithm

are shown in the figure.

Similarly, figure 3.5 shows the POMDP with unknown models described in (Ross,

Chaib-draa, & Pineau, 2008). Unlike the previous MDPs, this is a single-agent

model and so does not have nodes for the actions or behaviour models of other

agents. However, we have a new node o′ representing the observations which

arise from the current state s′ and corresponding reward, which are now shaded

as a hidden variable. We do not have a node representing the previous step’s

observation because once we have calculated P (s) we consider the observation

redundant. Below the figure are shown the associated updates. In this POMDP,

we do not recalculate the probability for the hidden previous state s, which, being

2The network as shown is abbreviated: correctly there should be one node for each of the aj

and πj . We use this abbreviation for all our network diagrams.

Chapter 3 A Bayesian model of partially observable multi-agent systems 64

s ai

s′, r

θ

os′

P (s′, r|obs) ∝
∑

s,θ

P (o′s|θ, s
′)P (s′, r|s, ai, θ)P (s)P (θ)

P (θ|obs) ∝ P (θ)
∑

s′,s

P (o′s|θ, s
′, r)P (s′, r|s, ai, θ)P (s)

Figure 3.5: Single-agent POMDP, with update equations shown

a root node, would come out to Pt+1(s) ∝ Pt(s), but only for the current state s′,

as well as the environmental model θ.

Finally, figure 3.6 shows the “grand MDP” system described in the previous

section, which combines the single agent POMDP of figure 3.5 and the multi-

agent learning MDP of figure 3.4(b). To help draw together the ideas discussed,

we explain this figure in detail. As before, we represent the others by the single

agent j. In practice there may be several distinct “agent j”s, each requiring its

own set of nodes.

• At the top, the “starting” nodes are the strategies and beliefs of the other

agents, the πj and bj . In general, bj refers to an agent’s beliefs about the

current state. These strategies and beliefs are hidden to us.

• Given beliefs about the state, and a strategy, the other agents decide on

their actions, the aj. We also decide an action, ai. We may be able to make

some observation about the others’ actions, oj.

• Given the true state s (hidden to us), the actions aj and ai, and the

environmental dynamics θ (also hidden to us), a state transition takes place

resulting in a new state s′ and emitting a reward r.

Chapter 3 A Bayesian model of partially observable multi-agent systems 65

• The new state is also hidden to us, but we can make some observations about

the state, os′.

• Similarly, the other agents will make their own observations about the new

state, os′,j. From these observations they will update their belief states to

give new belief states b′j .

Thus, the core of the figure (outlined in green) contains almost the same structure

as figure 3.4(b), but with the aj and s′, r nodes now hidden.

Looking at figures 3.5 and 3.6, we can see again that when there are hidden

variables which cannot be normalised or marginalised away, as in the case of

partially observable states, the update step of 1 will have to perform multi-

dimensional summations, making timely updates a challenge in large state spaces.

Similarly, the computation of the best response (the Q-values) involves summing

over all the hidden nodes and thus the complexity increases with the number of

unknowns. In the next section we detail how we will tackle the problem of carrying

out these updates and best response calculations to find satisfactory solutions in

online situations.

3.4 Improving efficiency

To deal with the bottlenecks we have identified, we propose to make use of the

following techniques introduced in chapter 2, extending and adapting to our model

where appropriate: finite horizon best response calculations (section 3.4.1), state

abstraction using statistical clustering (section 3.4.2), policy abstraction using

finite state machines (section 3.4.3) and efficient sampling techniques (section

3.4.4). The rest of this chapter explains these choices and gives the particulars of

their integration with our general Bayesian model.

Chapter 3 A Bayesian model of partially observable multi-agent systems 66

s ai

bj

oj

o′so′s,j

b′j

θ

s′, r

σj

aj

Figure 3.6: Complete partially observable multi-agent network

3.4.1 Finite-horizon Q-computation

Previous work (Vu et al., 2006), (Carmel & Markovitch, 1996) has considered

agent coordination in fully-observable, but non-Markov, repeated games. In

such scenarios finding a best response is straightforward, since the state and

consequently the reward can be computed at every step. By contrast, in our

work, the state is not known. We have discussed how this adds to the complexity

of the belief state and associated best response calculation, by requiring us to

maintain estimates about the other agents’ observations.

We therefore consider an approximation technique which exploits the fact that

states further into the future contribute less to the immediate Q-value. Considering

an idealised case where the policies of the other agents are known, we revisit the

Q-computation (equation 2.6) showing its expansion to n steps into the future.

Here we treat a as a joint action, just summing over the future states, and treat

the reward as deterministic. More correctly, r should refer to the expected reward.

Chapter 3 A Bayesian model of partially observable multi-agent systems 67

Q(a, b) =
∑

s′

P (s′|a, b)[r + γV]

=
∑

s′

P (s′|b, a)[r + (
∑

s′′

P (s′′|b′, a′)[γr + γ2V ′])]

= . . . + zγnV ′(for some value z)

Providing γ < 1, for sufficiently large n (depending on the value of γ), γn ≈ 0.

Therefore, we will not lose much accuracy by cutting off the Q-computation after n

steps: a finite-horizon approximation to the Q-value using the following recursion:

• Qk(b, a) =
∑

s′ P (s′|b, a)[r(s′) + γVk−1(b
′)]

• V0(b, a) = 0

• Vk(b) = maxa Qk(b, a)

These equations are finite and can in principle be solved. Such finite horizon

algorithms have been used in related belief-state problems in many cases: in

observable problems with unknown parameters (the base case is to assume that the

current parameters are correct, and solve the corresponding MDP (Chalkiadakis &

Boutilier, 2003)), in finding offline solutions for networked POMDPs (Marecki et

al., 2008), and in online partially observable stochastic games (Emery-Montemerlo

et al., 2004).

The base case of this recursion, V0 = 0, is a heuristic, and a number of possible

heuristics of varying complexity are available (Oliehoek & Vlassis, 2007). For

example, we could (during an offline phase) apply the Bellman equations to the

underlying joint-action MDP to obtain an optimal joint policy for the equivalent

fully-observable system, and the corresponding values, which we refer to by

VMDP (s). We could then use (Kaelbling et al., 1998):

V0(b, a) =
∑

s′

P (s′|b, a)[r(s′) + γVMDP (s′)]

Chapter 3 A Bayesian model of partially observable multi-agent systems 68

However, for large problems this solution itself is likely to be intractable, while

for problems in our disaster response domain the underlying MDP may not be

available for an “offline phase” before the online solution is needed.

Another simple alternative is to use some domain-specific characteristics to

estimate the value of the immediate belief state. For example, in a disaster

response scenario where reward is measured in lives saved, we might make the

estimate that half the people alive in a particular state will ultimately be saved.

The heuristic value of the belief state b is then
∑∞

n=1 0.5 ∗ P (numalive = n|b).

Choosing good heuristics is a problem of its own, typically involving building up

a body of experience with similar problems, thus we do not propose to use a

domain-specific approach in our work. In principle, this work could be extended

by replacing the V0 = 0 base case with a domain-specific heuristic, potentially

improving performance in domains where such heuristics are available.

In more detail, using the V0 = 0 heuristic, we can make use of finite-horizon

calculations using the following online algorithm, given knowledge of other agent

policies:

• Initialise the belief state with N = {n0}, b(s) is uniform (or biased given

domain-specific knowledge)

• At each step:

– Compute a finite-horizon best-response to the current belief state

– Carry out the prescribed action, observe the environment, and update

the belief state accordingly.

In practice, however, such an algorithm is not really very much use since if the other

agents’ policies are known beforehand then we can compute an offline solution by

adapting POMDP solution techniques to take the current node into account.

In our partially observable setting, where the agent does not in fact have knowledge

of the policies of the other agents, but rather has beliefs over possible policies,

Chapter 3 A Bayesian model of partially observable multi-agent systems 69

our work will extend the finite-horizon approximation to use weighted samples

from our belief state. In more detail, we sample from the possible policies to

obtain a selection of sets of policies, Σ = {Σ1, ...Σm}. For each sample policy set

Σs = {π1, π2,}, containing a policy for each other agent, the agent computes the

best response action assuming the other agents’ policies are fixed to Σ: BRi(Σs, b).

The action decision is then given by:

a = max ai

m
∑

i=1

Pi.δ(BRi(Σs, b) = ai)

(where δ(A = B) = 1 if A = B and 0 otherwise).

Now, when carrying out such finite-horizon approximations, for each step into the

future we must calculate the Q-value of every state, along with its probability of

occurring. Therefore, the complexity is exponential in the number of states. In

our next section, we look at using statistical clustering to create abstract states,

reducing the number of states.

3.4.2 State abstraction using statistical clustering

In section 2.4.1, we introduced the general technique of statistical clustering as

a probability-based state abstraction technique which will dovetail well with our

Bayesian learning model. The idea behind statistical clustering is to maintain an

amorphous set of clusters based on the probability of the features of the states

within them. Specifically, suppose that the state is represented by a set of binary

features, then a cluster is represented by C = 〈pbit1, ...pbitn〉, where pbit1 = P (bit1 =

1|s ∈ C). This last formula is obtained based on the prior probability of bit1 and

the relative probability of bit1 among the states already in the cluster C. Then

a new state’s match to a particular cluster can be given by multiplying these

probabilities. In more detail, the clustering algorithm we will use, based on that

of (Hoar, 1996), will perform the following operations:

Chapter 3 A Bayesian model of partially observable multi-agent systems 70

Updating: Each observed state is assigned to the cluster for which it has the

highest probability. The bit-probabilities for that cluster are then updated

according to the states. In order to do this it is necessary to maintain a count

of the number of states in the cluster, then when the kth item is added to

the cluster the new probabilities can be adjusted using the old probabilities

and the state count.

Merging and Splitting: If a single cluster appears to be associated with an

unbalanced state space, that cluster can be split into two. Ideally, this

is done by dividing the states between the two new clusters so that they

are as distant as possible (using a distance measure such as the Hamming

distance (Sutton & Barto, 1998)). It is possible to achieve this in O(n2) by

comparing every pair of states. For efficiency, we instead use a heuristic to

do this, listing the states as rows of binary features and maintaining them

in lexicographical order in the cluster. We then assign the top third of the

states into one cluster and the bottom third into the other cluster. The

remaining third of the states are allocated (top-down) to the nearest cluster.

By doing this, we can greatly reduce the time required to split the cluster,

while still having the states in the two new clusters fairly distinct: states

with many ones in will be in one cluster and states with many zeros in will

be in the other.

By contrast, if two clusters seem to be fairly similar—that is, if states

are often a similar distance from both clusters (relative to their distance

from other clusters—say, within 10%)—then the two clusters can be merged

by placing all the states in the same cluster and recomputing the bit-

probabilities.

Learning with merging and splitting: Each time we change the number of

clusters, we have to update the relevant learned functions. We do this by

adjusting the weightings:

Chapter 3 A Bayesian model of partially observable multi-agent systems 71

P (action|cluster) =
∑

clusterupd

P (action|clusterupd)P (clusterupd|cluster)

and similarly for the transition function.

Note that we can compute P (clusterupd|cluster) straightforwardly by con-

sidering for every state in cluster its likelihood of occurring in clusterupd.

We can extend this model from binary clustering to n-ary features in one of two

ways:

• Convert n-ary features to binary features, so that v => (x1, ...xn) is

converted into the set of binary features {xj} corresponding to the bits in v.

• Use an n-ary model directly, so that instead of P (biti) representing presence

or absence of biti in the cluster, we have P (biti = xj) and for each cluster,
∑

j P (biti = xj |C) = 1.

If n-ary features are converted to binary features, then there will be correlations

between binary features: if a certain state is particularly common, then all of the

binary features associated with that state will be common. For example, consider

a 4-ary variable whose binary representation is (x, y) with the four values 0, 1, 2, 3

represented as (0, 0), (0, 1), (1, 0), (1, 1). If this variable commonly has the value

‘3’ (1, 1) and rarely has the value ‘2’ (1, 0), then we would generally expect to see

the binary variable x set to 1 only when the binary variable y is set to 1.

Furthermore, if the number of possible values for v is not a power of two, then some

binary feature combinations will be impossible. However, the statistical clustering

model does not exploit this correlation. This means that if we use binary features

we lose some information from the clustering model. We therefore choose to use

n-ary features, despite the slight additional complexity they bring to the model.

Now, when the state is fully observed, we can cluster over states straightforwardly

as described above. If the state is not fully observed, then we can extend the

Chapter 3 A Bayesian model of partially observable multi-agent systems 72

model to cluster over states using the beliefs we have about the states. However,

since we plan to use a policy approximation technique which will lead to policies

over observations rather than belief states, it is of more use to us to cluster the

observations: this will make the learned policies more compact. Below, we describe

how our work will adapt the model to cluster observations.

3.4.2.1 The partially observable state model

To recap, in this model we are aiming to use the clusters: (1) to correctly decide an

action for a new or rare observation based on the actions for similar observations;

(2) to make our models of the other agents more compact. Now, as discussed in

chapter 2, we will be using finite state machines to model the other agents. Thus,

our FSM models of the other agents are based entirely on observations rather than

underlying states, while our action decisions are based on these FSM models and

our (known) model of the world, using our observations to predict future states.

For the latter, using clusters rather than the observations would involve either

computing state probabilities from clusters, or calculating a transition function

from cluster to cluster. We believe that either of these would be unnecessary

effort, and instead focus on using clusters to create more effective FSM models.

Now, creating a FSM relies on having foreknowledge of the alphabet of the machine.

To this end, we propose to have a predetermined maximum number of clusters and

to identify the alphabet with cluster-numbers. Given a fixed set of clusters, we

proceed by assigning a new observation to a cluster and then adding to the FSM

as an example according to the finite state machine algorithm (which is described

in more detail in section 3.4.3). In more detail, we adjust the statistical cluster

operations as follows:

Merging clusters means joining together two arcs from the FSM and their

associated nodes. We create a new node whose action is the action associated

with the larger cluster, and label it as an action which can be superseded (details

of the FSM algorithm will be given in section 3.4.3), unless the actions in both

nodes were fixed actions and are the same.

Chapter 3 A Bayesian model of partially observable multi-agent systems 73

Splitting clusters means creating two arcs from one, each having an associated

node. We duplicate the node from the original arc, and label the actions on each

node as actions which can be superseded.

Now, a näıve clustering implementation will, for each new observation, compare

every variable in the observation with every variable in every cluster in order to

come up with a final choice of cluster. However, this näıve implementation can

become very slow for large numbers of clusters (in the order 103 — much lower

than the number of states).

However, we expect that some variables will be more important than others in

determining clusters—i.e. variable probabilities will have a large variation between

clusters. By investigating these variables first, we can immediately consider many

clusters to be unlikely. We therefore propose that rather than storing a list

of clusters with the details of each variable in each cluster, we store a list of

variables, ordered from most informative (lowest entropy) to least informative

(highest entropy), and for each variable we store the details of the clusters. Now,

heuristically, we will drop the least likely clusters after checking each variable—all

clusters which have a probability of less than cp% of the maximum. We have

experimented with some values of cp and found that the exact choice does not

make a big difference to the behaviour. Thus, we will (arbitrarily) set cp to 20%,

since dropping a fifth of the clusters seems like a reasonable balance between not

keeping irrelevant clusters and not disposing of too many clusters at once.

For this implementation, it becomes very convenient to use binary features. With

binary features, each feature variable can maintain the list of clusters with the

likelihood of observing the feature variable from high to low. We can convert an

n-ary variable to (log2n) binary features 3. Each of the binary features corresponds

to one bit in the binary representation of the variable’s value.

Now, given state clustering, the other major bottleneck in evaluating within the

partially observable state problem is the double summation over agent policies and

3if n is not a power of 2, then let n′ be the next power of 2 and we have log2n
′ features.

Chapter 3 A Bayesian model of partially observable multi-agent systems 74

agent beliefs (figure 6.1). We propose to address this bottleneck by approximating

agent policies with finite state machines. The next section describes this in detail.

3.4.3 Policy abstraction using finite state machines

As outlined in chapter 2, we will use finite state machines to model individual

agent policies in a multi-agent setting.

In this section we detail how to model agent policies using finite state automata

(3.4.3.1 and 3.4.3.2). We then explain how these models fit with the multi-

agent POMDP solution techniques described above, giving an algorithm for online

learning (3.4.3.3) and explaining how this model extends previous work in the area.

First, however, we begin with the definition of a finite state machine.

3.4.3.1 Definitions

A deterministic finite state machine has:

• A set of n nodes N = {n1, . . . nn}

• A set of m edges E = {e1, . . . en}

• For each node, an associated action a from the set of actions

• For each edge, an associated observation o from the set of observations

One of the nodes is designated as a start node, n0. We write Act(n) to refer to

the action associated with a node n.

An agent’s policy is determined by such a state machine (algorithm 2): at each

node (or agent state), the agent carries out the associated action. The resulting

observations determine the agent’s transition to a new node within the FSM.

Now, in order to use finite state machines as representations of agent policies in

unknown multi-agent scenarios, we are proposing to do two things: (1) to learn

Chapter 3 A Bayesian model of partially observable multi-agent systems 75

Algorithm 2 A finite state machine policy

• The agent begins at the start node n0.

• The agent performs the action associated with the current node n.

• When all agents have performed their action, the system moves to a new
state s, supplying agents with observations o.

• The agent moves along the edge associated with o, arriving at a new node
n′.

• Repeat.

the finite state machine models over time, from the sequence of observed actions

and state observations, and (2) to derive an online policy as a best response to

a set of (beliefs over) FSM policies. We describe each of these in turn, bringing

them together in section 3.4.3.3.

3.4.3.2 A polynomial FSM learning algorithm

In principle, learning a deterministic finite state machine from a set of observations

can proceed as follows (Carmel & Markovitch, 1996):

• Base case: initialise the FSM with the single node n0, setting the associated

action to the first observed action

• Recursion step: given a FSM and an observation string (i.e. a sequence

of observations), determine if the observation string is consistent with the

FSM:

1. Find a node whose action corresponds to the first action in the string:

if there are no untested nodes remaining, FAIL

2. Follow the FSM as prescribed by the observation sequence until (a)

the action associated with a particular node does not match the action

in the sequence: FAIL, return to 1 or (b) the end of the sequence is

reached: CONSISTENT

Chapter 3 A Bayesian model of partially observable multi-agent systems 76

If the observation string is consistent, then no further action need be taken.

If the observation string is inconsistent, then we select a node from one of

the failure points, and expand the FSM to include the new string.

Then, given a FSM and a particular (short-term) observation history, we can

construct a list of possible current nodes for the corresponding agent by considering

each of the starting points consistent with the observation history and following the

FSM through to a current node from each (abandoning any inconsistent nodes en

route). The probability of each resulting current node will be the total probability

of all start nodes which reached it, with that probability having been computed

in a previous step.

However, there are a number of difficulties in applying this algorithm within

our Bayesian POMDP model. Firstly, observation histories can be of indefinite

length, i.e. we may find ourselves storing the entire observation history in order to

accurately build the FSM. Secondly, although the FSM is a deterministic model,

the behaviour it is modelling may be neither deterministic nor static. Finally, we

do not in fact know the observation histories of others, but rather have probabilities

over them which are based on our own observations. We therefore wish to adjust

our learning strategy to take these facts into account.

To this end, we propose the detailed algorithm, algorithm 3, for learning the FSM

corresponding to agent j. The choices in this algorithm address the issues we

have identified, maintaining compactness of FSMs and emphasising recent events

in learning the FSMs, as follows:

Firstly, by defining a maximum number of nodes, we control the size of the learned

FSM, thus ensuring compactness. We must decide the maximum number of nodes

heuristically, in a domain-specific fashion, based on our beliefs about the problem.

Intuitively, the more historical context is required to make a decision, the more

nodes will be needed. Now, in a partially observable problem, this historical

context will include observations made long ago which correspond to the last time

we saw a particular agent or region. Therefore, in general, the larger the problem,

Chapter 3 A Bayesian model of partially observable multi-agent systems 77

Algorithm 3 An algorithm for learning a finite state machine from beliefs

1. Initially, determine a maximum number of nodes which can occur in the
FSM.

2. Run the environment for some time t

3. From our agent’s observations and resulting belief states over the t steps,
sample possible strings of t observations for agent j.

4. Using a sliding time window of length l, break these strings up into shorter
overlapping strings.

5. Calculate the probability of each length l observation string by considering
the probability of the individual observations:

P (oj|bi) =
∑

s

P (oj|s)P (s|bi)

and the frequency of the strings among those sampled.

6. Adjust the probabilities to give more weight to more recently sampled
observation strings

7. Add these observation strings to the finite state machine using the US-L*
algorithm, which we describe shortly, except:

8. Rather than resolve inconsistencies by creating new nodes, resolve
inconsistencies by appealing to the likelihood of each of the inconsistent
strings, and discarding the least likely.

the more context we will need and consequently the more nodes in our FSM. In

section 6.2.2.1 we experiment to find suitable FSM sizes for a problem from the

disaster response domain.

In fact, the length of this context is the second issue addressed above. By fixing the

length of possible observation strings we also limit the possible number of nodes in

the FSM: every unique node in the FSM is the terminus of at least one observation

string, and if there are ol observation strings over nobs possible observations, then

there are at most nol

obs such strings. In practice we will still want far fewer nodes

in the FSM than this theoretical maximum. In section 6.2.2.1 we experiment to

find appropriate history lengths for the same example problem.

Chapter 3 A Bayesian model of partially observable multi-agent systems 78

Having defined a maximum number of nodes, we then use probabilistic techniques

to resolve the problem of the same observation string corresponding to two different

actions. By weighting more recent observations more highly, we ensure that our

FSMs will adapt to changing circumstances as the scenario progresses.

Given these adaptations, we now describe in more detail an algorithm for learning

FSMs from observation strings. Now, finding the minimal FSM is NP-complete

and cannot be approximated by any polynomial-time algorithm (Carmel &

Markovitch, 1996). However, it is possible to learn reasonably compact FSMs

(i.e., without large numbers of redundant nodes) in polynomial time, for many

practical problems. For example, the US-L* algorithm (Carmel & Markovitch,

1996) has polynomial running time and has been shown to be effective at finding

compact models of agent behaviour on small agent coordination problems—it is

this algorithm which we modify as described above.

This algorithm models the FSM using a table, with rows corresponding to

observation string prefixes os, columns corresponding to string suffixes o, and the

table entries corresponding to actions a. The alphabet of possible observations

is O and the set of observation strings is OS. The table is then partitioned into

equivalence classes:

C(os) = row(os)|row(os′) = row(os)

The table must be constructed in such a way that it describes a FSM: that is, it

must be

• consistent: ∀os1, os2 ∈ OS, [C(os1) = C(os2) =⇒ ∀o ∈ O, C(os1o) =

C(os2o)].

• closed : ∀os ∈ OS.O, ∃os′ ∈ OS, os ∈ OS, C(os) ∈ C(os′)

From such a consistent and closed table a deterministic FSM can be described.

Specifically, US-L* marks entries in the table as either hole entries or permanent

entries. The former are those which can be reassigned as the algorithm tries to

Chapter 3 A Bayesian model of partially observable multi-agent systems 79

re-adjust the table for consistency. Only when no hole entries can be reassigned

is a new test added to the table. Permanent entries correspond to a fixed action.

The algorithm proceeds by:

• Take a set of observation strings

• Initialise the table so that all the prefixes of the observation strings have an

associated row in the table, and there is just one column with the empty

string.

• Fill in the table entries using the observations, marking entries as hole entries

if they are not supported by previous examples or permanent entries if they

are supported by previous examples. In order to bound the size of the

automaton, we specify a maximum number of times a hole entry can be

changed, basing the maximum on domain knowledge if it is available: the

maximum should depend on the dynamism in the system (since an entry

will change if the system is changing) and on the uncertainty in the system.

In our work, we may adjust the maximum over time using learned domain

knowledge.

• Adjust the table to make it consistent, adding new columns to the

table where necessary (adding a new column enables the separation of

one equivalence class into two—this adds at least one new state to the

corresponding automaton).

• Adjust the table to close it, adding new rows where necessary.

• Take the next set of observation strings and loop as appropriate

This algorithm is designed to be used as an online algorithm for an adaptive agent

to learn models of opponent behaviour, although Carmel and Markovitch only

apply it to repeated two-player games. We will be investigating its application

in our domain, specifying in advance a maximum size for the automata. Now,

in order to make use of these finite state machine models of agent behaviour,

Chapter 3 A Bayesian model of partially observable multi-agent systems 80

our agent (maintaining these models) must be able to find an optimal response to

what it believes to be the current situation. Referring back to our generic Bayesian

model, this means evaluating Q(b, a) for a belief state b which includes beliefs over

finite state machines.

3.4.3.3 An online learning algorithm

This brings us to a complete description of our algorithm, which brings together

several of the techniques described above. This is an algorithm implemented by a

single agent that is aiming to adaptively find a best response to the behaviour of

the other agents in the system. Our intent is that when all agents are implementing

this algorithm, adapting to each other, they should converge on a “good” solution

for the problem. This algorithm, as described below, maintains models of the

other agents in the form of finite state machines. These models are held in a belief

state which is updated using Bayesian learning. At each step, the agent computes

an approximate best response to the current models.

• An agent maintains a current belief state, b(X), with beliefs over the

variables X = (s, {o, F, n}) where s is the current state, and {o, F, n}

describes a set of triples: in each triple, o is an observation history and

(F, n) are the induced FSM and current node in the FSM. The belief state

contains one such triple for each other agent in the system. The agent also

maintains historical information about b(s) over a fixed number of steps.

• Several parameters are fixed initially: Fmax the maximum number of nodes

in any FSM , γ the myopia of the agent, nt the horizon length to use in

computing an approximate best response and ol the observation window

length. nt may be determined based on γ: roughly, for a state n steps into

the future, sn contributes γn.r(sn) towards the discounted future reward.

Thus with γ = 0.8 (a common myopia value), after 10 steps less than 10% of

the reward will be contributing towards the estimates of the future reward.

This may be a small enough value to ignore. If γ is increased to 0.9, then

Chapter 3 A Bayesian model of partially observable multi-agent systems 81

it will take 21 steps before the fraction of the reward under consideration is

reduced below 10%.

• initialise:

The belief state is initialised: b(s) is initialised either to uniform beliefs or

biased based on domain knowledge. The observation strings o are all empty,

and the F have a single node with uniform probabilities over all actions4

• at each step:

– The agent observes the actions of the others and makes observations

about the state: these observations are used to update b(s) using Bayes’

rule.

– The observation samples o are extended into the current time frame

to obtain o′, reweighting as appropriate. This is achieved by sampling

from the expected observations of the other agents, given the current

observation samples and b(s). When the length of an observation

string exceeds ol, the earliest observations are dropped. If a sample’s

likelihood falls below probability threshold ps, the sample is discarded,

and a new string sampled using b(s) and the stored history of b(s) over

ol previous steps.

– For each observation sample o′, update the FSMs F associated with

the sample with the new information in o′ using US-L*. The weighting

given to the FSM F is the probability of the associated observation

sample.

– For each sample FSM, compute an approximate best response, and thus

decide the maximum likelihood best response action a from the FSM

weightings as described previously.

– Perform the action a

– Repeat

4It would be possible to initialise with a more sophisticated set of F corresponding to shared
conventions relating to the domain, for example encapsulating the knowledge that agents will
run from a burning building. We leave that possibility to future work.

Chapter 3 A Bayesian model of partially observable multi-agent systems 82

To reduce computational requirements, rather than doing all of this every step,

we may prefer to collect behavioural samples over several steps and update our

model less frequently. The best response is still computed every step.

In the final part of this section, we identify some other efficiency improvements

which can be used in all models.

3.4.4 Efficient sampling techniques

In addition to the techniques described above which we have adapted for use in

our model, we propose to incorporate some standard techniques to improve the

efficiency of the algorithm. Although these techniques are not novel, we outline

them in this section and explain how they are applied within the new context of our

Bayesian POMDP model. Firstly, we explain the use of sparse priors to reduce the

necessary calculations, particularly when projecting forward several states (section

3.4.4.1). Then, we describe two ways to reduce the amount of sampling necessary

when sampling from a probability distribution: first by assuming that a point at

time t will be similar to that point at time t + 1 (section 3.4.4.2), and secondly by

focusing on sampling from regions of the space which are of particular interest to

us (section 3.4.4.3).

3.4.4.1 Sparse priors

We incorporate an idea due to (Dearden et al., 1999). Typically, even if we do not

know the transition function or the agent behaviours, we will have some idea that

specific transitions or behaviours are infeasible. However, we may not wish to rule

these transitions out completely. We can use a two-layered prior to describe this

situation (Dearden et al., 1999) (Friedman & Singer, 1999). With the two layered

prior, we (effectively):

1. Compute the probabilities as though the unlikely transitions were known to

have no probability

Chapter 3 A Bayesian model of partially observable multi-agent systems 83

2. Apply a scaling factor to all positive probabilities, and then distribute the

remaining probability among the infeasible outcomes

In more detail, for the fully observable case (due to (Friedman & Singer, 1999)),

• Letting O be the observation space, of size L, define a random variable X

that takes values from the power set of O, x ∈ X = (o1, o2, . . .).

• If D = D1 . . .Dk is our Dirichlet prior, we intend that Di > 0 ⇐⇒ i ∈ X

• Now, for multinomial functions with Dirichlet priors,

P (D|X) ∝
∏

i∈X

Dα−1
i

(
∑

i

Di = 1 and ∀i /∈ X, Di = 0)

and, for i ∈ X:

P (ok+1 = i|ok . . . o1, X) =
α + ni

|X|α + n

• However, we may not be certain about what the set of feasible outcomes, X,

should be. Let SX be a variable describing the size of X, with some prior

distribution P (SX = m). Then initialise all sets of the same cardinality with

the same probability,

P (X|SX = m) =

L

m

−1

• Then,

P (ok+1|o) =

α+ni

m0α+n
C(X, L) if i ∈ O0

1
n−m0 (1− C(X, L)) if i /∈ O0

in which

C(X, L) =

L
∑

m=m0

m0α + n

mα + n
P (m|X)

• Finally, we use some kind of smoothing when sampling.

Chapter 3 A Bayesian model of partially observable multi-agent systems 84

Specifically, in our work, D may be a parameter vector describing P (s′|s, a), with

Di corresponding to s′ = si, or it may describe P (a|s) with Di corresponding to

a = ai. Below, we also write P (s, a → s′) and P (s → a), which we find intuitive

for our system, in which we think of the state giving rise to the action, or the

action causing the transition. (This is not the same as the logical s =⇒ a arrow

and is not associated with implication).

However, we are investigating scenarios in which obs does not directly include

observing a, so that we cannot do the simple counting of occurrences described

there. Instead, for our work, we must adapt the algorithm to sum over all possible

counts, taking the likelihood of each count given previous data.

In more detail, letting hidden refer to either (s, a→ s′) or (s→ a) and o refer to

(s→ s′), we can say

P (ok+1 = i|o) =
∑

hidden

P (ok+1|hidden)P (hidden|o)

=
∑

j

P (ni = j|o) ∗

α+j
m0α+n

C(X, L) if i ∈ O0

1
n−m0 (1− C(X, L)) if i /∈ O0

Therefore, P (ni = j|o) simply refers to the appropriate multinomial induced by

the observation o.

Now, although the use of sparse priors can simplify our transition updates

considerably, we still need to sample when estimating integrals. The next two

sections explain the techniques of weighted sampling and sampling with repair

which make this sampling more efficient.

3.4.4.2 Weighted sampling

With the myopic-Q approximation, we have a recursive definition for the standard

RL Q-value. If we are estimating the integral using sampling, we must recompute

Chapter 3 A Bayesian model of partially observable multi-agent systems 85

this definition for every sample we take, at every step. This can lead to a bottleneck

in the computation.

However, if we already know Q for a given model θ, there is no need to recompute

it in future steps. Rather, we can use the same set of samples for each step.

When sampling, we associate a weight w with each sample value, corresponding

to the probability of that value given the model. When the model changes, we can

keep the same samples but adjusting these weightings according to the current

distribution (as described in (Dearden et al., 1999)).

In more detail, suppose we have estimated P (M |obs) for some model M and

observations obs, but in fact have observations obs′. Then we adjust the weights

associated with obs as

wobs′ = wobs
P (M |obs′)

P (M |obs)

Specifically, suppose that obs = obs1 . . . obsk and obs′ = obs1 . . . obsk◦obsk+1. Then

wobs′ = wobs
P (M |obs1 . . . obsk+1)

P (M |obs1 . . . obsk)

= wobs
P (obsk+1|M)

P (obsk+1|obs)

However, as the distributions update, the selected samples become less repre-

sentative of the update distributions. Thus it makes sense that every so often to

re-sample from the new distributions and hence to compute new Q-values. We will

define “every so often” using a heuristic based on the difference between the new

and the old values. If the values are very different, then our model has changed

significantly since we last sampled, and so we suppose that we should sample

more frequently; if the values are similar, we can sample less frequently. There are

several possibilities for selecting a heuristic corresponding to this insight. After

some experimentation we have found selecting the number of steps between two

Chapter 3 A Bayesian model of partially observable multi-agent systems 86

samples using log 1
scaled difference

to be satisfactory, where scaled difference refers

to the difference between the new and old values, scaled according to the current

expected reward. Other possibilities we tried included taking various powers of

the difference, not using the log, and using multiples of the inverted difference.

Now, weighted updates reduce the frequency with which it is necessary to sample a

particular value, using our beliefs about how much that value changes temporally.

In the next section, we consider a technique which both reduces the frequency with

which we sample particular values, using our beliefs about how interesting those

values are, and reduces the frequency with which it is necessary to sample other

values, using our beliefs about how the value compares with “nearby” values.

3.4.4.3 Sampling with repair

In more detail, consider that each time we want to find the Q-values for an MDP,

we have to compute the complete Q-table (because the computation is recursive).

We make two points:

• In practice, there may be many regions of the table that are not of much

interest to us and which do not have much effect on the regions of interest.

It is therefore not necessary to compute these parts of the table accurately.

• If two MDPs are fairly similar, then their Q-tables will also be similar. In

some cases, regions may be almost identical. Consequently, if we have two

MDPs built on estimated dynamics θ, and the estimates are similar, then

these MDPs will be similar.

This leads us to the idea (Dearden et al., 1999) of patching up the old Q-

tables rather than recomputing them from scratch every time we resample. The

prioritised sweeping technique used in standard reinforcement learning techniques

(Sutton & Barto, 1998) can be used for this. Prioritised sweeping is a variation

on the iterative solution method for MDPs. Consider:

Chapter 3 A Bayesian model of partially observable multi-agent systems 87

Qk+1(s, a)←
∑

s′

P (s, a→ s′)[r(s′) + γVk(s
′)

(with Vk(s) = maxa Qk(s, a)). A näıve iterative solution technique loops,

performing this computation over each state s in turn until the change between Qk

and Qk+1 is sufficiently small for all k. When there are a lot of states, it may not

be appropriate to compute accurate Q-values for every state, especially if many of

them are rarely reached. Prioritised sweeping aims to estimate which states are

most interesting, and update those most often.

For us, there are two points of interest: firstly, which Q-values have actually been

changed by the change in the MDP, and secondly, which states are currently of

interest to us. We propose to begin the patching up from the current state, which

we can generally assume will be of interest.

3.5 Summary

In this chapter we have outlined a theoretical model for the online solution of

partially observable multi-agent systems, based on the POMDP model. Our model

generalises a number of existing models (Dearden et al., 1999) (Chalkiadakis &

Boutilier, 2003) (Ross, Chaib-draa, & Pineau, 2008) (Emery-Montemerlo et al.,

2004). We have shown how to make use of Bayesian networks to aid visualisation of

various partially observable multi-agent systems, demonstrating their use as an aid

to finding factorisations of probability distributions in this context; in this chapter

we have not made use of the Bayesian networks beyond this visualisation tool,

however in section 8.3.4 we show that formulating our problem with graphical

models of this kind can allow us to lever powerful approximation tools for

calculating probability distributions.

We have then identified three approximation techniques which we can add to this

Bayesian POMDP model, and explained how we extend these techniques into

our model. The first technique we identified was finite horizon best response,

Chapter 3 A Bayesian model of partially observable multi-agent systems 88

a standard technique which we extended to calculate best responses over belief

states in a similar fashion to (Marecki et al., 2008). The second approximation

technique described is state abstraction using statistical clustering. In this vein,

we have (1) adapted this technique to perform efficient merging and splitting,

(2) extended it to learning scenarios, (3) extended it to cluster observations in

partially observable systems with finite state machine policies. Further, we suggest

a technique for efficient implementation of this clustering method. The final

approximation technique was policy abstraction using finite state machines. Based

on the offline algorithm of (Marecki et al., 2008), we have provided the first online

algorithm incorporating the learning of finite state machines in partially observable

scenarios, and described in detail how to learn compact FSMs in dynamic online

situations.

Finally, we have outlined three techniques due to (Dearden et al., 1999) which

improve the efficiency of sampling from probability distributions when calculating

belief updates or projecting forward during the best response calculation, and

detailed the adjustments which we have designed in order to apply the techniques

in our partially observable state model.

The sum of these contributions is to give a theoretical model for the online solution

of partially observable multi-agent systems and then show how we can approximate

this model in order to apply it to real-world problems. In order to demonstrate

the effectiveness of this model, we have implemented three specific subcases. In

the next chapter (chapter 4) we outline the problem we will use to test our models,

before going on in chapters 5, 6 and 7 to describe our results and how they compare

with the state of the art.

Chapter 4

The ambulance rescue problem

In order to test the algorithms outlined in the previous chapter on a challenging

problem from the disaster response domain, we implemented a rescue scenario

involving coordinating ambulances. Specifically, we consider the scenario from

Robocup Rescue1 in which there has been an earthquake in a region, causing

civilians who were in that region to be hurt and buried under rubble. Ambulance

teams enter the region and must coordinate to find and dig out the victims before

they die, taking into account the depth at which victims are buried (more deeply

buried victims will need more digging out) and the extent to which the victims

have been hurt (more badly hurt victims will die sooner if they are not rescued).

In the body of this chapter (section 4.1), we specify a simplified version of this

scenario as a multi-agent POMDP in the form of 3.2 and explain how we simplify

the observation space. We also explain some variations on the problem which we

used to investigate specific cases of our algorithm for which the initial formulation

problem was not appropriate.

1http://www.robocuprescue.org

89

http://www.robocuprescue.org

Chapter 4 The ambulance rescue problem 90

4.1 Model instantiation

In more detail, in the rescue problem we have an n by m gridworld. k agents

can move left, right, up or down (constrained, of course, at the edges of the grid),

or they can dig in their current location. In the gridworld are buried victims,

described by two parameters: D and R. D (‘deadness’) is a measure of the

proximity of the victim to death. When it reaches a maximum level the victim is

dead and subsequently ignored for the purposes of the rescue problem. R (‘rescue

needed’) is a measure of the depth at which the victim is believed to be buried.

Agents digging can reduce R. If R reaches 0 before the victim dies, then the victim

is assumed to be safe. The urgency of the victim therefore increases with increased

D and with increased R, unless R is sufficiently large compared with D that the

victim can be considered a lost cause. Figure 4.1 shows an example timestep on

a 4x4 grid with three agents. In the figure, the state at the current time t is

described by the 16 < D, R > pairs and by the square numbers corresponding to

the three agents, a0, a1, a2. The agent actions at time t are:

a0: Dig, a1: Move left, a2: Move right

After the actions have been carried out, the grid can be updated to show a new

state, adjusting the agent locations and the < D, R > values. The observations of

individual agents are not shown on this grid. Keeping this example in mind, we

now describe more precisely the instantiation of the model in section 3.2:

Agents: We assume that the number of agents, k, is fixed throughout each

problem (although we will modify this assumption in chapter 7) and known

to each agent. In figure 4.1, the set of agents is

{a0, a1, a2}

States: A state of this world is described by using a pair of variables < D, R > for

each of the grid squares, characterising the D and R values in the square (we

Chapter 4 The ambulance rescue problem 91

Figure 4.1: One step of the rescue problem on a 4x4 grid with three agents

make the simplifying assumption that there can be at most one victim in the

square), and a variable for each agent, identifying its current square. We use

ld and lr discrete levels to describe D and R, so for each square there are ldlr

possible states, and for each agent there are mn possible states. This means

that the state can be described by a total of mn + k characters, where the

first mn characters have ldlr possible values and the last k characters have mn

possible values, making a total of (ldlr)
mn ∗ (mn)k possible states. Thus, the

number of states is exponential in the size of the grid and in the number of

agents. In the example in figure 4.1, there are 1616 ∗163 = 7.55578637×1022

possible states, and the current state is

[0 :< 0, 0 >, 1 :< 0, 0 >, 2 :< 0, 0 >, 3 :< 0, 0 >, 4 :< 0, 0 >, 5 :< 3, 2 > . . .

. . . a0 : 5, a1 : 6, a2 : 12]

Locations: The location variable for each agent is its current square. Thus, for

our example, the subset of the state describing the locations is L = [a0 :

5, a1 : 6, a2 : 12].

Chapter 4 The ambulance rescue problem 92

Actions: Agents may take Move actions (left, right, up or down), or Dig actions

in their current square. This results in five possible actions per agent (we do

not admit “null” actions):

A = {Dig, Move left, Move right, Move up, Move down}

Consequently, there are k5 joint actions: 125 joint actions in the example.

Assuming the agent ordering [a0, a1, a2], the immediate joint action is a =

[Dig, Move left, Move right].

Observations: An agent observes some subset of the state variables, so there

is one observation variable for each state variable. The values taken on

by observation variables are those of the corresponding state variable, plus

“null”, when no observation has been made. Consequently, there are ((ld +

1)(lr+1))(mn)∗(mn+1)k possible observations, 2516∗317 = 1.14389695×1026

in our 4x4 example.

Transition function: We can consider each of the independent state variables

in turn.

• Agent location Each agent’s location depends only on its own action,

and only on its previous location: P (Li,t+1 = x|a, st) = P (Li,t+1 =

x|ai ∈ a, Li,t). In this problem, Move actions are deterministic, and

move the agent one square in the requested direction. If this is

impossible because the agent is at the edge of the grid, the action has

no effect. Dig actions leave the location unchanged.

• Deadness in a square with a victim Each square j transitions

(Dj , Rj) independently of other squares, so it is sufficient to define the

transition function for one square. We use a global probability, pd, to

specify the probability of D increasing: this is a constant probability

independent of the action: P (Dj,t+1 = x + 1|Dj,t = x) = pd.

• Depth in a square with a victim The R level reduces only if there

is a Dig action. We assume that if there are nd(j) digs in square j in

Chapter 4 The ambulance rescue problem 93

the joint action, they are carried out one after another. nd is a vector

function of the state and the joint action (the action specifies which,

if any, of the agents are digging, and the state specifies which square

these are agents are in). With each of the nd(j) digs, the square depth

(Rj) is reduced by 1 with probability pr, with a minimum Rj value of

0.

P (Rj,t+1 = x− 1|Rj,t = x, nd(j) = 1) = pr

P (Rj,t+1 = x− x′|Rj,t = x, nd(j) = r) =

(1− pr) ∗ P (Rj,t+1 = x− x′|Rj,t = x, nd(j) = r − 1)

+ pr ∗ P (Rj,t+1 = x− x′ + 1|Rj,t = x, nd(j) = r − 1) (where nd(j) > 1)

• Deadness and depth when an agent dies or is rescued After the

joint action has been applied in a square j, we carry out a “tidying up”

operation on the (Dj, Rj) settings. If the square’s Rj value has reached

zero, then it is assumed that a victim has been rescued from the square.

This victim is no longer of interest to us and Dj and Rj are reset to 0.

Otherwise, if the square’s Dj value has exceeded the maximum health

level then it is assumed a victim has died in the square. This victim

is again no longer of interest to us and Dj and Rj are reset to 0. This

means that the equations in the above two items must be adjusted

slightly. Let P (resetj,t) be the probability that square j is reset during

this “tidying” phase at time t, with

P (resetj,t+1) = P (Rj,t+1 = 0) + P (Dj,t+1 > ld)

then

P (Dj,t+1 = x) = (1− P (resetj,t+1))P (Dj,t+1 = x) where x 6= ld

P (Dj,t+1 = 0) = P (resetj,t+1)

P (Rj,t+1 = x) = (1− P (resetj,t+1))P (Rj,t+1 = x) where x 6= 0

P (Rj,t+1 = 0) = P (resetj,t+1)

Chapter 4 The ambulance rescue problem 94

• Deadness and depth in an empty square Finally, if a square j is

empty at the beginning of the time step, we use a further parameter,

pa, to define the probability that a victim will appear in that square.

If a victim does appear, the (Dj, Rj) levels it has are determined with

uniform probability (greater than 0) .We define a temporary binary

variable, aj, to determine whether or not a new victim appears in the

square j. Then,

P (Dj,t+1 = x|Dj,t = Rj,t = 0, aj = 1) = 1
(ld−1)

(Where x = 1, 2, . . . ld)

P (Rj,t+1 = x|Dj,t = Rj,t = 0, aj = 1) = 1
(lr−1)

(Where x = 1, 2, . . . lr)

P (Dj,t+1 = 0|Dj,t = Rj,t = 0, aj = 0) = P (Rj,t+1 = 0|Dj,t = Rj,t = 0, aj = 0) = 1

We can apply these functions to the example in figure 4.1, with victims in

three squares, [2 :< 1, 1 >, 5 :< 3, 2 >, 15 :< 4, 1 >] and the joint action

[a0 : Dig, a1 : Move left, a2 : Move right], as follows:

• Agent locations Agent a0 will remain in place: P (L0,t+1 = 5) = 1.

Agents a1 and a2 will each move one square: P (L1,t+1 = 5) = 1,

P (L2,t+1 = 13) = 1.

• Deadness in squares with victims Squares 2, 5 and 15 contain

victims. Note that if the deadness in square 15, D15, increases, both

D15 and R15 will be set to 0. Also, if the depth in square 2 decreases

(impossible as there is no agent digging there) then D2 and R2 will be

set to 0. (We do not show P (resetj) for the squares where it neither

Dj nor Rj is one step away from resetting, making P (resetj) trivially

zero):

P (D2,t+1 = 2) = (1− P (reset2,t+1))pd, P (D2,t+1 = 1) = (1− P (reset2,t+1))(1− pd)

P (D5,t+1 = 3) = pd, P (D5,t+1 = 2) = (1− pd)

P (D15,t+1) = 0) = P (D15,t+1 = 5) = pd, P (D15 = 4) = (1− pd)

(where P (reset2,t+1|a) = P (R2,t+1 = 0|a))

• Depth in squares with victims We extract the Dig information from

the actions for each square: nd(2) = 0, nd(5) = 1, nd(15) = 0. Then,

Chapter 4 The ambulance rescue problem 95

P (R2,t+1 = 0|nd(2) = 0) = 0, P (R2,t+1 = 1|nd(2) = 0) = 1)

P (R5,t+1 = 2|nd(5) = 1) = 1− pr, P (R5,t+1 = 1|nd(5) = 1) = pr

P (R15,t+1 = 0|nd(2) = 0) = P (reset15,t+1), P (R15,t+1 = 1|nd(2) = 0) = 1− P (reset15,t+1)

(where P (reset15,t+1) = P (D15,t+1 = 0))

• Deadness and depth in squares with no victims All the remaining

squares with state values < 0, 0 > have the same functions. We define

a temporary binary variable, aj , to determine whether or not a new

victim appears in the square j. Then, using our settings of ld = lr = 4,

P (aj,t+1 = 1) = pa, P (at+1 = 0) = 1− pa

P (Rj,t+1 = 0|aj,t+1 = 0) = P (Dj,t+1 = 0|aj,t+1 = 0) = 1

P (Rj,t+1 = x|aj,t+1 = 1) = P (Dj,t+1 = x|aj,t+1 = 1) = 1/4 where x = 1, 2, 3, 4

Observation function: Agents are able to see the squares (deadness, depth, and

any other agents in the square) to the left, the right, above and below them,

as well as their own square. Since all agent actions are fully observable,

we assume that we can also observe all agent locations. We can consider

this analogous to supposing that all the agents have radios, but no time

to communicate more than their own position. Additionally, we define a

problem-specific parameter, v, for the visibility. For every other square, the

agent will be able to see the agent-deadness D in that square with probability

v and the depth R in the square with independent probability v. This

‘visibility’ parameter could be justified as some level of communication with

a centralised observer, say a helicopter viewing the scene. We assume no error

in the observation: either a variable is completely and correctly observed or

it is not observed at all. In section 8.3.5 we will explain how the model can

be extended to permit error-prone observations.

Thus, in example 4.1, consider agent a0: he observes the positions of every

other agent: [a0 : 5, a1 : 6, a2 : 12]. a0 also observes completely squares 1,

4, 5, 6, 9: [1 :< 0, 0 >, 4 :< 0, 0 >, 5 :< 3, 2 >, 6 :< 0, 0 >, 9 :< 0, 0 >]. For

any other square j with values < Dj , Rj >, a0 observes j :< null, null >

Chapter 4 The ambulance rescue problem 96

Figure 4.2: One agent’s view of the situation shown in figure 4.1

with probability 1 − v and j :< Dj , Rj > with probability v. Similarly, a1

observes [a0 : 5, a1 : 6, a2 : 12, 2 :< 1, 1 >, 5 :< 3, 2 >, 6 :< 0, 0 >, 7 :< 0, 0 >

, 10 :< 0, 0 >] and all other squares with probability v. Finally, a2 observes

[a0 : 5, a1 : 6, a2 : 12, 8 :< 0, 0 >, 12 :< 0, 0 >, 13 :< 0, 0 >].

Figure 4.2 shows a possible view for agent a0 when v = 0.3. The yellow

stars represent the squares which are observed completely, because they are

near to the agent. The orange stars represent squares which on this occasion

have become visible as a result of the global visibility parameter: note in

particular that neither square 2 nor square 15 and their victims are visible

to the agent. Finally, the small yellow star by agent a2 indicates that it is

visible as all agent locations are visible.

Reward function: The reward function is a function of both the previous state

and the current state. For each square, if a victim disappears because

they have died, then the reward is decremented by one point. If a victim

disappears because they have been saved, then there is no change to the

Chapter 4 The ambulance rescue problem 97

reward. Consequently, for this problem rewards will always be less than or

equal to 0.

In example 4.1, there are two victims which may change status between

the timestep shown and the next timestep: the victim in square 2 may be

rescued (although as we have shown this is actually impossible because there

is no agent present), and the victim in square 15 may die. Of these, only the

victim in square 15 can affect the reward. We have stated that this victim

will die with probability pd. If it does, then the reward for the timestep will

be −1; otherwise, the reward will be zero.

The above definitions allow us to define beliefs over the values (D, R) of a square

(and thus over the state, since locations are observable), and beliefs over the

observations of other agents, given their locations:

Agent locations: We are certain for all squares how many rescue agents they

contain / for all agents where they are located

The square is observed: We are certain of both its parameters

The square is not observed and has not been observed for ti timesteps:

P (xt = vt|xt−i = vt−i) =
∑

v

P (xt = vt|xt−1 = v)P (xt−1 = v|xt−1 = vt−i)

where the 1-timestep probabilities depend on pd, pr, pa as appropriate, and

the dig observations in that square.

The square has never been observed: This is just as above, but with P (x0 =

v0) set to the problem-specific prior probabilities. Here, we assume that all

squares are empty to begin with.

Given these equations, and using its environment model, our agent can calculate

probabilities (beliefs) for each of the state variables. In all of our experiments, we

assume that the agent knows the environment model, which is the model described

Chapter 4 The ambulance rescue problem 98

on the previous pages. These probabilities form our agent’s belief state: that is,

the beliefs about the D and R values of the squares and the locations of the other

agents. Similarly, we must define our beliefs about the observations of the other

agents. Just as our beliefs about the state of each square are multinomial, the

other agents’ beliefs about the state of the square will be multinomial. Therefore,

in the full POMDP model, our beliefs about other agents’ beliefs over the state

of the square would take on corresponding Dirichlet distributions. However, we

are not trying to maintain beliefs about the other agents’ belief states, only about

their observations. Now, our own beliefs about the state of the square define

exactly what we believe other agents will see if they see that square, as the

observation function is deterministic and consistent for all agents. Because we

know the location of the agent, we know of the (up to) four surrounding squares it

definitely sees. Finally, we know that there is a v probability it will see any other

square.

Now, the problem described above is used as given for experiments involving

partially observable states. However, we modify the problem slightly in order

to investigate specific aspects of our general model. Specifically, problems where

it is the actions rather than the states which are partially observed, which

are investigated in chapter 5, and problems which are dynamic or open, which

are investigated in chapter 7. In order to handle these cases, we make slight

modifications to the problem.

Firstly, three modifications apply when actions are partially observable:

Removing agent locations from the state. Although the agent locations are

a part of the state, in one subproblem we choose to treat them separately,

making them only partially observable while the state remains full observ-

able. Technically, this is a partially observable state problem. However,

providing the actions are deterministic, deductions about the agent locations,

depend only on the agents’ choice of actions.

Uncertain actions. As described in example 10, we add some uncertainty to the

outcome of an action: with probability mp, the intended action is carried

Chapter 4 The ambulance rescue problem 99

out, while with probability (1 −mp)/4, a random action (selected from all

five possibilities including the intended action) is carried out. That is, an

agent intending to move (such as a1 and a2 in the example in figure 4.1)

may find himself moving in the wrong direction, or shuffling on the spot and

inadvertently digging. Similarly, an agent intending to dig (such as a0 in the

example in figure 4.1) may unexpectedly slip into a nearby square without

digging.

Penalising actions. In order to investigate how agents can use the reward

function to make inferences about actions, we adapt the problem in such

a way that the choice of action affects the reward directly. In this adapted

problem, we give moves a cost of 0.1 points, representing the fact that each

move uses up some of an agent’s resources. We also penalise Digs which take

place in an empty square, giving them a cost of 0.5 (Digs in a square with

a victim incur no cost). These penalties are applied to the intended action,

not the outcome, forming an analogy with the effort the agent must put into

the action.

Consider the example in figure 4.1 in the light of such a penalising function,

with a visibility parameter of 0: agents a1 and a2 will each incur a cost of

0.1, so that the total reward for the step is −0.2 if the victim in square 15

survives, and −1.2 if the victim in square 15 dies. Every agent will observe

this reward and consequently deduce that two move actions were made (since

no other combination of actions could cause this fractional reward) and one

Dig action. a0 and a1 can observe each other and so will both know that a0

carried out the Dig action and therefore a2 made a move action (although

not in which direction). a2 which cannot observe either of the other agents

can update beliefs about the agents—for example, if a2 has observed square

5 recently and seen the victim there, then they may believe that an agent

in square 5 is likely to dig. Furthermore, if a2 can see square 6, they will

know that the agent in square 6 did not Dig, or they would have incurred

the penalty.

Chapter 4 The ambulance rescue problem 100

Now, the above discussion assumed that all actions were successful, but if

the action penalties are combined with action uncertainties, then a0, who

performed the Dig, will know that a1 and a2 both intended move actions,

and will know whether a1 achieved a move. However, a1 will no longer be

certain whether a0 intended a Dig or a Move. Consequently, a1 will have to

update his behaviour models for each agent assuming that a0 intended a Dig

with probability mp and a Move with probability (1−mp), and vice versa for

a2. In general, agents will not be able to make such precise deductions about

the intended actions of others and will have to apply similar probabilistic

rules for many of the others when learning about their behaviour.

Secondly, as well as partially observable actions, we will be investigating our

model in the context of dynamic environments, and open environments. In the

problem described above and depicted in figure 4.1, we have not explained how

such environments are included.

In more detail, dynamism occurs when the environment changes during the

course of the problem. In the ambulance problem, the change may be to the

value of any one of the parameters. Here, however, we will investigate dynamism

in the arrival rate and death rate parameters; and in the move penalty value.

Openness refers to agents appearing or disappearing during the course of the

problem. In chapter 7 where we experiment in such environments, we explain how

to implement dynamism and openness without changing the problem structure.

To investigate dynamism, we will change problem parameters such as pr or pa at a

timestep t. We assume the other agents know about all changes. The belief state

at time t forms the prior for the belief state at time t + 1, but the belief updates

at t + 1 use the new parameters. No further changes are necessary. To investigate

openness, we will introduce or remove agents after some number of steps. Again,

all agents in the system know about the changes instantly. When new agents are

added to the system, they will be placed in the same initial location at square

0. New state and observation variables must be added describing the locations of

Chapter 4 The ambulance rescue problem 101

every new agent. When agents are removed from the system, the corresponding

state and observation variables must be removed from the state.

4.2 Summary

In this chapter we have introduced a scenario from the disaster response domain

and shown in detail how to describe this problem in terms of the model in section

3.2. We have illustrated the description with a specific example. Finally, we

have explained how to adjust the problem in order to experiment on some specific

variants of our model. In the following chapters, we use the problem we have

described to evaluate our model, beginning with the simplest case: the case in

which the state is fully observed, so that no inferences about other agents’ beliefs

are necessary, but actions are not fully observed.

Chapter 5

Coordination in the presence of

partially observable actions

In this chapter, we evaluate the model of chapter 3 for the specific case in which

the state and the transition function are known, but the actions of other agents are

only partially observable and their behaviour policies are unknown. By so doing,

we substantiate the claim in section 1.4 that we are the first to consider explicit

models of the other agents in a partially observable Bayesian environment. We

also show that doing so is better than a handwritten state-of-the-art strategy for

the same problem.

In more detail, the first part of the chapter (section 5.1) explains how the model in

chapter 3 specialises to this case, detailing the update and best response equations.

The second and third parts of the chapter evaluate the model on the ambulance

problem of chapter 4, first for the problem in which all agents share a global reward

based on the number of lives saved (section 5.2), and second on the problem variant

in which the global reward includes an aggregated cost of the agents’ moves (section

5.3). The first, simpler case will substantiate our claim, showing that explicitly

considering the other agents results in a successful strategy. The second allows

us to investigate our model in more depth, substantiating the assertion in section

2.2.2 that such model-based learning algorithms provide flexibility over model-free

102

Chapter 5 Coordination in the presence of partially observable actions 103

learning algorithms—model-free algorithms would not be able to make inferences

from the reward at all.

5.1 Evaluating the general model with partially

observable actions

We consider the case where an agent knows the environmental dynamics (the

transition and reward functions), and is able to observe the state, but cannot

see the actions of every other agent. He may be able to see the actions of some

agents locally (as in the Tamptono example 1 when two ambulances pass one

another or arrive at the same location). For the other agents in the system, he

will have to make deductions about the actions based on the state changes (for

example, in Tamptono, when the agent hears that the body count has increased, he

may assume that one of the other agents has been searching). To keep the model

straightforward, we do not consider the case where the agent is able to make direct

observations about the actions of those he can’t see (such as the flying rubble in

example 13). Adding this case would not change our model substantially, but

would add an extra layer of evaluation complexity.

In terms of the model described in section 3.2—specifically, the nodes in the grand

MDP diagram (figure 3.6), we assume that: s is observed, the aj are not directly

observed, θ is known and the πj are not known (although the number of agents is

known). Figure 5.1 shows the Bayes network for this case.

The best response for this network is calculated using the same Q-calculation as

before (equation 2.6 in section 2.3):

Q(ai, b) =
∑

a−i

P (a−i|b)
∑

s′

P (s′|ai ◦a−i, b)
∑

r

P (r|s′, ai ◦a−i, b)[r + γV (b < s,a, r, s′ >)]

(5.1)

Chapter 5 Coordination in the presence of partially observable actions 104

s

ai

oa

πj

aj θ

s′, r

Figure 5.1: Partially observable actions: Bayes network

This is the basic Bellman equation, extended with the explicit joint action

probabilities. P (s|·) and P (r|·) are taken straight from the transition and reward

functions. P (a−i|b) refers to the joint strategy of the other agents. Since the

agents make their decisions independently, we can factorise this probability into

Πj 6=iP (aj|b)

where

P (aj|b) =

∫

πj

P (aj|πj)P (πj|b)

Finally, we use figure 5.1 as described in section 3.3, to obtain the belief update

equations:

P (πj|obs) ∝ P (πj)
∑

aj

P (s′, r|s, θ, ai ◦ aj)P (oa|aj)P (aj|s, πj)

P (aj |obs) ∝ P (s′, r|s, θ, ai ◦ aj)P (oa|aj)

∫

πj

P (aj|s, πj)P (πj)

In the next section, we discuss how these various values can be computed.

Chapter 5 Coordination in the presence of partially observable actions 105

5.1.1 Performing the updates

This section discusses the implementation of the equations given above. Now, in

the models we have been considering, we assume that states and actions are all

discrete1. Consequently, the distributions can be described using a multinomial

distribution; the multinomial distribution has the Dirichlet distribution as its

conjugate prior.

Specifically, letting a be a joint action, consider P (a|s)2 to be a weighted n-sided

die (with a different die corresponding to each state s). A particular weighting

is defined by a multinomial distribution with parameter vector W = w1 . . . wn.

We aim to learn the weightings of the die, maintaining at all times the likelihood

of every possible weighting W . The probability of a particular weighting W is

described by an n-dimensional Dirichlet distribution with parameter vector α =

α1 . . . αn. After each throw of the die, the Dirichlet distribution is updated based

on the observed outcome, using Bayes’ rule:

P (W = w|obs) = zP (obs|W = w)P (W = w)

(z is a normalising constant), where P (W = v) has distribution Dir(α). Letting ni

be the number of times i was observed in a sequence of observations obs1 . . . obsk,

P (W = v|obs1 . . . obsk) ∝ P (obs1 . . . obsk|W = v)P (W = v)

= z1

∏

i

vni

i z2

∏

i

vαi−1
i

= z1z2

∏

i

vni+αi−1
i

1In general, problems with continuous states or actions could be approximated using
discretization techniques (such as those discussed in section 2.4.1), and thus the same model
used. However, depending on the specific continuous probability distributions controlling the
transition functions, using the continuous distribution directly may be more appropriate. We do
not discuss such an implementation in this thesis, although some pointers to recent work with
learning in continuous environments are provided in section 8.3.5

2As before, we may write this as P (s→ a).

Chapter 5 Coordination in the presence of partially observable actions 106

i.e. the posterior probability of a particular weighting has a Dirichlet distribution

with parameters α′
i = αi +ni where ni is the number of times i has been observed.

Similarly, we can consider P (s′|s, a) to be a particular weighted die and estimate

its weighting accordingly. In exactly the same way, we can use a multinomial

distribution with Dirichlet priors and posteriors over the multinomial to learn the

weightings on the dies.

Now, when we cannot observe specific actions but we know the weightings on the

P (s, a → s′) die, and have some estimator for the distribution of P (s → a), we

aim to gradually update the latter estimator through observation. Since P (s→ a)

and P (s, a → s′) remain multinomial, given Dirichlet priors we should still have

Dirichlet posteriors. We return to the dice analogy to explore this in more depth.

Consider again P (s→ a). Rather than trying to estimate the die weightings from

observing the faces, suppose that there is a second row of dice, each of which has

an unknown weighting. The first roll (s → a) triggers one of the second dice to

be rolled (s, a → s′), and it is the face on this (s′) that we observe. From our

knowledge of the weightings on the second row of dice, we try and determine which

one was rolled, and hence which face the first die landed on.

In detail, let π = π1, π2, . . . be the weight vector for the multinomial distribution

P (s→ a) and Tf the weight vector for the multinomial P (s, a→ s′). We observe

the system transitioning from s to s′ (or we observe the result of the second die

roll), and from this observation (s→ s′) we try and infer the action a (or the first

die roll), and the weight vector π determining this action choice (or die). We can

apply Bayes’ rule :

P (π|s→ s′) ∝ P (s→ s′|π)P (π) (5.2)

P (a|s→ s′) ∝ P (s→ s′|a)P (a) (5.3)

where P (s→ s′|π) =
∑

a P (s→ a|π)P (s, a→ s′)

and P (a) =
∫

π
P (s→ a|π)P (π)

Chapter 5 Coordination in the presence of partially observable actions 107

This completes the update step, providing the agent with the belief states which

it will use in evaluating equation 5.1 to decide the best response to the immediate

state, given its beliefs about the other agents’ strategies. We now turn to the

evaluation of this equation.

5.1.2 Best response computation

The second part of the stepwise algorithm is the computation of the Q-values at

each step. We compute the value Q(a|b) for every single-agent action a, given

our current belief state: the belief state describes our beliefs about the action

weightings π, as well as holding our state and action observations.

Given a specific, known model, θ = (π, Tf), we can estimate the value of each

action as:

Q(a|s, θ) =
∑

aj

P (aj|θ)Q(a ◦ aj |s, θ) (5.4)

=
∑

aj

P (aj|θ)
∑

s′

P (s′|a ◦ aj , s, θ)[r(s
′) + γV (s′)] (5.5)

where aj refer to the actions of the other participants in the system, and V (s) =

maxa Q(s, a)

For the Bayesian system, referring to equation 5.1, we modify this as:

Q(a|s, b) =
∑

aj

P (aj|b)Q(a ◦ aj |s, b) (5.6)

=
∑

aj

P (aj|b)
∑

s′

P (s′|a ◦ aj , s, b)[r(s
′) + γV (b′)] (5.7)

Chapter 5 Coordination in the presence of partially observable actions 108

In which,

P (aj|b) =

∫

π

P (aj|s, π)P (π)

V (b′) = max
a

Q(a|b′) (note the recursion in this definition)

where b′ takes into account how the beliefs for θ would be updated if aj and s′ were

observed. Now, neither P (aj|b) nor Q(a|b′) can generally be calculated precisely,

the former because it is an infinite sum and the latter because it may project

infinitely many steps into the future: with each step, the agent can reach a new

belief state. Now, P (aj|b) can be estimated to any required accuracy by sampling,

using the techniques described in section 3.4.4. Similarly, providing γ < 1, with

each step projected into the future, the contribution of Q(a|b′) from that step to

the current Q calculation is reduced. Consequently, we can estimate Q(a|b) to the

required accuracy using the finite horizon technique described in section 3.4.1.

In conclusion, considering the three-step algorithm in section 3.2 (algorithm 1),

the agent i initialises its belief state with uniform beliefs over the other agents’

strategies, and then at each timestep carries out the following three steps:

1. Observe: the state transition s→ s′ 3

2. Update (z is a normalising constant):

P (π|s→ s′) = z
∑

a

P (s→ a|π)P (π)

P (a|s→ s′)zP (s→ s′|a)

∫

π

P (s→ a|π)P (π)

3. For some k compute a k-step best response, maxa Q(a|bk), using

Q(a|b0) = 0

Q(a|bk) =
∑

a−i

P (a|bk)
∑

s′

P (s′|a, s, bk)[r(s
′) + γV (bk−1)

3This can also be seen as observing the current state s′ while maintaining a history of one
previous state.

Chapter 5 Coordination in the presence of partially observable actions 109

s′, r

s

ai

oa

πj

aj

s′

θ

r

(a) Reward based on state

s′, rai

oa

πj

aj

s′

s

θ

r

(b) Reward based on transition

s′, r

s

oa

πj

aj

s′

ai θ

r

(c) Reward based on action

Figure 5.2: Bayesian network diagrams for different reward cases of the same
transition function, in a scenario with observable states and partially observable

actions

(where V (bk−1) = maxa Q(a|bk−1))

Now, in this description, we have not mentioned the rewards. If the system

is cooperative, so that all agents see the same rewards, then the rewards can

be considered part of the global state. However, in some scenarios, an agent’s

individual reward may be unique to that agent—for example, in problems where

moving vehicles are penalised as they use up fuel. In the next section we discuss

such scenarios in more detail.

5.1.3 Exploiting reward structure

It is possible to think of rewards as being a consequence of:

• The immediate state: for example, the number of rescued civilians in a

disaster (figure 5.2(a))

Chapter 5 Coordination in the presence of partially observable actions 110

• The transition from state to state: for example, a reward may be assigned

based on the change in the number of rescued or dead civilians in a disaster,

rather than the total figure, so as to permit comparisons between disasters

with different initial death tolls (figure 5.2(b)).

• The action performed by an agent: for example, a movement may be

penalised as having a cost, or an agent may be rewarded for effort even

if nothing comes of it (figure 5.2(c)). A common use for this style of rewards

is to simplify the necessary agent inference. For example, an agent’s need

for fuel could be built into the first reward type by including the agent’s

fuel levels in the state, adjusting the transition function so that a “move”

action failed if fuel levels were low, and providing a “refill” action available

at certain “pump” locations. However, to maintain a simpler model we can

penalise each of the agent’s “move” actions a small amount, indicating to

the agent that moving has some cost without requiring the agent to include

a refuelling strategy. In this case, either each agent’s actions may contribute

to a global reward, or each agent may receive a distinct individual reward.

or of any combination of the above. In the problem described in the bulk of

section 4.1, the reward is notionally based on the current state (number of bodies,

number of survivors). However, in the implementation given, dead civilians and

rescued civilians are “tidied away”. Therefore, the implementation must assign

its rewards based on the changes between two states. In the variant problem

described at the end of section 4.1, some reward is assigned based on the changes

between two states. Additionally, each agent’s actions contribute to a globally

observed reward.

In the next two sections, we will evaluate our algorithm on each of the two variants

of the problem: firstly, we use the problem without actions contributing to rewards,

which is both simpler and more intuitively related to the real scenario. This is the

variant of the problem which will be investigated in later chapters. Secondly, we

evaluate the algorithm using the variant of the problem with actions contributing

to rewards, in order to demonstrate that by making use of the extra information

Chapter 5 Coordination in the presence of partially observable actions 111

which can be inferred about the others’ actions, the agent is able to improve its

own strategy, thus providing further insight into the Bayesian model.

5.2 Ambulance rescue with partially observable

actions

Many disaster scenarios have the property that any one agent has limited visibility

of the other agents, but still needs to coordinate with them. Here, we investigate

the ambulance rescue problem described in chapter 4. In this instantiation of

the ambulance rescue problem, the visibility parameter v is used to describe the

visibility of the other agents: our agent can see any agents on neighbouring squares,

and on average a fraction v of any more distant agents. Furthermore, agents have

some uncertainty over Move actions as well as Dig actions—although an agent

will move in the direction it intended with probability pm, it may move in another

direction or in no direction at all with probability (1 − pm)/4. This means that

even when we observe the locations of other agents, we cannot be certain about

what action they have taken. We begin by describing our experimental setup in

detail in section 5.2.1. Section 5.2.2 then gives our results.

5.2.1 Experimental setup

In particular, we pay attention to the following system parameters:

Sample size In our partially observable action model, it is necessary to estimate

an integral (over all models for the strategies). We chose to do this by taking

sample size samples from possible strategies, and evaluating best responses

over all possible combinations of these.

Number of agents We believe that the effects of using our explicitly multi-agent

model over a single agent model should become more marked as the number

of agents increases. However, for this problem the number of states, hence

Chapter 5 Coordination in the presence of partially observable actions 112

the computational complexity, increases exponentially with the number of

agents, making it infeasible for us to test on many agents.

Move randomness We investigated different values for pm between 0.1 and 1.0.

When varying the sample size, we fixed pm at 0.7, as a middle ground with

some randomness but not so much that nothing can be learned.

Other parameters Finally, we set γ, the agents’ myopia, to be 0.75. This means

that they allocate only a quarter of the original importance to states five steps

in the future, and by ten steps the contribution of new states is negligible.

Model parameters: Following experimentation, we fix the following parame-

ters: ld = lr = 5, pd = 0.15, pr = 0.4, pa = 0.05, v = 1. In particular, we felt

that the choice of five health and burial levels was sufficient to make the problem

interesting without making the state space too huge. The other parameters were

selected to generate scenarios requiring cooperation: victims were not arriving so

fast that simply digging out the nearest was appropriate, victims might require

more than one agent for rescue, and victims could survive long enough to be

reached by agents some distance away.

We vary m, n as specified. By default, we work with problems involving three

agents on a 7x7 grid, as this provides a reasonably challenging medium-size

problem. Finally, in the belief-state based algorithms, we must take samples from

the belief state (in this problem, our beliefs about the likely actions of other

agents). We define the sample size as the number of samples taken for each

variable, initialising it at a size of 20 (for comparison, previous work on a single

agent problem found that 20 samples was sufficient for good solutions (Dearden

et al., 1999)).

Previous work on large dynamic rescue problems of a similar form (Paquet et al.,

2005) compares with a handwritten strategy (smart) tailored to the problem, and

we do the same thing. Our handwritten strategy is the strategy that was used

by the AladdinRescue team for ambulance distribution in the Robocup Rescue

competition, which inspired this problem. The algorithm uses a greedy strategy

Chapter 5 Coordination in the presence of partially observable actions 113

to allocate ambulances to victims and is optimal in scenarios where (1) no new

victims are arriving and (2) visibility is perfect (Ramamritham, Stankovic, & Zhao,

1989). It is therefore not an optimal strategy for the problem as we have stated

it, but is a good state of the art approximation.

In every experiment, we carried out several runs of the problem, varying the

initial placement of civilians and randomising their arrival and visibility. The

same random seed was used to initialise each of the test algorithms in each run.

The error bars included in the results show the 95% confidence intervals around

each point. The rest of this section discusses our key results.

5.2.2 Experimental evaluation

We begin this section with a discussion of several related algorithms, based on

the best response algorithm described above, but faster to evaluate. Section

5.2.2.1 outlines these algorithms and section 5.2.2.2 evaluates them over different

sampling rates. The rest of the section focuses on the full best response policy,

evaluating the policy across a number of different parameters.

5.2.2.1 Alternative implementations

Initially, we implemented the “full” best response algorithm, evaluating the finite

horizon best response as described in section 5.1.2 above. However, this full

best response algorithm is considerably slower than the smart policy to evaluate,

particularly as the number of agents increases. As we showed in chapter 4,

the number of joint actions increases exponentially with the number of agents.

Consequently, the Q-evaluation (equation 5.1) Q(ai, b) =
∑

a−i
P (ai|b)·. . . requires

exponentially more computation to complete. We therefore investigated two

variants on this best response algorithm which use approximations to reduce the

number of actions considered.

Chapter 5 Coordination in the presence of partially observable actions 114

• Maximum likelihood (ml) best response: In this variant of the best

response algorithm, our agent does not project over all possible joint actions,

but rather calculates the maximum likelihood action for each other agent and

calculates the best response assuming that the other agents do perform the

maximum likelihood action. Formally, the Q-calculation (equation 5.7) is

replaced with

Q(a|b) = max
aj

P (aj|b)Q(a ◦ aj |s, b)

• Sampling best response: Already, rather than project forward over

millions of states in the summation
∑′

s in the Q-calculation (equation 5.7),

we project forward over a sample of states, as described in section 3.4.4.

In the “sampling best response” variant of the full best response, our agent

also does not project over all possible joint actions, but rather samples from

the possible joint actions to estimate the best response. Note that unlike

sampling from the models, there is a relatively small number of possible

joint actions (5numagents). Although this means that it is easier to sample

all or most of the actions, it may also mean that any samples taken are less

likely to be generally representative.

Since these two algorithms are less thorough than the full best response, we do

not expect them to be as good. However, they scale much better with the number

of agents: maximum likelihood best response carries out one computation per

agent at each step; sampling best response carries out samples computation

per agent, while the full best response carries out 5numagents computation at

each step. Figure 5.4 demonstrates the time savings from the simpler algorithms4.

Therefore, we investigated how much the simplified algorithms underperform the

full algorithm in order to see if they might make feasible replacements for larger

problems.

In more detail, figure 5.3 compares the three best response algorithms, and the

smart policy, for an average over ten runs, with the parameters set as above and a

4These experiments, and all experiments described below, were run on a dual-core machine
in the university’s Beowulf cluster.

Chapter 5 Coordination in the presence of partially observable actions 115

-70

-60

-50

-40

-30

-20

reward

-10

0

0 50 100 150 200 250
timestep

ml best response
sampling best response

full best response
smart

Figure 5.3: Comparing the best response policy with variants and the smart
policy

7x7 grid, 3 agents

Algorithm Time

max. likelihood best response 11 seconds

sampling best response, sample rate 5 7 seconds
sampling best response, sample rate 120 105 seconds
sampling best response, sample rate 300 127 seconds

full best response, sample rate 5 101 seconds
full best response, sample rate 120 121 seconds

Figure 5.4: Time taken to complete one run of 400 steps

sample size of 15 for the sampling best response (just under a quarter of the 125

possible joint actions). To avoid confusing overlap, we do not show the errorbars

on this graph: the error range for the reward is approximately +/-2. From figure

5.3 it is clear that the full best response policy is superior to either of the

approximations for these parameters. Furthermore, the maximum likelihood

policy is significantly worse than the sampling best response policy, with the

latter an improvement on the smart policy, close to the full best response.

We therefore did not experiment further with the maximum likelihood best

response policy. In the next section we will investigate the effects of sample

size in more detail.

Chapter 5 Coordination in the presence of partially observable actions 116

-50

-40

-30

reward

-20

-10

0

0 50 100 150 200 250

ml best response
full best response

sampling best response
smart

timestep
(a) 2 agents on a 5x5 grid

-120

-100

-80

reward

-60

-40

-20

0

0 50 100 150 200 250

ml best response
full best response

sampling best response
smart

timestep
(b) 3 agents on a 9x9 grid

Figure 5.5: Comparing the full best response policy with variants and the
smart policy, with a maximum step time of 1 second

Chapter 5 Coordination in the presence of partially observable actions 117

Secondly, figure 5.5 compares the two simplified best response variants, and the

smart policy, for two different problems: two agents on a 5x5 grid, and three agents

on a 9x9 grid, with a maximum step time of 1 second. Again, we leave off the

error bars to enhance readability. We see that in both these cases the sampling

best response policy actually does less well than the smart policy, presumably

as it is able to take fewer samples. However, the full best response policy even

with timeout does nearly as well as without a timeout. We can conclude from this

that the consideration of possible actions is more important than the projection

over future states. This is because there are so many possible states that changing

the number of samples barely changes the fraction evaluated, while going from ten

to twenty samples when there are 25 actions makes the difference between only

considering half the actions and considering most of them.

5.2.2.2 Varying the sample size

For these experiments, the same “sample size” parameter was used for both sam-

pling from policies, and sampling from actions in the sampling best response

variant. Figure 5.6 shows the effects of varying the sample size for the 3 agents on

a 7x7 grid. We expected that increasing the sample size would improve both the

best response policies, since more samples provide more information and thus more

accurate estimation of the belief update in all cases. Moreover, the effect should be

more noticeable for the sampling best response policy, which is also sampling in

the best response calculation, up to a sample size of around 5numagents = 125, where

the sampling best response policy should approach the full policy. In fact,

we see (i) that the sampling best response policy significantly underperforms

the full best response policy and (ii) that although the full best response

policy improves slightly as the number of samples increases, the sampling best

response policy actually performs better with a small number of samples. This

is because a small number of examples is effectively a best response to “random”,

while with more samples the agent has enough information to form erroneous

conclusions.

Chapter 5 Coordination in the presence of partially observable actions 118

-55

-50

-45

-40

-35

reward

-30

-25

0 20 40 60 80 100 120
sample size

full best response
sampling best response

smart policy

Figure 5.6: Effect of varying the sampling size

Given this, figure 5.7 investigates the sampling best response policy in more

detail. The initial drop as the number of samples increases is less obvious. There

appears to be a hump early in each of the lines. Although these could be easily

swallowed by the error bars, it is noticeable that each of these apparent humps

occurs at fairly low sample rates. The reason for this is low sample rates resulting in

more fluctuations in the outputs. Ultimately, we conclude from these results that

although it is more efficient timewise, particularly for larger numbers of agents,

the sampling best response policy is continually less effective than the full

best response policy, even as the number of samples increases. The remainder

of our experiments therefore use the full best response policy and we can refer

to it as best response.

5.2.2.3 Varying the move predictability

These experiments reference particularly the case in which our agent tries to

model the intended actions of other agents in a world where the actions are

unpredictable. In this case, it is natural that the performance will improve as

the move predictability improves, for the smart policy because agents are better

Chapter 5 Coordination in the presence of partially observable actions 119

-80

-70

-60

-50

-40

-30
reward

-20

-10

0 20 40 60 80 100 120
sample size

2 agents
3 agents
5 agents
7 agents

Figure 5.7: Effect of varying the sample size for several sizes of problem

-140

-130

-120

-110

-100

-90

-80

-70
reward

-60

-50

-40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
move predictability

best response
smart

Figure 5.8: Effect of varying move predictability

Chapter 5 Coordination in the presence of partially observable actions 120

able to do what they intended, for the best response policy both because agents

are able to carry out their intended moves and because they can model other

agents’ intentions more accurately. Although the increased level of randomness

when moves are unpredictable means that neither policy will be able to do as well

as with fully predictable moves, we expect that the best response policy will

adapt better than the smart policy.

In more detail, figure 5.8 shows how the algorithms perform as the actions

become more predictable, and we see that both the smart algorithm and the best

response algorithm improve their performance with better move predictability,

as expected. The best response algorithm improves more rapidly than the

smart policy and in fact appears to be making little improvement by about 0.8

predictability after rapid improvement initially. This demonstrates that as we gain

more information, additional information gives us an increasingly small edge. The

sample size, which limits the precision with the best response policy can work,

is also a contributor to the graph topping out at around 0.8.

5.2.2.4 Varying the number of agents

Since the full best response policy scales exponentially with the number of

agents, our algorithm does not scale well to many agents and we did not try and

investigate beyond 7 agents (figure 5.9 indicates the running times, demonstrating

the poor scaling and impracticality of even 7 agents). Section 5.2.2.2 discussed

the behaviour of the sampling best response policy as the number of agents

is increased. Here, we show that, as expected, with more agents on the same

board, both best response and the smart policy are able to increase their rewards

(figure 5.10), with the improvements still increasingly almost linearly up to seven

agents on the 7x7 board: we expect that as the number of agents is increased, the

improvements will continue to the point where all the victims are being saved, and

then level out.

We also see that the best response policy is not making better use of the

additional agents than the smart policy, the curves have very much the same

Chapter 5 Coordination in the presence of partially observable actions 121

7x7 grid
Number of agents full sampling sampling

best response best response best response

(120 samples) (10 samples)
2 3.5s 42 s 2s
3 39s 100s 12s
5 2760s 320s 35s
7 173000s 825s 84s

Figure 5.9: Time taken to complete one run of 400 steps

-450

-400

-350

-300

-250

-200

-150
reward

-100

-50

0

2 3 4 5 6 7
number of agents

best response
smart

Figure 5.10: Effect of increasing the number of agents

shape, with the difference in reward between the two much the same for seven

agents and for two agents. To emphasise this, figure 5.11 demonstrates this effect

for a 3x3 grid which is saturated with agents: on this smaller grid the smart

policy is very effective and we see it making good use of the increased agents.

By contrast, the best response policy improves more slowly as the number of

agents increases, struggling to learn how to make the best use of them. In the

next section, we compare the policies on increasingly large boards and show how

the smart policy loses its edge.

Chapter 5 Coordination in the presence of partially observable actions 122

-10

-9

-8

-7

-6

-5

-4
reward

-3

-2

2 3 4 5 6 7
number of agents

full best response
smart policy

Figure 5.11: Effect of increasing the number of agents: 3x3 grid

3 agents
Board edge size Time

3 39s
5 1 minute 9s
7 1 minute 45s
9 2 minutes 28s
15 7 minutes 18s
25 34 minutes

Figure 5.12: Time taken to complete one run of 400 steps

5.2.2.5 Varying the board size

The other scale parameter which interests us is the number of states, in this

problem defined by the size of the board. The running time for this problem

scales well as the board size increases (figure 5.12): even on a small board there

are millions of states and we must sample future states rather than considering

all possibilities. Unlike sampling from actions, choosing a representative sample

of states can provide a good estimate for future Q-values as many sets of states

will have very similar Q-values.

As we increase the size of the board, and thus the number of states, we find

Chapter 5 Coordination in the presence of partially observable actions 123

-800

-700

-600

-500

-400

-300
reward

-200

-100

0

0 5 10 15 20 25
board size (one edge)

best response
smart

Figure 5.13: Effect of increasing the size of the board

(figure 5.13) that the reward drops as the problem gets harder. However, the best

response policy is able to maintain higher scores than the smart policy. This is

because, as the size of the problem increases, the smart policy is less able to make

good judgements about travelling across the board; furthermore, as new victims

appear at every step the smart policy can result in agents setting off to carry

out a rescue and then doubling back for a new victim, wasting time. The best

response policy is more flexible, which pays off on the larger boards.

5.3 Ambulance rescue making use of reward

information

In this section, we investigate the extent to which the best response policy is

able to make use of reward information. For this purpose, we used the version

of the ambulance problem in which actions have penalties. For implementation

purposes, it was convenient to continue to use integer rewards and so the rewards

have been scaled up by a factor of ten. As well as the scale factor, it is noticeable

Chapter 5 Coordination in the presence of partially observable actions 124

that the problem has changed character slightly with the additional information.

In particular, our best response policy no longer does better than the smart

policy on smaller problems, a mark of the additional difficulty of judging rewards

given their dual source. The rest of this section describes these experiments in

detail, first giving our experimental setup in section 5.3.1 and then explaining our

results in section 5.3.2.

5.3.1 Experimental setup

For these problems, we compare the smart policy (noting that it is still less

optimal as it was not designed to take penalised movements into account), our

algorithm not using any information from the rewards (basic best response

policy) and our algorithm inferring as much as it can from the reward observations

(the full best response policy). The timing information for this problem was

very similar to that for the previous variant of the problem: updates are a little

slower but not significantly so and the limiting factors are identical. We therefore

do not include any further timing data in the evaluation below. Similarly, we do

not investigate the simplified best response algorithms (sampling best response

and maximum likelihood best response) with this problem as their usefulness

has already been proven limited.

5.3.2 Experimental evaluation

This section follows a similar format to the previous section’s experiments. We

begin by looking at the effects of varying the sample size in section 5.3.2.1. We go

on to look at the consequences of randomising moves (section 5.3.2.2) and finally

investigate problem scaling factors: the number of agents and the board size.

Chapter 5 Coordination in the presence of partially observable actions 125

-2700

-2600

-2500

-2400

-2300

-2200
reward

-2100

-2000

0 20 40 60 80 100 120
sample size

full best response
basic best response

smart

Figure 5.14: Effect of varying sample size with inference from rewards

5.3.2.1 Varying the sample size

We begin, once again, by comparing the policies when changing the sample

size. As before, we expect that increasing the sample size should result in small

improvements in the reward. Since we are sampling from the millions of states

rather than the few actions, we do not anticipate that changing the sample size

will have dramatic effects on the total reward.

Specifically, figure 5.14 shows the results of our experiments on the 7x7 grid with

three agents. We see that the sample size contributes noticeably to the full

best response policy. The line for the basic best response policy is less clear:

although there is an upward trend, it follows a dip, and the error bars are broad

enough to permit a straight line through. Given the similarities with the previous

problem, it seems that taking few samples can be as effective or even more effective

than taking 30-50 samples. Again, this is because as the samples increase, the

agent has enough information to form erroneous conclusions. As the number of

samples increases again, the conclusions become more accurate and the agent’s

behaviour improves again.

Chapter 5 Coordination in the presence of partially observable actions 126

-2700

-2600

-2500

-2400

-2300

-2200
reward

-2100

-2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
move predictability

basic best response
full best response

smart

Figure 5.15: Effect of varying move predictability with inference from rewards

5.3.2.2 Varying the move predictability

Figure 5.15 shows the effect of adjusting the move predictability: as expected, as

the moves become more predictable, the policies improve. From the figure, we

can see that both the smart policy and the two best response policies do less well

on this changed problem than they did on the problem without penalties: firstly,

the rewards are considerably lower, and secondly, neither of the best response

policies is making efficient use of the increased predictability. We also do not see

the “topping out” effect of the smart policy that we observed on the previous

problem, because the problem is harder.

5.3.2.3 Varying the number of agents

Figure 5.16 shows the effect of increasing the number of agents. As before,

increasing the number of agents scales very badly timewise; here, particularly

with the additional inference step which has to consider all agents. Consequently,

we do not investigate more than seven agents (on the 7x7 grid).

Chapter 5 Coordination in the presence of partially observable actions 127

-4500

-4000

-3500

-3000

-2500

reward

-2000

-1500

2 3 4 5 6 7
number of agents

basic best response
full best response

smart

Figure 5.16: Effect of increasing numbers of agents with inference from
rewards

We expect that the behaviour will be similar to the behaviour on the previous prob-

lem, once again with the smart policy outperforming the full best response

policy on the new problem. In fact, we see again the increased difficulty of this

version of the problem in the fact that the reward actually drops as the number

of agents is increased, rather than climbing. The relative behaviour of the policies

is as expected, with the smart policy outperforming the full best response

policy. We do see that the smart policy, which doesn’t take the action penalties

into account at all, drops linearly, while the more flexible full best response

policy is able to hold up slightly better. We go on to investigate our final scaling

factor, board size.

5.3.2.4 Varying the board size

Figure 5.17 shows the results of the different algorithms as the board size is

increased. From this figure we see that in this problem, the full best response

algorithm does less well than the smart algorithm at smaller board sizes. The full

best response continues to struggle with the harder problem, but the smart is

Chapter 5 Coordination in the presence of partially observable actions 128

-16000

-14000

-12000

-10000

-8000

-6000

reward
-4000

-2000

0

0 5 10 15 20 25
board size (one edge)

basic best response
full best response

smart

Figure 5.17: Varying board size with inference from rewards

able to coordinate over small boards. However, as with the simpler variant of the

problem, the smart policy’s deficiencies become more noticeable as the board size

is increased. We now see the full best response algorithm outperforming the

smart policy once the board size increases past a 9x9 grid. This is encouraging as

it demonstrates that our algorithm scales well as the number of states increases,

and is able to find satisfactory policies where a handwritten policy is suboptimal.

5.4 Summary

In this chapter we have explained how to specialise the model of chapter 3 to

a specific case of partially observable actions. This is the first such attempt to

describe partially observable actions using a formal Bayesian model. We have

then evaluated this model using two variants of the ambulance rescue problem,

comparing it with a handwritten policy designed for this problem. For the simpler

variant of the simulation, we have found that although the handwritten policy

can optimise well on small problems, our model is better able to find satisficing

policies for much larger problems.

Chapter 5 Coordination in the presence of partially observable actions 129

For the more difficult variant of the simulation, we have seen that the behaviour

trends for our policy are, as expected, the same; however in most of the smaller

problems the handwritten policy is able to outperform the best response algorithm.

Encouragingly, when the number of states is scaled up, the best response algorithm

again begins to outperform the handwritten policy, demonstrating its potential for

larger problems. Thus in both cases, we conclude that the best response algorithm,

with all its approximations, is not optimal and does not replace an optimal

algorithm for small problems. However, it is able to scale well to problems with

many more states where a satisfactory rather than optimal problem is required. It

does not perform so well in problems with many agents which have exponentially

many joint actions to be considered as possible future actions. In section 8.3.2 we

outline some possible ways of approximating the joint actions in order to tackle

this problem.

In the next chapter, we continue the evaluation of the model described in chapter

3, considering a second, more complex, specialisation of the model in chapter 3

and again demonstrate our algorithm on the ambulance problem. In this chapter

we have applied our model to learning agent models for coordination in scenarios

in which agent actions are partially observable. We go on to investigate learning

agent models for coordination in scenarios in which states are partially observable.

Chapter 6

Coordination in the presence of

partially observable states

In this chapter, we evaluate the model of chapter 3 for the case in which the actions

of the other agents and the transition function are known, but the state is only

partially observable and the behaviour policies of the other agents (which depend

on their observations) are known. We use finite state machines to approximate

the observation-based policies of other agents, enabling us to efficiently evaluate

our online multi-agent POMDP. Thus, we substantiate the claim in 1.4 that this

is the most effective online multi-agent POMDP with explicit modelling of other

agents. We also demonstrate that our algorithm is more efficient than the current

state of the art and more effective than a handwritten strategy for the problem.

To achieve this, we begin by explaining how the model in chapter 3 specialises to

this case, detailing the update and best response computations (section 6.1). We

then evaluate the model in section 6.2, beginning by investigating the clustering

model which we detailed in section 3.4.2 and apply here (section 6.2.2.1) before

going on to test our model over a number of problem parameters and size factors.

130

Chapter 6 Coordination in the presence of partially observable states 131

6.1 Evaluating the general model with partially

observable states

In this model, the underlying global state is not visible to the agent, only some

local observations o, as in the Tamptono example 4 where the agent can see the

state of the nearby bridges, but does not know what is going on elsewhere. We

assume that the model P (o|s) is known to the agent. Furthermore, each state

gives rise to a deterministic set of observations (Obs(s) = {o1, o2,}), and the

agent will see some subset of these. Therefore, for each set of observations o, there

will be a known, fixed set of states which may have given rise to the observations:

s such that o ⊆ Obs(s). Each set of observations o is local to a particular agent,

so the agent’s strategy will depend on its own local observations. The belief state

now contains, instead of the current state, the current set of observations and a

distribution over state probabilities.

s ai

bj

os′ os′,j

b′j

θ

s′

πj

aj

Figure 6.1: Partially observable states

Chapter 6 Coordination in the presence of partially observable states 132

Now, although the underlying process is still assumed to be an MDP (i.e.,

the current state is dependent only on the previous state and the action

choices), the sequence of observations is no longer Markov. In particular, where

the environmental models are completely known, we can define a probability

distribution over states at each step, and the sequence of such distributions is

itself Markov. If the probability distributions were themselves being estimated,

the sequence of belief states would also be non-Markov (alternatively, each belief

state should contain (and use in the updates), the complete history trail for the

problem). However, we leave such problems to future work (Chapter 8).

Finally, in the multi-agent case, the learning agent must retain in its own belief

state beliefs about the belief state of the other agents—not other agents’ beliefs

about the models or strategies, but their beliefs about the current underlying state.

These beliefs will depend on the sequence of observations made by those agents,

which will be only partially known to the learning agent. We use the “history”

variable to represent this, noting that each agent will have an independent history

variable unknown to the other agents.

To this end, figure 6.1 gives the Bayesian network diagram for a multi-agent

system with partially observable states. In this diagram we have separated the

observations and the actions of the agent under consideration (subscript i) and the

other agents (subscript j). Tracking the network flow downwards, the root node

is the original state, s, giving rise to a visible set of observations for the agent,

and unknown sets of observations for the other players. We assume that the other

players update their belief states given their observations and act accordingly. As

previously, the actions, previous state and the system dynamics determine the next

state, which emits a reward and which all agents make new observations from.

Referring to this diagram, we obtain the following updates (note that obs refers

to all the observations made by our agent, including rewards and actions of other

agents, as distinct from oi the observations made from the state):

Chapter 6 Coordination in the presence of partially observable states 133

P (M |obs) ∝
∑

s,s′,πj,oj ,bj ,h

P (s, s′, πj, oj , bj , h, o′i, oi, r,a,M)

=
∑

s,s′,πj,oj ,bj ,h

P (r, o′i|s
′)P (s′|M,a, s)P (M)P (aj |πj , bj)P (bj |oj , h)P (oj |s)P (s)P (πj)

= P (M) ∗ . . .

. . .
∑

s′,s

P (r, o′i|s
′)P (s′|M,a, s)P (s)

∑

oj

P (oj |s)
∑

bj ,h

P (bj |oj , h)

∫

πj

P (aj |πj, bj)P (πj)

P (πj |obs) ∝
∑

s,s′,M,oj ,bj ,h

P (s, s′, πj, oj , bj , h, o′i, oi, r,a,M)

= P (πj) ∗ . . .

. . .
∑

s,s′

P (o′i, r|s
′)P (s)

∑

bj ,h

P (a|πj , bj)P (bj |oj , h)
∑

oj

P (oj |s)

∫

M
P (s′|M,a, s)P (M)

As before, the definition of Q(ai, bi) remains unchanged. However, we now define

P (aj|b) =
∑

πj ,bj

P (aj|bj , πj)P (bj, πj |b)

=
∑

πj ,bj

P (aj|bj , πj)P (bj|b)P (πj |b)

P (r, s′|a, b) =

∫

M

P (r, s′|o, a, M)

where

P (bj|b) =
∑

h,oj

P (bj |h, oj)P (h|b)
∑

s

P (oj|s)P (s|b)

and

Chapter 6 Coordination in the presence of partially observable states 134

P (r, s′|o, a, M) =
∑

s

P (r, s′|s, a, M)P (s|a, M)

∝
∑

s

P (r, s′|s, a, M)

∫

b

P (a|b)P (b|s)P (s)

(Note that the diagram in figure 6.1 shows the reward dependent on the initial

state and action choice. However, similar to the discussion in section 5.1.3, this

network (and equations) can be easily modified to make the reward dependent on

the resulting state).

In principle, the equations above can be solved using a system of Dirichlets,

with sampling for the integrals, similar to that already described for partially

observable actions. However, these new equations are more computationally

complex than those defined for the case of partially observable actions, with

multiple summations which make them impractical to evaluate on any realistic

problem because the complexity of the computation becomes exponential in each

of the summed parameters.

In particular, notice that P (M |obs) is no longer independent of the strategy model,

despite the action observability. This is because of the need to maintain beliefs

about the beliefs of the other agents; these beliefs are continuous, necessitating

sampling, and they depend on another unobserved variable, the observations made

by the agent. (An example might be an agent, Alice, observing smoke coming

from a building and believing it to be on fire, so running from the building. From

another angle, it may be clear to our agent, Bob, that the smoke is merely rising

from a burnt-out fire and there are victims critically needing help within the

building—but Bob must work with the behaviour of the others).

This Bayesian approach to multi-agent strategies is similar to the approach

described by Emery-Montemerlo et al. (discussed in section 2.4), who only consider

games with known dynamics. Despite this, several approximations are required

to make computation feasible in their model, and they consider systems with few

Chapter 6 Coordination in the presence of partially observable states 135

states and few agents. Thus for us also, several approximations are necessary:

in particular, as well as the simple approximation strategies in section 3.4.4, we

will apply the novel approach of using finite state machines to model other agents

in this online setting, as detailed in section 3.4.3. We will also investigate the

state clustering model described in section 3.4.2 in this chapter—the next section

begins by investigating the effectiveness of the clustering model before going on

to evaluate our models across different parameters, investigating in particular the

scaling properties of the algorithm.

6.2 Ambulance rescue with partially observable

states

In chapter 2, we have motivated the importance of investigating scenarios with

partially observable states in our target domain of disaster response and above

we have outlined how the algorithm in section 3.2, extended with statistical

clustering (section 3.4.2) and finite state policy approximations (section 3.4.3) can

be specialised to such cases. In this section we evaluate this finite-state machine

algorithm in detail. We begin by outlining our experimental setup (section 6.2.1).

6.2.1 Experimental setup

In order to test our strategy, we compare it against two other online algorithms:

the state of the art for online partially observable stochastic games is the Bayesian

game approximation using the finite-horizon approximation technique (Emery-

Montemerlo et al., 2004), described in section 2.3.1 (“POSG”). However, for large

dynamic problems, this algorithm, which is exponential in the number of agents,

proves to be very inefficient and we find that for all but the smallest variants of the

rescue problem, POSG is too slow to be useful. Therefore, as before, we compare

against the handwritten strategy written for Robocup Rescue, smart.

Chapter 6 Coordination in the presence of partially observable states 136

We investigate our algorithm, “best response”, over different parameter settings

on the rescue problem, and then focus on our particular interest, the scaling

properties of the algorithm. As a baseline, we include the null policy in which

agents move randomly, but never dig and so never effect any rescues (“null”). In

the next section, we identify the fixed parameters, before going on to our results.

We use the same problem settings as in chapter 5, varying m, n and k as specified.

We also experimented with increasing pa towards problems where “dig nearby”

becomes a viable strategy, and varying v, the state visibility parameter. Finally,

in the belief-state based algorithms, we must take samples from the belief state.

We define the sampling rate as the number of samples taken for each variable,

initialising it at a rate of 35 (for comparison, previous work on a single agent

problem found that 20 samples was sufficient for good solutions (Dearden et al.,

1999)).

In every experiment, we carried out several runs of the problem, varying the

initial placement of civilians and randomising their arrival and visibility. The

same random seed was used to initialise each of the test algorithms in each run.

The error bars included in the results show the 95% confidence intervals around

each point. The rest of this section discusses our key results.

6.2.2 Experimental evaluation

We begin by investigating the properties of our FSMs, in order to settle on suitable

parameters to continue with. This first section (section 6.2.2.1) will investigate

the effects of the observation clustering outlined in section 3.4.2 on performance,

and then sampling rate and observation history. We go on to examine the learning

properties of the algorithm in section 6.2.2.2. The next parts of this section then

examine the behaviour of our algorithm when varying parameters such as visibility

(section 6.2.2.3) and victim arrival rate (section 6.2.2.4). Finally in section 6.2.2.5

we look at the effects of problem size on the performance of our algorithm.

Chapter 6 Coordination in the presence of partially observable states 137

-60

-50

-40

-30

-20

-10

0

0 100 200 300 400 500

reward

timestep

best response
smart

(a) With max 500 clusters

-70

-60

-50

-40

-30

-20

-10

0

0 100 200 300 400 500

reward

timestep

best response
smart

(b) With max 1500 clusters

Figure 6.2: Effect of cluster capping over a run

6.2.2.1 Finite state machine properties

We first experimented with the clustering model, varying the maximum number

of clusters to see the effect on the results. We expect to get poor results with low

Chapter 6 Coordination in the presence of partially observable states 138

numbers of clusters, but to find that increasing the number of clusters does not

improve the results much after a certain point. It is possible that as the number

of clusters increases towards the total number of states, the agent may not be able

to make use of the clusters to make inferences about future states, resulting in a

loss of performance.

To this end, figure 6.2 compares two experiments on a 7x7 board with 3 agents

(each averaged over 15 runs), one capping the number of clusters at 500 and one

at 1500. Two effects can be seen: first, the learning in our algorithm is shown in

the curving of the best response policy line against the straight smart policy

line; second, with up to 1500 clusters, this learning effect kicks in a little later on.

Figure 6.3 demonstrates the effects of clustering for a small and a medium variant

of the problem: we see the small hump around 700 clusters for the three-agent

problem and at around 200 clusters for the two-agent problem. Although these

humps are dwarfed by their error bars, this effect was consistently observable across

many experiments. This corresponds with our stated expectation that the results

would improve up to a certain point, and then either stop improving or worsen.

Thus, in general we see that there is a slight ‘hump’ in the results identifying an

ideal number of clusters to use for a particular problem; however, the variation

in results is sufficiently low that this choice is not critical. Furthermore, since we

are clustering primarily for efficiency, we must also consider what the tradeoff is

in terms of efficiency.

We now consider the notion of time. As the number of clusters increases, the

generated finite state machines become larger, and searching in the structures

thus slower. To this end, the timings in figure 6.4 refer to the experiments running

on a dual-core machine in the university’s Beowulf cluster, showing that the time

needed increases exponentially with the number of clusters. Therefore, if time

is a premium, reducing the maximum number of clusters could give noticeable

efficiency gains without significantly affecting the results.

We now move on to experiments in which the sampling rate is varied. In order to

examine how the best response algorithm will perform on challenging problems

Chapter 6 Coordination in the presence of partially observable states 139

-200

-190

-180

-170

-160

-150

-140

-130

-120

-110

-100

600 650 700 750 800 850 900

reward

max clusters

best response
smart

(a) 7x7 board, 3 agents

-250

-240

-230

-220

-210

-200
reward

-190

-180

0 50 100 150 200 250 300 350 400 450 500
max clusters

best response
smart

(b) 7x7 board, 2 agents

Figure 6.3: Effect of clustering on two variants of the 7x7 problem

Chapter 6 Coordination in the presence of partially observable states 140

7x7 board
Max clusters Time

100 4 seconds
500 8 seconds
1000 20 seconds
1500 80 seconds

(a)

10

20

30

40

50

60
time (seconds)

70

80

200 400 600 800 1000 1200 1400
max. clusters

(b)

Figure 6.4: Time taken to complete one run of 1500 steps

such as those we identified in our domain requirements, we will consider the effects

of scale both on solution quality and on the computational requirements. Linked

to the way the solution scales is the number of samples taken in estimating beliefs.

The sensitivity of the solution to the number of samples is therefore relevant in

considering the effectiveness of the algorithm.

In more detail, for the POSG algorithm, on a 3x3 board with two agents, figure

6.6(a) shows the times for 100 steps, for various sample rates. Since our cut-off

was one step per minute, we did not run any tests on the POSG algorithm beyond

a sample rate of 75, the null policy and the smart policy do not do any sampling.

For our own policy, which does not need to iterate over all joint policies, the

scaling factor was much better: figure 6.6(b) shows the equivalent rates. The

POSG algorithm is exponential in the number of agents, since it iterates over all

Chapter 6 Coordination in the presence of partially observable states 141

-20

-15

-10

-5

0

0 20 40 60 80 100

reward

sample rate

smart
null

best response
POSG

(a) 2 agents on 3x3 board

-30

-25

-20

-15

-10

-5

0

10 20 30 40 50 60 70

reward

sample rate

null
smart

best response

(b) 3 agents on 5x5 board

Figure 6.5: Effects of changing the sampling rate with two and three agents

Chapter 6 Coordination in the presence of partially observable states 142

3x3 board, 2 agents
Sample rate Time

10 720 seconds
20 1140 seconds
35 2280 seconds
60 4020 seconds
75 6780 seconds

(a) POSG algorithm

3x3 board, 2 agents
Sample rate Time

10 7 seconds
30 18 seconds
50 27 seconds
100 50 seconds
500 240 seconds

(b) best response algorithm

7x7 board, 3 agents
Sample rate Time

10 18 seconds
35 48 seconds
60 300 seconds

(c) best response algorithm

Figure 6.6: Time taken to complete one run of 150 steps

joint actions. It therefore scales badly as the number of agents is increased. By

contrast, figure 6.6(c) shows the times for the best response algorithm running

on the larger problem of a 7x7 board with three agents. Even on this larger board

the times are well within the range of acceptable. We next investigate whether

there is truly a need for higher sampling rates, since our earlier investigations (in

section 6.2.2.1) indicated that the best response algorithm is able to perform

quite well even at low sample rates.

To this end, figure 6.5 shows the effect of changing the sample rate. As expected,

neither the null policy nor the smart policy are susceptible to changing sample

rates. However, the performance of the best response policy also does not vary

much with the changing sample rates. It is also worth remarking that the error

does not reduce noticeably as the number of samples is increased, suggesting that

the same actions are selected with as few as ten samples. This occurs because the

effective options to the agent are “Move” or “Dig”—in a problem of this nature it

is very difficult to differentiate between move directions except when the target is

next door, since several different move sequences correspond to the same target.

Therefore, if a majority of the samples indicate that the agent should dig, then

it will dig. Otherwise, with the relatively small numbers of samples we consider,

the agent is unlikely to settle clearly on a move direction. By contrast, the POSG

Chapter 6 Coordination in the presence of partially observable states 143

algorithm, which initially performs more poorly than the best response policy,

improves noticeably as the number of samples is increased, and the error around

the points reduces. The POSG algorithm relies on more information than the best

response algorithm and so the low numbers of samples are not sufficient for it to

make a good decision even to the extent that the best response algorithm does.

These results indicate that similar actions are selected even with a small number of

samples, because the best response can be estimated well, and the best response

algorithm performs well with small sampling rates, making it possible for the

algorithm to be very efficient. This compares favourably with the POSG algorithm

which approaches optimality at high sampling rates but performs very badly at

low sampling rates, at least for this type of problem. Due to the time constraints

we imposed, we do not investigate the POSG algorithm in the larger version of

the problem (figure 6.5(b)) but we see that as for the larger problems above,

the best response algorithm slightly outperforms the smart policy, due to its

better handling of imperfect visibility. Section 6.2.2.3 will investigate the effects

of visibility in more detail.

Finally, we consider the issue of observation history. In particular, in section

3.4.3.2 we noted that the other parameter affecting the finite state machines is the

length of observation strings which they use. We expect that longer observation

strings would result in more accurate FSMs and better strategies, since the agent

can consider longer term strategies. Figure 6.7 shows the effect of lengthening

the observation history for our best response policy, demonstrating that on

both a small problem (figure 6.7(a)) and a large problem (figure 6.7(b)), longer

observation histories do indeed result in improved strategies. Furthermore, it can

be seen that on the smaller board, the longer history ceases to be useful after

around a history length of 15, while on the larger board, with many more states

and state trajectories, the results continue to improve as the history length is

increased as far as 50.

The next step in our investigation of the behaviour of our finite state machines,

and before continuing to investigate the effect of general problem parameters such

Chapter 6 Coordination in the presence of partially observable states 144

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

0 5 10 15 20 25 30 35 40

reward

history length

best response policy

(a) 5x5 board, 2 agents

reward

history length

-650

-600

-550

-500

-450

-400

-350

-300

-250

-200

5 10 15 20 25 30 35 40 45 50

best response policy

(b) 9x9 board, 5 agents

Figure 6.7: Effect of lengthening observation history

as problem size, is to take a look at the learning rate of our algorithm. This is

important because it shows how the algorithm is making use of the models or

FSMs which are being learned, and gives us some idea of how many steps are

required before the algorithm becomes most useful.

Chapter 6 Coordination in the presence of partially observable states 145

20

40

60

80

100

120

0 200 400 600 800 1000

reward (scaled)

time step

smart
best response, samples=10
best response, samples=50

(a) Algorithm performing over 1000 steps at two different rates

100

60

0 100 200 300 400 500 600 700 800

reward (scaled)

time step

best response, samples=10
best response, samples=50

(b) Closeup of the first 800 steps

Figure 6.8: Comparison of two algorithms over time on a 7x7 board with 3
agents. Note that we use a log scale to show more clearly the differences between

the algorithms, and the rewards are scaled up to > 0 for the log scale.

Chapter 6 Coordination in the presence of partially observable states 146

6.2.2.2 Examining the learning rate

To begin with, we compared the algorithms over the course of 1000 steps on a 7x7

board, with three agents. We found that the POSG algorithm, which is exponential

in the number of agents, did not complete in any reasonable time (we consider one

minute per step to be “reasonable”) on this size of problem, taking ten minutes for

one agent to complete a single step. Thus, figure 6.8 just compares the smart policy

with our algorithm over 1000 steps. Our aim was to examine the performance of

the best response algorithm on a challenging problem, focusing on any changes

in its behaviour over time. To this end, we have used two different sampling rates

for the best response policy, comparing how the agent learns when sampling very

little information (samplerate = 10) or more information (samplerate = 50). We

expect that the agent will both perform better, and learn faster at the higher

sampling rate.

It is immediately clear from figure 6.8 that the best response algorithm is

outperforming the smart policy for these parameters. Now, if our algorithm (best

response) is benefitting from learning, we expect to see that the advantage the

best response algorithm has over the smart (handwritten) policy is increasing

over time. From figure 6.8(a) it is not clear that there is a large improvement in

this advantage—that is, the lines are fairly straight. However, figure 6.8(b) shows

a closeup comparison of the two different sampling rates, showing the way in which

the lower sampling rate is able to match the performance of the higher sampling

rate after around 800 steps. We therefore see that with better information, the

best response algorithm is able to perform well on this problem even without

accurate models of the other agents, but when the sampling rate is very low, the

best response algorithm is able to compensate for this by learning.

Consequently, it seems that the best response algorithm is performing well

primarily on the basis of the sampled best response, rather than accurate estimates

of the behaviour of the others being critical. In order to investigate further, we

compare the algorithms on some smaller problems which the POSG algorithm is able

to run on, first looking at the effects of changing sample rates in more detail, and

Chapter 6 Coordination in the presence of partially observable states 147

then varying two parameters relating to the character of the problem (visibility

and victim distributions). This allows us to gain insights into the performance of

our algorithm as the problem nature is changed. We also investigate parameters

relating to the scale of the problem (number of agents, and size of board). For each

of these experiments we compare the total reward after 150 steps—from figure 6.8

we can see that this is sufficient to show the differences between the algorithms or

settings.

6.2.2.3 Varying the visibility

As the visibility increases and all agents have a better view of the scenario,

we expect that the performance of all algorithms will improve. However, we

expect the probabilistic algorithms (POSG and best response) to be at less of a

disadvantage than the handwritten policy for the lower visibilities—this is because

the handwritten policy always behaves as though the visibility is 100%, and so it

does not do any exploration actions.

In more detail, figure 6.9 demonstrates the effects of varying visibility on a 3x3

board and on a 7x7 board, each with three agents. In figure 6.9(a) we see the

performance of the POSG algorithm is much worse than either the smart policy

or the best response policy and fluctuating at lower visibilities, but noticeably

improving as the visibility is increased. However, both the smart policy and the

best response policy do reasonably well even at the lower visibilities, but there is

no discernible difference between them. This is because three agents on a three-by-

three board can do fairly well using the very simple strategy of digging where they

see victims and can probably directly observe most of the board between them.

By contrast, figure 6.9(b) shows the performance on the larger board. We do not

show the slow POSG algorithm on this problem since it does not meet our imposed

time constraint (1 minute per step); the baseline of the null policy is at around

-90. Here, we see that as expected the best response policy does outperform

the smart policy at lower visibility levels, with the smart policy approaching the

Chapter 6 Coordination in the presence of partially observable states 148

-20

-15

-10

-5

0

5

0 0.2 0.4 0.6 0.8 1

reward

visibility

smart
best response

POSG

(a) 3x3 board

-20

-15

-10

-5

0

0 0.2 0.4 0.6 0.8 1

reward

visibility

smart
best response

(b) 7x7 board

Figure 6.9: Effects of varying visibility

Chapter 6 Coordination in the presence of partially observable states 149

performance of the best response policy as the visibility increases, although the

best response policy continues to outperform the smart policy.

6.2.2.4 Varying the victim arrival rate

As well as varying the visibility, we can vary the problem by adjusting the victim

arrival rate and thus victim density. We expect that increasing the rate at which

victims arrive, pa, and thus the overall density of victims, will make the problem

easier, as agents can do well with the simple strategy of digging out the victims

around them. As can be seen in figure 6.10, the reward for the null policy drops

sharply—this is because there are more victims dying.

As the arrival rate increases, causing the victim density to increase, the optimal

strategy approaches the very simple strategy of digging if there are any nearby

victims. On the smaller problem, we see little improvement in the three policies

beyond an arrival rate of around 0.5, indicating that the optimal strategy has been

reached by all by this point. On the larger problem (figure 6.10(b)), the smart

policy and best response policy continue to improve across the graph, indicating

that there is some sophistication needed in the strategies even at the high victim

densities. As expected, on the larger problem, the best response policy slightly

outperforms the handwritten strategy due to its better handling of the imperfect

visibility.

For the next sections, we fix the visibility at 0.5 and the arrival rate at 0.05, as

discussed in section 6.2.1. We go on to investigate the scaling properties of the

algorithms.

6.2.2.5 Varying problem size factors

The difficulty of the rescue problem scales exponentially with the size of the board

and the number of agents, which are related to the number of states and the

number of joint actions respectively. Furthermore, in our implementation, all

the agent threads were running on the same machine as one another and the

Chapter 6 Coordination in the presence of partially observable states 150

-60

-50

-40

-30

-20

-10

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

reward

arrival rate

smart
null

best response
POSG

(a) 2 agents on 3x3 board

-300

-250

-200

-150

-100

-50

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

reward

arrival rate

smart
null

best response

(b) 3 agents on 7x7 board

Figure 6.10: Effects of varying victim arrival rate

Chapter 6 Coordination in the presence of partially observable states 151

-60

-50

-40

-30

-20

-10

0

10

2 3 4 5 6 7

reward

number of agents

smart
null

best response

(a) 7x7 board

-100

-80

-60

-40

-20

0

20

2 3 4 5 6 7

reward

number of agents

smart
null

best response

(b) 9x9 board

Figure 6.11: Effects of increasing the number of agents on the results for two
large boards

Chapter 6 Coordination in the presence of partially observable states 152

-150

-100

-50

0

3 4 5 6 7 8 9 10 11 12

reward

grid size

smart
null

best response

(a) 3 agents

-150

-100

-50

0

3 4 5 6 7 8 9 10 11 12

reward

grid size

smart
null

best response

(b) 5 agents

Figure 6.12: Effects of changing the board size on the results for 3 and for 5
agents

Chapter 6 Coordination in the presence of partially observable states 153

environment thread. Since every agent maintains its own belief state, the memory

requirements of our implementation scaled linearly with the number of agents.

Nonetheless, we were able to test our algorithm on boards of up to 12x12 (2173

states), and with up to 7 agents (80,000 joint actions).

Now, although 7 agents is not a huge number for an algorithm which we would

like to scale into dozens of agents, the primary limiting factor was the memory

requirement for our implementation. In more detail, figure 6.11 shows the effect

of increasing the number of agents on two larger boards, a 7x7 board and a 9x9

board. We observe that on the 7x7 board as the number of agents is increased,

the smart policy appears to saturate while the best response policy continues

to improve. The results are similar for both the 7x7 and the 9x9 board, although

the smart policy does not saturate so much on the 9x9 board—the larger problem

space provides more room for improvement.

The best response algorithm also performs well on the large boards with many

millions of states: with five agents nearly all the victims are rescued (the reward

does not fall far below 0) even on the largest (12x12) board. The smart

policy falls away by comparison. This reflects the results we have seen earlier

where the best response improves over the smart policy more as the board

size increases, a consequence of the way in which the best response policy

incorporates uncertainty and the need for search on larger boards. The results are

very similar for both three agents (figure 6.12(a)) and five agents (figure 6.12(b))

although, as expected, five agents are able to make more rescues than three (the

lines are slightly flatter), since they can parallelise more.

Thus, we have observed that the best response algorithm performs well by

comparison with a handwritten strategy designed for the same problem, and

requiring much less sampling than the POSG algorithm to achieve this performance.

Furthermore, the best response algorithm scales well, solving problems with

many states and increasing numbers of agents and improving on the handwritten

strategy for these large problems.

Chapter 6 Coordination in the presence of partially observable states 154

6.3 Summary

In summary, we have considered the problem of agent coordination in partially

observable systems, and demonstrated an approach to this problem using a

Bayesian learning mechanism, extending previous work on learning models of other

agents. This approach is effective for a cooperative scenario from the disaster

response domain. To emphasise, the novelties in this work lie in an extension of

online model-based learning techniques into partially observable domains, using

the finite automaton-based algorithm given in section 3.4.3. Thus, we have

substantiated the claim in section 1.4 that by using finite state machines to model

the policies of other agents we can extend online learning techniques into millions

of states and tens of agents.

To this end, we have examined the performance of this algorithm on a rescue

problem with respect to differing problem parameters, finding that its performance

consistently outperforms a handwritten strategy for this problem, more noticeably

so as the number of agents and the number of states involved in the problem

increase. We also observe that reducing the sampling rate of our algorithm has

only small effects on its performance, indicating that the best response calculation

is the most important feature—this is encouraging, as it enables us to use the best

response algorithm with few samples, resulting in greater efficiency. However, we

have commented that the limiting factor in running our algorithm, particularly

as the number of agents increases, is the memory usage of our implementation,

rather than the per-step time required.

To mitigate this limiting factor, we have investigated state clustering as described

in section 3.4.2 to reduce the number of abstract states considered by the agent,

showing that the use of clustering can improve the efficiency of the algorithm

without compromising its effectiveness, and furthermore, a judicious choice of

cluster sizes can in fact give better results for a particular problem size.

Although the work described above is encouraging, there remain a number of areas

in which improvement can be made. As well as scaling the model into higher

Chapter 6 Coordination in the presence of partially observable states 155

numbers of agents and larger state spaces, using a more efficient implementation

for the environment and agents, and running the agents on distributed machines,

there are improvements which can be made to the model. In particular, we propose

to move beyond the scope of the current work, considering cases in which the

environmental dynamics are unknown or are changing, and in which agents are

able to enter and leave the environment as the problem progresses. As discussed

in section 3.2, the algorithm we have presented can in principle be used to learn

fixed parameters such as parts of the environmental dynamics, by treating these

parameters as a part of a “grand state” from which observations are made. This

is the subject of the next chapter.

Chapter 7

Coordination in the presence of

dynamism and openness

In this chapter we substantiate the claim in section 1.4 that our model-based

solution is able to handle changes in the world effectively, something which existing

related models do not consider. To this end, we take the model of chapter 3 for the

specific case in which the actions of the other agents and the transition function

are known, while the state is only partially observable, and the behaviours of

other agents are known, and explain how it can be applied to dynamic and open

domains.

In more detail, in this chapter we experiment with making changes in the

environmental dynamics during the scenario (section 7.2). This change may be

either a substantial instantaneous change (modelling, for example, an aftershock

in an earthquake) or a gradual change (i.e., a very small change at each timestep,

for many steps: this models situations where, for example, a spreading fire is

gradually worsening an earthquake scenario or natural evaporation is gradually

improving a flood scenario).

We then experiment with open domains (section 7.3); adding new agents as the

scenario progresses, or removing some of the agents while the rest continue.

In every case, we assume that all the agents are aware of the new situation

156

Chapter 7 Coordination in the presence of dynamism and openness 157

immediately. This simplifying assumption is necessary for conformity with our

model, although generally unrealistic in the real world, and in section 8.3.5 we

sketch an extension to our model which would allow agents to infer when the

environment has changed.

7.1 Modelling dynamic and open domains

While the problems of open domains and dynamic domains are in general quite

different problems, the formulation we have described allows for both to be treated

in the same way. Therefore, we discuss them together here. Specifically, we will

use the model described in section 3.2, with known dynamics, partially observable

states and partially observable actions.

To include dynamic domains within this model, at specified points during a

simulation (not known to the agent beforehand), the environmental model will

be changed. We assume that the agent knows about the change and the new

dynamics immediately. Similarly, we include open domains by introducing an

agent to the environment at one or two points during the simulation, or removing

agents from the environment. Again, we assume that our agent knows about the

change immediately. As discussed in chapter 1, in both cases assuming perfect

knowledge may be unrealistic, but investigating these cases provides stepping

stones to future work with uncertain information.

Within our framework, both cases are straightforward to model. The beliefs that

have been generated at each step are considered to be prior beliefs for the next step,

so there is no difficulty with simply changing the model at a particular timestep.

Over the next several timesteps the agent will gradually readjust to the new model.

Similarly, it is no problem to remove an agent from our agent’s model, or add a

new one. In adding a new agent we have a choice of either using a uniform prior

over its behaviour and belief state, or making some assumptions about the agent

based on the other agents in the system: for simplicity we will use the uniform

priors.

Chapter 7 Coordination in the presence of dynamism and openness 158

In the rest of this chapter we describe how we evaluate these two models using

dynamic (section 7.2) and open (section 7.3) versions of the ambulance rescue

problem. For both cases, as in chapter 6, we compare our strategy against the

Bayesian game approximation using the finite-horizon approximation technique

(Emery-Montemerlo et al., 2004) (“POSG”) on small problems, and against our

handwritten strategy (“smart”). However, while previously our interest was in the

relative success of the strategies, in this section our interest is in how effectively

they adapt to the changing circumstances. Now, when environmental changes

occur, both the smart policy and the POSG policy should adapt instantly as

they are doing no learning. Both policies should therefore demonstrate optimal

adjustments.

7.2 Ambulance rescue in dynamic domains

We carry out two classes of experiments: single changes to the environment, both

instantaneous and gradual, and multiple changes to the environment, changing

the settings in one direction and then returning them to their original values.

In each set of experiments we look at changes which make the problem more

difficult, and changes which make the problem easier. The next section outlines

our experimental setup in more detail and then section 7.2.2 provides our results.

7.2.1 Experimental setup

We keep ld = lr = 4 and v=0.5, as before. We experiment on a smaller problem

with m = n = 5 and k (the number of agents) = 2, in order to compare against

the slow POSG policy, and on the medium problem with m = n = 7 and k = 3 in

order to see how our strategy behaves in larger problems.

To work with our approximations, we also have to fix the maximum number

of clusters, the length of observation strings, and the sampling rate. Based on

the results from chapter 6, we set the number of clusters to 200, the length of

Chapter 7 Coordination in the presence of dynamism and openness 159

observation strings at 25 observations, and the sampling rate at 25. For each

of these parameters, the solution time increases at least linearly and we can see

from section 6.2.2.1 that these choices are sufficient to find good solutions without

being overly demanding of time. In particular, we discovered that surprisingly few

observation clusters are necessary in order to achieve good results. Furthermore,

having few observation clusters, thus restricting the possible FSMs, results in

agents quickly converging on a particular choice of FSMs and thus stabilising

their own strategies.

Finally, in each experiment we adjust the (death rate, unbury rate, arrival rate)

parameters (pd, pr, pa). Increasing the death rate makes the problem harder for

the agent (civilians die faster if they are not rescued), as does lowering the unbury

rate (it takes longer to effect a single rescue). Increasing the arrival rate was

investigated in chapter 6, where we showed that an increased arrival rate makes it

easier for the agent to find a strategy, because there are more civilians nearby and

it becomes effective just to dig on the spot. However, as the arrival rate increases,

the death rate and so rewards are lower even though the “good” strategy is easier

to find.

This leads to the following parameter choices:

Single, one off change: Here, we begin by taking a combination of parameters

which we have previously seen is challenging for all strategies and requires

cooperation between agents to be really successful (0.35, 0.25, 0.2), and make

a single change which makes the problem much easier. However, although the

new version of the problem requires less cooperation during individual rescues, it

is now more important for the agents to spread out effectively (when the arrival

rate is 0.2 the scenario comes to have a high density of victims, meaning that a

strategy of digging locally does well). We also invert the problem, starting with

the easier strategy and moving to the harder one. These parameters were chosen

in order to show a clear distinction between the two parts of the problem, while

having the easier problem not so easy that all the victims can be rescued all the

time:

Chapter 7 Coordination in the presence of dynamism and openness 160

Getting easier: Getting harder:

pd 0.35→ 0.25 0.25→ 0.35

pr 0.25→ 0.35 0.35→ 0.25

pa 0.2→ 0.12 0.15→ 0.23

Single, gradual change: These gradual changes begin with the same parameters

as the oneoff changes. The changes that are made at each step are one-hundredth

of the oneoff change. We show the change continuing over 300 steps (150 steps for

the small problem) in order to observe the effects of the change over a long time

period. This means that by the end of the run, the problem has become much

harder (or easier) than the oneoff variant, enabling us to observe the effects of the

changes more clearly.

Getting easier: Getting harder:

pd 0.35→−0.001/step −0.05 (300 steps) 0.25→0.001/step 0.55 (300 steps)

pr 0.25→0.001/step 0.55 (300 steps) 0.35→−0.001/step 0.05 (300 steps)

pa 0.2→−0.0005/step 0.05 (300 steps) 0.15→0.0005/step 0.3 (300 steps)

Double, one off change: These runs are similar to the oneoff changes described

above and we use the same choices of parameters. However, after making the

problem easier, we then make it harder, to see how the agents are able to cope

with making the adjustment when they have previously adjusted the other way.

We allow the same time (300 steps for the medium problem) between the two

changes.

Getting easier, then harder: Getting harder, then easier:

pd 0.35→ 0.25→ 0.35 0.25→ 0.35→ 0.25

pr 0.25→ 0.35→ 0.25 0.35→ 0.25→ 0.35

pa 0.2→ 0.12→ 0.2 0.15→ 0.23→ 0.15

Double, gradual change: Finally, we repeat the gradual changes with the

adjustment taken back the other way after 300 steps (150 for the smaller problem).

For these results we show another 300 steps of the problem after the parameters

have returned to their original settings, taking the parameter beyond its initial

Chapter 7 Coordination in the presence of dynamism and openness 161

setting. We do this because we found that we can see more of what is happening

with the longer runs.

Getting easier, then harder: Getting harder, then easier:

pd 0.35→−0.001/step −0.05 0.25→0.001/step 0.55

→0.001/step 0.65 (300 steps, 600 steps) →−0.001/step −0.05 (300 steps, 600 steps)

pr 0.25→0.001/step 0.55 0.35→−0.001/step 0.05

→−0.001/step −0.05 (300 steps, 600 steps) →0.001/step 0.05 (300 steps, 600 steps)

pa 0.2→−0.0005/step 0.05 0.15→0.0005/step 0.3

→0.0005/step 0.35 (300 steps, 600 steps) →−0.0005/step 0 (300 steps, 600 steps)

For all of these experiments, we performed runs on the medium problem, a 7x7

board with three agents, thereby investigating the effect of a problem which has

millions of states and some scope for coordination. For the medium problem, we

tested our best response strategy against the handwritten smart strategy. In

each case, we began the environmental changes after 300 steps, giving the agents

plenty of time to settle into a strategy, particularly given the parameter choices

discussed above.

We also felt it would be useful to observe the POSG strategy in these domains. As

shown in chapter 6, the POSG strategy is impractical to run on the medium problem.

Therefore, we did a set of tests on a smaller problem, with a 5x5 board and two

agents. For this problem, because there are far fewer states and consequently far

fewer possible observations, less “settling down” time is needed and so we ran the

experiments for half the time, bringing in the environmental changes after 150

steps. We note that, as shown previously, setting the sampling rate to 25 rather

than, say, 50 or 100 has a more noticeable effect on the POSG strategy than on

either of the other strategies, and so throughout the POSG strategy, which we will

see performing less well than the others, could be improved relative to the other

two by increasing the number of samples (although this improvement would come

with a time penalty exponential to the number of samples and thus the rate of

improvement).

Chapter 7 Coordination in the presence of dynamism and openness 162

As before, we carried out several runs of the problem, varying the initial placement

of civilians and randomising their arrival and visibility. The same random seed was

used to initialise each of the test algorithms in each run. The next section explains

our key results. The error bars included in the results show the 95% confidence

intervals around each point; in these tests we have shown the reward during the

course of an averaged run of several hundred steps. For ease of reading, we have

only shown the error bars every 20 steps, and we have staggered the choice of steps

for the different algorithms.

7.2.2 Experimental evaluation

In this section we show the results of the experiments described above, in the

classes given: a single oneoff change (section 7.2.2.1); two oneoff changes (section

7.2.2.2) and finally two gradual changes (section 7.2.2.3), showing the similarities

and difference between these different variants. We do not show the single gradual

change because of its similarities to the double gradual change. The relationship

between single and multiple changes is shown over the first two sections for the

oneoff changes, and we feel it would be needlessly repetitive to rehash it over the

gradual changes.

7.2.2.1 Single, one off changes

The simplest experiments we carried out make a single, one-off change to the

environmental dynamics, which is immediately known to all agents. To this end,

figure 7.1 shows averaged runs when the change makes the problem harder and

figure 7.2 shows the averaged runs when the change makes the problem easier.

With each of these changes, we expect to see the smart policy and the POSG policy

immediately adapting to the new dynamics, turning a corner quickly, since neither

of these policies does any form of learning.

By contrast, we expect to see the best response policy doing some learning

as it starts before settling into a straight line, and then more learning when

Chapter 7 Coordination in the presence of dynamism and openness 163

-300

-250

-200

-150

-100

-50

0

0 50 100 150 200 250 300

reward

timestep

POSG
best response

smart

(a) 5x5 board, 2 agents

-2500

-2000

-1500

-1000

-500

0

0 100 200 300 400 500 600

reward

timestep

best response
smart

(b) 7x7 board, 3 agents

Figure 7.1: Single, one off change in the environmental dynamics, making the
problem harder

Chapter 7 Coordination in the presence of dynamism and openness 164

the environmental dynamics change. In fact, we see that for the problem and

parameters we have chosen, with the small clustering value and relatively long

observation strings resulting in the best response policy turning the corner as

quickly as the smart policy. In fact, it is the POSG policy which shows a very

slight curvature. This is because the POSG relies on sampling from the belief state,

which takes a few steps to “catch up” with the new dynamics. Although the other

policies sample from the belief state, it transpires that because they rely less on

the other agents to behave according to shared knowledge, with more unknown

information they simply perform a best response to “random”, which turns out to

be quite an effective strategy on this problem. The effects are even more marked

on the medium sized problem.

Another effect which is visible in both cases, but particularly on the medium

problem, is that when the problem is made easier after 150 steps, the agents do

better than they did on the same variant of the problem after timestep 0. This

is a consequence of: (1) the agents having spread out across the board, getting

themselves into advantageous positions; (2) the agents having built up belief states

over the previous steps, so that at the change point they have a good idea of the

situation; (3) in the case of the best response policy, this belief state including

some knowledge about the behaviour of the other agents. This last point is a small

contributor because all the agents must re-adapt their behaviour according to the

new dynamics.

In the next section we consider what happens when having changed the scenario

in one direction, it is then changed back in the other direction.

Chapter 7 Coordination in the presence of dynamism and openness 165

-250

-200

-150

-100

-50

0

0 50 100 150 200 250 300

reward

timestep

POSG
best response

smart

(a) 5x5 board, 2 agents

-250

-200

-150

-100

-50

0

0 100 200 300 400 500 600

reward

timestep

best response
smart

(b) 7x7 board, 3 agents

Figure 7.2: Single, one off change in the environmental dynamics, making the
problem easier

Chapter 7 Coordination in the presence of dynamism and openness 166

7.2.2.2 Multiple, oneoff changes

Figures 7.3 and 7.4 show the effects of carrying out a second change in the

environment, restoring it to its initial value. We expect that the behaviour will be

the same for particular parameter settings, whether the parameters are brought

in as the first change to a scenario or the second. The only difference we expect

to see is that the advantages of a developed belief state and good position will

have been reaped on the first change and will not be improved upon when the

environment is changed again.

In fact, in figure 7.3 we see in the small problem that the best response policy

has learned more about the situation between the two changes. Consequently, its

performance is noticeably better on the second iteration of the “easy” problem,

particularly for the small variant of the problem, for which there is less to learn.

Another effect which we see in the small variant of the problem is that, as with

the single change, the POSG policy does not adapt as well to the more difficult

environment (figure 7.4)—this is just because the POSG policy is doing less well

anyway and the effect is more marked when the problem becomes more difficult.

Now, given that we have shown in the previous sections the advantages of a good

belief state, we consider in the next section what happens when the dynamics are

changing continually, so that agents cannot maintain such a good belief state.

7.2.2.3 Multiple, gradual changes

Figures 7.5 and 7.6 show the effects of changing the agents’ environment gradually.

Specifically, in figure 7.5, we show the agents’ environment getting gradually more

difficult over three hundred steps (150 for the small problem), and then improving

again for six hundred steps (300 for the small problem), so that after three hundred

steps (150 for the small problem) the environment is back at its starting point and

after another three hundred (150 for the small problem) it is much easier than it

was to start with.

Chapter 7 Coordination in the presence of dynamism and openness 167

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 50 100 150 200 250 300 350 400 450

reward

timestep

POSG
best response

smart

(a) 5x5 board, 2 agents

-1500

-1000

-500

0

0 100 200 300 400 500 600 700 800 900

reward

timestep

best response
smart

(b) 7x7 board, 3 agents

Figure 7.3: One off changes in the environmental dynamics, making the
problem harder and then easier

Chapter 7 Coordination in the presence of dynamism and openness 168

-400

-350

-300

-250

-200

-150

-100

-50

0

0 50 100 150 200 250 300 350 400 450

reward

timestep

POSG
best response

smart

(a) 5x5 board, 2 agents

-500

-400

-300

-200

-100

0

0 100 200 300 400 500 600 700 800 900

reward

timestep

best response
smart

(b) 7x7 board, 3 agents

Figure 7.4: One off changes in the environmental dynamics, making the
problem easier and then harder

Chapter 7 Coordination in the presence of dynamism and openness 169

-100

-50

0

50

0 100 200 300 400 500 600

reward

timestep

POSG
smart

best response

(a) 5x5 board, 2 agents

-1200

-1000

-800

-600

-400

-200

0

0 200 400 600 800 1000 1200

reward

timestep

best response
smart

(b) 7x7 board, 3 agents

Figure 7.5: Gradual changes in the environmental dynamics, making the
problem harder and then easier

We expect to see, for all policies, that as the environment gets more difficult the

rewards drop increasingly quickly. Furthermore, since the agents will find it hard

to track an accurate belief state with the changing environment (even though

Chapter 7 Coordination in the presence of dynamism and openness 170

-200

-150

-100

-50

0

0 100 200 300 400 500 600

reward

timestep

POSG
smart

best response

(a) 5x5 board, 2 agents

-500

-400

-300

-200

-100

0

100

0 200 400 600 800 1000 1200

reward

timestep

best response
smart

(b) 7x7 board, 3 agents

Figure 7.6: Gradual changes in the environmental dynamics, making the
problem easier and then harder

Chapter 7 Coordination in the presence of dynamism and openness 171

they know about all the changes), we expect that the performance should become

worse than for the same strategies after a oneoff change. Counteracting this, as the

problem gets more difficult the agents will tend to spread out more and dig locally

more rather than teaming up to rescue urgent victims in more far-off locations:

this is because it becomes more challenging for them to reach far-off locations in

time and because there will be more local victims as the arrival rate increases. In

turn, this means that although the belief state becomes less accurate for distant

victims, it matters less because the agents are not giving much consideration to

distant victims in their strategy—particularly in the best response policy.

Looking first at figure 7.5, we note the following points:

• For all strategies, as soon as the environment begins to change, the strategy

begins to perform better—even though the change makes the environment

more difficult. This is an artefact of the probability distributions resetting

at that point

• However, as the problem continues to get more difficult, the strategies

continue to perform well. In the small problem, there is very little worsening

as the problem becomes increasingly difficult, while in the large problem

both policies can be seen getting gradually worse, but particularly the best

response policy which, contrary to expectations, does not handle the more

difficult environment well. This indicates that as the problem gets more

difficult, the effects of a good belief state (which is lost during the gradual

changes) are more important than the effects of a localised digging strategy,

particularly on the larger problem.

• When, at 300 steps on the small problem and 600 steps on the large one,

the problem difficulty reverts, the best response strategy improves again

at about the same rate it started to fail. By the time the values return to

their original values, both the smart and best response have managed to

manoeuvre to positions where they are rescuing all the victims.

Chapter 7 Coordination in the presence of dynamism and openness 172

When the change is made in the other direction, making the problem easier, we

see (figure 7.6):

• The easing and then worsening of the problem can be seen most clearly for

the POSG policy on the small problem. This begins to improve immediately

the change is made at 150 steps and then improves more gradually to be

saving all victims by 300 steps, when the environment is worsened again.

• As the environment returns to its original value and then continues to become

more difficult, all the policies do much better than they did on the same

environment over the first 150 steps, but in this case the best response

policy manages better than the smart policy; the inverse of the previous

section.

Overall, we have seen that generally, after settling into the problem, the agents do

better than they did initially. This is because they have developed more accurate

belief states and, particularly, better positioning. The effects of better positioning

are noticeable especially when the problem is made more difficult, forcing the

agents to spread out, and then eased off again. In this case, the agents do much

better on the easier problem than they were doing initially. We note from this

that the agents initially are not finding the best strategy for the scenario, but do

not seem to be improving their strategies much until forced to by environmental

changes. Consequently, future work could try and find ways of improving on our

policies to allow them to do so.

In the next section, we investigate a related problem where the environmental

dynamics remain constant, but agents may enter and leave the scenario during

the run of the problem.

7.3 Ambulance rescue problem in open domains

As with the dynamic domains, we experimented both with single changes (a group

of agents entering or leaving the scenario) and multiple changes (when agents may

Chapter 7 Coordination in the presence of dynamism and openness 173

come or go at several points during the scenario). To this end, in section 7.3.1 we

describe our experimental setup in more detail before going on to give and explain

our results in section 7.3.2.

7.3.1 Experimental setup

In section 6.2.2.5 we noticed that on a 7x7 board the smart policy does not make

good use of the larger numbers of agents, with performance being just the same

for five agents as seven. Even with a 9x9 board, the improvements with larger

numbers of agents are small. We therefore took the 9x9 board as our “medium”

problem, rather than the 7x7 board, and also investigated a “small” problem of

5x5 and a larger problem of 15x15.

Now, although we previously compared with the POSG policy, in these experiments

doing so was not possible, for two reasons. Firstly, the POSG policy has time

requirements exponential in the number of agents and so it is not feasible to run

experiments with more than three agents. Secondly, the POSG policy is not designed

for open domains. All the agents are assumed to begin with the same shared seed

and their belief states are evolved from this shared seed. Consequently, it would

be necessary to modify the POSG policy for it to function in open domains. We

therefore just looked at the smart and best response policies.

In more detail, keeping all the parameters but the number of agents and the board

size set as before, we carried out the following experiments:

Single change: As the problem size increased, we wanted to increase the size of

the single change, to show the difference to best effect for that problem. Thus we

have a difference of two agents for the 5x5 board, of three agents for the 9x9 board

and of four agents for the 15x15 board. Now, in no case do we believe it useful

to consider more agents than can fit on one side of the board, since this would be

disproportionate for the kinds of scenario we are trying to model, and does not

promote search. Therefore, for the 5x5 board we use a maximum of five agents.

For the larger boards we go up to seven agents, giving us the following settings:

Chapter 7 Coordination in the presence of dynamism and openness 174

Easier Harder

5x5 3→ 5 agents 5→ 3 agents

9x9 4→7 agents 7→4 agents

15x15 3→7 agents 7→3 agents

Multiple changes: Unlike the dynamic problem where we made the problem

better or worse, and then reset it, here we begin with a moderate number of

agents, and take the total number to both extremes, so as to see the effects of both

small and large changes in the number of agents. For the 5x5 problem, this means

beginning with three agents, and both dropping to one agent (no coordination

possible at all!) and increasing to five agents. For the biggest board (15x15),

we begin with five agents and go to extremes of one agent and seven agents, so

as to see the maximum changes. For the medium board (9x9) changes we have

not looked at such dramatic changes, so that at least one problem has continual

coordination, which is our primary interest in these investigations. In more detail,

we use the following settings:

Easier then harder Harder then easier

5x5 3→ 5→ 1 agents 3→ 1→ 5 agents

9x9 5→ 7→ 5→ 3 agents 5→ 3→ 5→ 7 agents

15x15 5→ 7→ 3→ 1 agents 5→ 1→ 3→ 7 agents

We make the changes after 150 steps for the small problems and 400 steps for

the larger problems (to give the agents more time to settle into larger scenarios).

Where there are multiple changes, these occur every 150 steps or every 400 steps.

Taking these settings, the next section shows the results of our experiments.

7.3.2 Experimental evaluation

This section gives results for the experiments as outlined above: first single changes

(section 7.3.2.1) and then multiple changes (section 7.3.2.2), showing all three

problem sizes for each experiment type.

Chapter 7 Coordination in the presence of dynamism and openness 175

7.3.2.1 Single changes

Figure 7.7 shows the three problem sizes with the number of agents increasing half-

way through the run. In each case, we expect to see that as new agents are added,

the strategies improve, and in the case of the best response policy continue to

improve for some time, as the agents adapt to one another.

In fact, for each case we see the same effect on the best response policy which

responds immediately to the increase in the number of agents. In particular, we

notice that the best response policy does not need a learning phase to adapt

to new agents effectively. Indeed, as we have seen with previous results, there is

little or no improvement in the policy over time, partly a consequence of the small

number of clusters we are using.

By contrast, the smart policy does not improve at all with the addition of new

agents: in each case the only evidence of the additions is in the size of the error

bars which increase when there are more agents around, indicating that the policies

vary more. In fact, the error bars generally increase over time (as the agents all

begin in the same place on a blank board, and over time different decisions result

in scenarios diverging) so this effect is not particularly relevant.

Figure 7.8 shows the equivalent experiment, beginning with many agents and

reducing their number. Since the experiment is similar to the above, but with the

increases and decreases interchanged, we expect to see similar graphs, but with

the flatter and steeper parts interchanged. As before, there is little change in the

results from the smart policy when the number of agents is reduced. By contrast,

the best response policy does less well with fewer agents (as we discovered in

the previous chapter). The effect is more noticeable as the board size increases,

since on larger boards the smart policy manages to make use of more agents (as

we showed in section 6.2.2.5).

Chapter 7 Coordination in the presence of dynamism and openness 176

-150

-100

-50

0

0 100 200 300 400 500 600

reward

timestep

best response
smart

(a) 5x5 board, 3→5 agents

-700

-600

-500

-400

-300

-200

-100

0

100

0 100 200 300 400 500 600 700 800

reward

timestep

best response
smart

(b) 9x9 board, 4→7 agents

-2500

-2000

-1500

-1000

-500

0

0 100 200 300 400 500 600 700 800

reward

timestep

best response
smart

(c) 15x15 board, 3→7 agents

Figure 7.7: One off change: increasing the number of agents

Chapter 7 Coordination in the presence of dynamism and openness 177

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0 100 200 300 400 500 600

reward

timestep

best response
smart

(a) 5x5 board, 5→3 agents

-400

-350

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400 500 600 700 800

reward

timestep

best response
smart

(b) 9x9 board, 7→4 agents

-1200

-1000

-800

-600

-400

-200

0

200

0 100 200 300 400 500 600 700 800

reward

timestep

best response
smart

(c) 15x15 board, 7→3 agents

Figure 7.8: One off change: decreasing the number of agents

Chapter 7 Coordination in the presence of dynamism and openness 178

7.3.2.2 Multiple changes

Figure 7.9 shows the effects of changing the number of agents more than once,

beginning from a medium number of agents (3 on the 5x5 board and 5 on the two

larger boards) and first increasing the number, then decreasing it: on the larger

boards the number of agents is decreased twice, more on the 15x15 board to better

show the effect of differing numbers of agents on this big board. We expect to see

similar results to the above experiments with just one change. Since we did not

see much learning or adaptation in the single change experiments we do not expect

to see it here either.

In figure 7.9 we see that the best response policy behaves as expected. Again,

increasing the number of agents results in the team doing better and decreasing

the number of agents results in the team doing less well, and again there is little

evidence of adaptation. If we look closely at the results we can see that the

line is slightly steeper immediately after the changes (at 300 and 600 on the

smaller board, and at 400, 800, and 1200 on the larger board) but this effect has

disappeared within 20 steps, indicating that the agents spread out immediately.

In figure 7.10, the scenarios begin from the same starting points but remove agents

before adding them. As before, the lines for the best response policy are roughly

proportional to the number of agents present at the time and the change points

can be seen as bends in the line. However, it is noticeable that where the number

of agents is increased later in the run, there is some curvature of that section of the

line. This corresponds to the new agents arriving in board square 0 and gradually

spreading out to more useful positions.

As before, the smart policy does not respond so well to changes in the number of

agents. In figure 7.9 the only noticeable difference in the policy is on the 15x15

board. This agrees with our previous observation that the smart policy only

succeeds in exploiting larger numbers of agents on much larger boards than the

best response policy. We note that the rate of negative reward for the smart

policy is in each case very similar to the rate for the last section of the best

Chapter 7 Coordination in the presence of dynamism and openness 179

-250

-200

-150

-100

-50

0

0 100 200 300 400 500 600 700 800 900

reward

timestep

best response
smart

(a) 5x5 board, 3→ 5 → 1 agents

-1200

-1000

-800

-600

-400

-200

0

0 200 400 600 800 1000 1200 1400 1600

reward

timestep

best response
smart

(b) 9x9 board, 5→ 7 → 5 → 3 agents

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 200 400 600 800 1000 1200 1400 1600

reward

timestep

best response
smart

(c) 15x15 board, 5→ 7 → 3 → 1 agents

Figure 7.9: Increasing the number of agents and then decreasing the number

Chapter 7 Coordination in the presence of dynamism and openness 180

response policy, indicating that the smart policy just isn’t making good use of

the additional agents. Similarly, in figure 7.10, although slight bends in the smart

line can be seen, it is only on the 15x15 board that there is a noticeable change.

Thus, we have observed that firstly the best response policy adapts quickly to

changes in the environment competing favourably with a handwritten strategy

for the same problem. We have also seen that although over time both the best

response policy and the smart policy are able to improve their strategies by

improving agent positioning and filling in the agent belief states, there is little

learning or adaptation going on in the best response policy with the parameters

we have chosen, and proposed that future work could investigate this property

further. Secondly, we have shown that our best response policy, unlike the POSG

policy, is able to function in open domains, responding as quickly to the additional

or removal of agents as a handwritten strategy for the same problem (which in

any case performs less well than the best response policy for high numbers of

agents).

Chapter 7 Coordination in the presence of dynamism and openness 181

-200

-150

-100

-50

0

0 100 200 300 400 500 600 700 800 900

reward

timestep

best response
smart

(a) 5x5 board, 3→ 1 → 5 agents

-1200

-1000

-800

-600

-400

-200

0

0 200 400 600 800 1000 1200 1400 1600

reward

timestep

best response
smart

(b) 9x9 board, 5→ 3 → 5 → 7 agents

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 200 400 600 800 1000 1200 1400 1600

reward

timestep

best response
smart

(c) 15x15 board, 5→ 1 → 3 → 7 agents

Figure 7.10: Decreasing the number of agents and then increasing the number

Chapter 7 Coordination in the presence of dynamism and openness 182

7.4 Summary

In summary, we have considered the problem of agent coordination in dynamic

and open domains, and demonstrated that our Bayesian learning algorithm is

able to handle both kinds of domain effectively without major adjustments to

the algorithm. This is in contrast to the related POSG algorithm described in

section 2.3.1 which can handle dynamic domains but not open ones. We have

then shown our Bayesian learning algorithm acting in a variety of dynamic and

open scenarios. Thus, we have substantiated the claim in section 1.4 that our

model-based solution is effective in scenarios with changes in the world: both

changes in the environment (dynamic domains) and agents entering and leaving

the scene (open domains). This is the first online learning solution to explicitly

consider these cases.

In so doing, we have found that our algorithm, like the handwritten solution,

responds quickly to changes in the scenarios, with the timing of the change having

only small effects on its consequences. We have also noted, firstly, that the effects

of good positioning and an up-to-date belief state, catalysed by a change in the

environment can result in a better performance than if the change never occurred,

and secondly, that there is little adaptation to new agents or learning going on

when the scenario is changed. While our algorithm is still outperforming the

handwritten strategy, these observations indicate that there may be room for

further investigation and we discuss some avenues for such investigation in section

8.3.2.

Having demonstrated that our general model can be practically implemented on

a medium scale problem, and is then able to handle partially observable actions

(chapter 5), partially observable states (chapter 6) and open and dynamic domains

(this chapter), we summarise all these results and conclude the thesis in the next

chapter.

Chapter 8

Conclusions

In this chapter we take stock of our work, outlining both what we have achieved,

and what avenues have been left open for future investigation. In doing so, this

chapter comprises three main sections: in 8.1 we give an overview of what has

been discussed so far, summarising the main points from the previous chapters;

section 8.2 then gives a more detailed view of the contributions we have made to

the state of the art; and finally, section 8.3 discusses the main avenues by which

our methods could be extended in the future.

8.1 Thesis Summary

This thesis has considered the problem of scalable agent coordination in uncertain

multi-agent systems. Typically, in a large multi-agent system, such as a disaster

scenario or a military operation, no agent will be able to see the entire scene

or be certain about how the other agents are viewing the scene or planning to

behave. This is particularly true if communication is limited, such as in disaster

scenarios in which time constraints or network failures may limit communication,

or military operations where secrecy is important. In order to coordinate with

others in such scenarios, agents must make inferences about one another from

their own observations and respond accordingly.

183

Chapter 8 Conclusions 184

To date, existing work has dealt with such problems either using negotiation

techniques within a system structure (Sims, Corkill, & Lesser, 2004) (Giampapa

& Sycara, 2001) (Excelente-Toledo & Jennings, 2005) or using techniques based

on formal POSG models (Emery-Montemerlo et al., 2004) (Bernstein et al., 2005)

(Oliehoek & Vlassis, 2007). Although there has been considerable interest in

making the latter tractable, the inherent complexity within such models has meant

that techniques which move beyond small problems have been obliged to use

domain-specific heuristics in evaluation (Ross, Pineau, et al., 2008).

Despite this, we took a particular interest in work which extends Markov decision

process models, as these models provide formal building blocks on which a

principled approach can be built, meaning that there is a framework available

for guarantees within the system. In particular, Bayesian MDP models such as

(Dearden et al., 1999), (Chalkiadakis & Boutilier, 2003), (Emery-Montemerlo et

al., 2004), (Ross, Chaib-draa, & Pineau, 2008) offer a principled solution to the

exploration-exploitation problem within unknown systems. However, each of these

approaches is limited to a specific case. Our first contribution was to develop an

approach to this problem using a Bayesian learning mechanism, generalising the

previous work on learning models of other agents. Chapter 3 described this model

in section 3.2, using Bayesian networks to visualise specific cases of the model and

thus as an aid in deriving the update equations for the system.

Furthermore, due to the difficulties associated with their inherent complexity, the

previous approaches were not scaled up to the large systems of interest to us. One

approach which has been shown to scale well for networked offline problems uses

finite state machines to model other agents (Marecki et al., 2008). We used this

insight to develop an approximate scalable algorithm applicable to our general

model, described in section 3.4.3, in combination with adapting a number of

existing approximation techniques including state clustering, described in section

3.4.2.

We have examined the performance of this algorithm on several cases of a rescue

problem with respect to differing problem parameters. Specifically, we evaluated

Chapter 8 Conclusions 185

first the case where agents are aware of the complete situation, but are not certain

about the behaviour of others. That is, our model with all elements observable,

except the actions (chapter 5). Secondly, we examined the more complex case

where agents can see the actions of others, but cannot see the full state and thus

cannot be sure about the belief state of others (chapter 6). Finally, we looked

at the performance of this partially-observable state model when the system was

dynamic or open (chapter 7).

We found that our best response algorithm consistently outperforms a handwritten

strategy for this problem, more noticeably so as the number of agents and the

number of states involved in the problem increase. We also observed (section

6.2.2.1) that reducing the sampling rate of our algorithm has only small effects

on its performance, indicating that the best response calculation is the most

important feature—this is encouraging, as it enables us to use the best response

algorithm with few samples, resulting in greater efficiency.

8.2 Research contributions

The main contributions of this thesis are thus twofold. First, we have outlined a

model for coordination in multi-agent systems which generalises existing models.

Secondly, we have demonstrated the use of this model in three specific cases. We

elaborate on these contributions below.

8.2.1 A general model for partially observable multi-agent

systems

In more detail, previous work (Chalkiadakis & Boutilier, 2003) (Emery-Montemerlo

et al., 2004) (Ross, Chaib-draa, & Pineau, 2008) has described online Bayesian

learning models for a number of variants on partially observable systems,

evaluating these models on small problems. We explicitly generalised these models

Chapter 8 Conclusions 186

to a general Bayesian learning model which can be applied to arbitrary partially-

observable multi-agent systems—this is the first such model. However, if nothing

is observable, then it will, obviously, be impossible to learn anything. Bayesian

network diagrams can be useful in visualising how to apply our model to any

particular case of the system, identifying the dependencies between the hidden

and observed variables in order to write down a factorised belief update.

Although Bayesian MDP models are theoretically elegant, for most cases they are

intractable to evaluate. For each step, the agent must evaluate the Bayesian belief

updates, which may be non-trivial, and then solve a best response equation over all

belief states. Practically, to solve real-world multi-agent problems, it is necessary

to approximate the system or parts of the system. We identified the finite state

machine as a model which has been used effectively to approximate agent belief-

based strategies in offline systems with partially observable states (Marecki et al.,

2008) and incorporated a finite state approximation into our online model. We

then extended our model with a statistical clustering technique to reduce the state,

or observation, space into a more compact higher level cluster space.

Given this approximate model, we explicitly instantiated, and evaluated our

algorithm in three specific partially observable cases. The first, with partially

observable actions, has not previously been treated within an explicit Bayesian

framework and we demonstrated the efficacy of the Bayesian approach within

this model. The second, with partially observable states, has been examined

within the model of (Emery-Montemerlo et al., 2004), which we extended. We

showed that applying our approximation framework enabled us to efficiently find

satisfactory solutions to much larger problems than have been approached with

related techniques. The third, applying the model to dynamic and open domains,

has not previously been considered within this context and we have shown that

we can apply our model to such domains without difficulty.

Chapter 8 Conclusions 187

8.2.2 Partially observable actions

A form of partial observability which has not received much attention in the

POMDP literature occurs in scenarios where an agent cannot fully observe the

actions of the other agents. The agent may be able to make inferences about

other agents, for example through state changes or reward observations. Generally,

learning techniques have approached such problems by considering the other

agents to be a part of the environment and thus treating the problem as one

of learning the environment. However, as argued by (Chalkiadakis & Boutilier,

2003), adaptive agents can have non-Markovian behaviour, so that it is not correct

to treat them as part of a Markov environment. Instead, by modelling the other

agents separately and explicitly marginalising over the expected behaviour in

calculating the value of a state, (Chalkiadakis & Boutilier, 2003) showed that

in fully-observable learning environments, it is possible to improve on such single-

agent approaches. In this context, in chapter 5 we instantiated a model related

to that of (Chalkiadakis & Boutilier, 2003). However, instead of the agent actions

observed and the environment unknown, our model has a known environment

but partially observable actions. In evaluating this model, which is the first

Bayesian learning model to explicitly consider other agents when they are not

fully observable, on a rescue problem, we demonstrated that it is effective against

a handwritten strategy for the same problem. We also extended the simple form

of this instantiation to include inference based on reward observations, again the

first Bayesian learning model to do so, and thereby demonstrating the flexibility

of model-based systems.

8.2.3 Partially observable states

By contrast, problems with partially observable states (POSGs) have been given

considerable attention, although much of this attention is still focused on offline

solutions—which are primarily appropriate to short-horizon problems for which

an n-stage policy can be found offline. Conversely, our interest is in long-term

Chapter 8 Conclusions 188

strategies where it is really necessary to find a short term approximate solution

at each step. Since POSGs are so common in the multi-agent world, a litmus test

of our general algorithm is its ability to solve a challenging POSG. In chapter 6

we showed how to instantiate our model for the POSG case, and demonstrated

its effectiveness and scalability in the rescue domain. Our algorithm is both

considerably more scalable and more successful in this problem than the existing

state of the art algorithm of (Emery-Montemerlo et al., 2004). Our algorithm also

performs better than a handwritten strategy for the rescue problem, particularly

on larger problems.

All such POSG models are exponentially complex in the number of agents and we

found that, in particular, the memory requirements for our agents formed a limiting

factor in scaling our model up beyond medium-sized systems. We investigated

observation clustering in an attempt to reduce the memory requirements of each

agent, with some success. We also observed that reducing the sampling rate of

our algorithm had only small effects on its performance, indicating that the best

response calculation is the most important feature—while this allows us to use the

best response algorithm with fewer samples, it indicates that the agents are not

exploiting the learned FSMs efficiently. Future work should explore the properties

of the learned FSMs in more detail and seek ways to improve on this learning.

8.2.4 Open and dynamic domains

One of the advantages of a model-based technique with explicit models for each

variable in the system is the ability to exchange or adapt any of these models

independently. This allowed us to apply our POSG algorithm to both dynamic

and open domains. Previous work on dynamic domains in the learning context

has assumed that a learner will adapt to the domain over time, but any guarantees

about convergence of the strategy cannot hold (Panait & Luke, 2005). Indeed, in

any dynamic system, if the system is changing faster than the learner can adapt,

convergence is neither possible nor desirable. Since the online POSG solutions we

considered above are, unlike our model, not adaptive, they respond instantly to

Chapter 8 Conclusions 189

changes in the environment. However, since our model’s performance is primarily

a function of its best response calculation, rather than its learned properties (the

other agent FSMs), we found that it also responded very quickly to changes in the

environment.

Furthermore, open systems have typically been left alone by the multi-agent

POMDP community, with algorithms such as (Emery-Montemerlo et al., 2004)

(Varakantham et al., 2007) relying on the set of agents remaining consistent

through the problem. By contrast, our model is able to handle fluidly agents

entering or leaving the system, simply adding new models to its set of agent models

or dropping them from the set as appropriate. The best response calculation at

the next step operates over the new set of agents, while all agents gradually adapt

to the change.

8.3 Future work

Although the work described above has made a number of advances to the state

of the art, there remain a number of areas in which improvement can be made.

In general, we have highlighted several of these in earlier chapters and here we

expand on these. As well as the engineering challenges associated with scaling

the model into higher numbers of agents and larger state spaces, using a more

efficient implementation for the environment and agents, and running the agents

on distributed machines, there are more fundamental improvements which can be

made to the model. We discuss each of these in turn below.

8.3.1 Scaling up using sophisticated approximation tech-

niques

In chapter 2 we identified some techniques which could be used to extend our

model into larger systems. Each of these techniques adds a layer of approximation

to the model, thus trading optimality for efficiency. Further investigation and

Chapter 8 Conclusions 190

experiments would be needed to determine the best way to implement or combine

these techniques.

Neural networks: neural networks are commonly used to implement function

approximation and thus to replace table lookups with parameterised func-

tions (Ren & Williams, 2003) (Baxter & Bartlett, 2000) (Fogel, 2002). A

small number of function parameters is learned, rather than many table

values (Sutton & Barto, 1998). In the context of our general model (section

3.2), functions could be used to represent any of the unknown models: the

environmental dynamics or the other agents’ behaviours. In the specific

context of the variant instantiated in chapter 5, neural networks could be

used to learn about agent behaviours: for each other agent, we would learn

a function from state variables to action choice. In the variant instantiated

in chapters 6 and 7, finite state machines already provide an approximation

over agent behaviours, thus function approximation has no part to play.

Principal components analysis: PCA provides a way to map high-dimensional

spaces into lower dimensional spaces. Previous work (Roy & Gordon, 2002)

has used PCA to map the belief space into a lower dimensional space.

However, the analysis operates over a body of experience and thus PCA

cannot be carried out immediately in an online problem. However, we believe

that it should be possible to build up some experience during the initial steps

and then reduce the number of dimensions used as the problem continues.

Hierarchical learning: Hierarchies provide a way to abstract higher-level infor-

mation, without losing the detailed information (Hoey, 2001) (Fischer et

al., 2004). There are a number of issues involved in exploiting hierarchical

abstractions efficiently. In particular: formulating abstractions; deciding

what level of the hierarchy is appropriate; constructing strategies across

different levels of hierarchies. In our work we have touched on using

statistical clustering for abstraction, but future work could extend our

abstraction techniques to use abstraction hierarchies.

Chapter 8 Conclusions 191

8.3.2 Finite state machine properties and improvements

As discussed in chapters 6 and 7, our agents only gain limited benefits by

maintaining finite state machine models, primarily performing well on the basis

of their best response computation. A starting point for future work is, therefore,

to investigate the properties of the finite state machines in detail, and to compare

their performance across a variety of multi-agent problems, with a view to

obtaining a clearer insight on their performance and learning rates.

Related to improving the policy abstractions (finite state machines), future work

could investigate action abstractions. Consider again the rescue problem described

in chapter 4 which we have evaluated our models on. Considering the domain, a

natural formulation for an agent’s decision making process, given a state, is for the

agent to decide a mapping from states to victims, or from states to target squares,

where the target square may be a search target rather than a victim. Indeed,

this is how the smart policy operates. A limitation of an action based policy is

that many different sequences of actions may target the same square and, even

given a substantial observation history, it is not clear that our FSM formulation

is able to encapsulate this notion of higher level actions. Approaches to higher

level actions include action hierarchies (Fischer et al., 2004), relational approaches

(Otterlo & Kersting, 2004) and topological mappings (Smith, 2002). In our work,

the necessity to find an abstraction which can be learned online, without domain

knowledge, indicates that clustering techniques such as statistical clustering or

topological maps may form an appropriate starting point for further work.

8.3.3 Theoretical properties

One of our motivations for using a principled approach was that it is possible

to specify precisely the properties of algorithms which have been built on a

well-understood theoretical framework. We have not discussed the theoretical

properties of our best response algorithm in this work, but believe that an

important direction for future study would consider best response in the context

Chapter 8 Conclusions 192

of the properties introduced in section 2.3 such as: convergence, rationality, regret

and dynamism.

By investigating these properties, we can begin to better identify the scenarios in

which our algorithm is most appropriate. For example, we have shown some

empirical data concerning the way our algorithm responds to change in the

environment; by investigating its convergence properties we might be able to better

identify how much dynamism we expect to be able to handle effectively. Another

example might be to quantify how well we expect our algorithms to be able to

handle stupid team members (for example, other agents who always take the same

action) or malicious agents, using regret properties.

As well as exploring the behaviour of our algorithm in particular scenarios,

theoretical investigations would enable us to quantify the effects of our various

approximations, subject to particular experimental conditions. This would

allow an experimenter to make informed decisions about the tradeoffs between

optimality and efficiency when deciding on experimental parameters such as

observation history length or number of clusters.

8.3.4 Incorporating graphical model techniques

In section 3.3 we introduced graphical models as a useful visualisation for partially-

observable problems. However, as well as a visualisation tool, framing our problem

as inference in a Bayesian network allows us to harness general techniques for

efficient belief update, based on message passing between the nodes of the tree

(Mackay, 2003). By making use of exact techniques such as the junction tree1, or

(for the continuous nodes) approximate techniques such as loopy belief propagation

(Murphy, Weiss, & Jordan, 1999), it may be possible to make the belief update

step much more efficient while still approximately correct, allowing us to scale up

to more agents with little cost.

1http://www.cs.ubc.ca/~murphyk/Bayes/jtree.html

http://www.cs.ubc.ca/~murphyk/Bayes/jtree.html

Chapter 8 Conclusions 193

Furthermore, the Bayesian network expression permits considerable freedom in

the description of variable dependencies. For example, we can separate out all

the state variables into individual nodes, using arrows to connect variables which

are not independent. Observability can then be considered at this finer-grained

level of individual variables. Consider again the full grand MDP model of section

3.2, in which none of the parameters are fully observable: we stated that such

a scenario was intractable to work with. However, if many of the variables are

mostly-observed or mostly-known, it would be possible to estimate the remaining

values efficiently using graphical update techniques.

A further extension of this would be to investigate the work of (Toussaint,

Harmeling, & Storkey, 2006) in our context. In this model, MDPs (or POMDPs)

are formulated as a dynamic Bayesian network (DBN): that is, a Bayesian network

with progression over time steps t1, t2, ...t3, similar to a hidden Markov model

(HMM) (Roweis, 2003), but with actions. Just as expectation-maximization

techniques such as the Baum-Welch algorithm can be applied to solve HMMs,

so they can be applied to find a solution to the DBN which maximises the

corresponding value function. This solution technique applies to POMDPs

and consequently, we believe, should be extensible to our multi-agent POSGs

which have been formulated as POMDPs. Such a technique might provide an

interesting anytime algorithm or an extension to an online algorithm, carrying out

expectation-maximisation sweeps during otherwise idle CPU cycles.

8.3.5 Future trends

We also believe that our model could be used for the following kinds of problem:

Competitive environments Although we have focused on cooperative prob-

lems in this thesis, our model is based on self-interested agents and thus is

equally applicable to problems which have competitive or malicious agents.

Future work could investigate how well the best response strategy fares in

scenarios such as a rescue scenario with journalists whose goals are contrary

Chapter 8 Conclusions 194

to the rescue agents, or a terrorist attack with terrorist agents obstructing

the best response agents.

Error-prone environments Throughout this thesis, we have assumed that

when an agent makes an observation that observation is correct. However, we

now suppose that some of the communicated observations may be subject

to error, either through system noise or, in the case of malicious agents,

deliberate misdirection. This adds an extra layer of uncertainty to the

agent’s belief state (Even-Dar, Kakade, & Mansour, 2007) and, in the case

of deliberate misdirection, requires us to consider notions of trust such as

(Patel, Teacy, Jennings, & Luck, 2005).

Environments with unknown dynamism Given models for noisy or error-

prone environments, it may be possible to apply similar techniques to

environments which are changing over time without the agent’s knowledge.

By assuming that the models the agent has may be noisy, as in (Even-

Dar et al., 2007), the agent can allow for changes in the environment.

Subsequently detecting these environmental changes and incorporating them

into its model could be done using Bayesian learning techniques in which the

initial environment forms the prior environmental model.

Continuous environments In section 5.1.1, we mentioned that to apply our

model in continuous environments it would be necessary to discretise the

continuous states or actions. However, there are existing models for

carrying out belief updates in continuous spaces and in particular continuous

POMDPs (Thrun, 2000) (Doshi & Gmytrasiewicz, 2005). Thus, extending

our model into such spaces would be an interesting future direction.

References

Aberdeen, D., & Baxter, J. (2002). Scaling internal-state policy-gradient methods

for POMDPs. In Proceedings of the nineteenth international conference

on machine learning (ICML 2002) (Vol. 2, pp. 3–10). Sydney, Australia:

Morgan Kaufmann.

Abul, O., Polat, F., & Alhajj, R. (2000). Multiagent reinforcement learning using

function approximation. In Institute of electrical and electronics engineers

transactions on systems, man, and cybernetics, part C (IEEE 00) (Vol. 30,

p. 485-497). Washington, DC, USA: IEEE.

Allen-Williams, M., & Jennings, N. R. (Forthcoming in 2009a). Bayesian

adaptation for complex dynamic systems. In M. Wang & Z. Sun (Eds.),

Handbook of research on complex dynamic process management: Techniques

for adaptability in turbulent environments. Hershey, Pennsylvania: IGI

Global.

Allen-Williams, M., & Jennings, N. R. (Forthcoming in 2009b). Bayesian

learning for cooperation in multi-agent systems. In C. L. Mumford & L. C.

Jain. (Eds.), Studies in computational intelligence: collaboration, fusion and

emergence. London, England: Springer-Verlag.

Amato, C., Bernstein, D. S., & Zilberstein, S. (2006). Solving POMDPs

using quadratically constrained linear programs. In Proceedings of the fifth

international joint conference on autonomous agents and multiagent systems

(AAMAS 06) (pp. 341–343). New York, USA: Association for Computing

Machinery.

195

Bibliography 196

Amit, A., & Markovitch, S. (2006). Learning to bid in bridge. Journal of Machine

Learning, 63 (3), 287–327.

Atkeson, C., & Stephens, B. (2008). Random sampling of states in dynamic

programming. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances

in neural information processing systems 20 (pp. 33–40). Cambridge, MA:

MIT Press.

Baxter, J., & Bartlett, P. L. (2000). Reinforcement learning in POMDPs via direct

gradient ascent. In Proceedings of the seventeenth international conference

on machine learning (ICML 2000) (pp. 41–48). San Francisco, California,

USA: Morgan Kaufmann.

Becker, R., Lesser, V. R., & Zilberstein, S. (2005). Analyzing myopic approaches

for multi-agent communication. In International conference on intelligent

agent technology (IAT 2005) (p. 550-557). Washington, DC, USA: IEEE

Computer Society Press.

Bernstein, D. S., Hansen, E. A., & Zilberstein, S. (2005). Bounded policy

iteration for decentralized POMDPs. In L. P. Kaelbling & A. Saffiotti

(Eds.), Proceedings of the nineteenth international joint conference on

artificial intelligence (IJCAI 2005) (p. 1287-1292). Denver, Colorado, USA:

Professional Book Center.

Bigham, J., Cuthbert, L., Yang, X., Lu, N., & Ryan, D. (2004). Using intelligent

agents for managing resources in military communications. Computer

Networks, 46 (5), 709–721.

Bishop, C. M. (2004). Neural networks for pattern recognition. Oxford, England:

Oxford University Press.

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision

processes. In Proceedings of the sixth conference on theoretical aspects of

rationality and knowledge (pp. 195–210). San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc.

Bowling, M. (2005). Convergence and no-regret in multiagent learning. In

L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information

processing systems 17 (p. 209-216). Cambridge, MA: MIT Press.

Bibliography 197

Bowling, M., & Veloso, M. (2001). Rational and convergent learning in stochastic

games. In Proceedings of the seventeenth International Joint Conference on

Artificial Intelligence (IJCAI 01) (p. 1021-1026). Seattle, Washington, USA:

Morgan Kaufmann.

Burke, J. (2003). Moonlight in Miami: A Field Study of Human-Robot Interaction

in the Context of an Urban Search and Rescue Disaster Response Training

Exercise. Unpublished doctoral dissertation, University of South Florida.

Burkov, A., & Chaib-draa, B. (2007). Multiagent learning in adaptive dynamic

systems. In Proceedings of the 6th international joint conference on

autonomous agents and multiagent systems (AAMAS 07) (pp. 1–6). New

York, USA: Association for Computing Machinery.

Carmel, D., & Markovitch, S. (1996). Learning models of intelligent agents.

In Proceedings of the thirteenth national conference on artificial intelligence

(AAAI 96) (Vol. 2, pp. 62–67). Menlo Park, California, USA: AAAI Press.

Cassandra, A., Littman, M., & Zhang, N. (1997). Incremental pruning: A

simple, fast, exact method for partially observable Markov decision processes.

In Proceedings of the 13th annual conference on uncertainty in artificial

intelligence (p. 54-61). San Francisco, CA: Morgan Kaufmann.

Castro, P. S., & Precup, D. (2007). Using linear programming for Bayesian

exploration in Markov decision processes. In Proceedings of the twentieth

international joint conference on artificial intelligence (IJCAI 07) (pp. 2437–

2442). California, USA: IJCAI Incorporated.

Chalkiadakis, G., & Boutilier, C. (2003). Coordination in multiagent reinforcement

learning: a Bayesian approach. In Proceedings of the second international

joint conference on autonomous agents and multiagent systems (pp. 709–

716). New York, USA: Association for Computing Machinery.

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The

perceptual distinctions approach. In Proceedings of the tenth national

conference on artificial intelligence (AAAI 92) (pp. 183–188). Menlo Park,

California, USA: AAAI Press.

Bibliography 198

Clark, A., & Thollard, F. (2004). PAC-learnability of probabilistic deterministic

finite state automata. Journal of Machine Learning Research, 5, 473–497.

Claus, C., & Boutilier, C. (1998). The dynamics of reinforcement learning in

cooperative multiagent systems. In Proceedings of the fifteenth national/tenth

conference on artificial intelligence/innovative applications of artificial

intelligence (pp. 746–752). Menlo Park, California, USA: AAAI Press.

Dearden, R., Friedman, N., & Andre, D. (1999). Model-based Bayesian

exploration. In Proceedings of the 15th annual conference on uncertainty

in artificial intelligence (p. 150-15). San Francisco, CA: Morgan Kaufmann.

Dorais, G., Bonasso, R., Kortenkamp, D., Pell, P., & Schreckenghost, D. (1998).

Adjustable autonomy for human-centered autonomous systems on Mars.

(Presented at the Mars Society Conference.)

Doshi, P., & Gmytrasiewicz, P. J. (2005). Approximating state estimation

in multiagent settings using particle filters. In Proceedings of the fourth

international joint conference on autonomous agents and multiagent systems

(AAMAS 05) (pp. 320–327). New York, USA: Association for Computing

Machinery.

Durfee, E. H. (1999). Practically coordinating. AI Magazine, 20 (1), 99–116.

Dutech, A. (2000). Solving POMDPs using selected past events. In W. Horn (Ed.),

Proceedings of the fourteenth European conference on artificial intelligence

(ECAI 2000) (p. 281-285). Amsterdam, the Netherlands: IOS Press.

Dutta, P. S., Dasmahapatra, S., Gunn, S. R., Jennings, N., & Moreau, L.

(2004). Cooperative information sharing to improve distributed learning.

In Proceedings of the workshop on learning and evolution in agent-based

systems, at the third international conference on autonomous agents and

multiagent systems (AAMAS 04) (pp. 18–23). New York, USA: IEEE

Computer Society Press.

Dutta, P. S., Goldman, C. V., & Jennings, N. R. (2007). Communicating effectively

in resource-constrained multi-agent systems. In 20th international joint

conference on artificial intelligence (IJCAI 07) (p. 1269-1274). California,

USA: IJCAI Incorporated.

Bibliography 199

Emery-Montemerlo, R., Gordon, G., Schneider, J., & Thrun, S. (2004).

Approximate solutions for partially observable stochastic games with

common payoffs. In Proceedings of the third international joint conference

on autonomous agents and multiagent systems (pp. 136–143). Washington,

DC, USA: IEEE Computer Society Press.

Even-Dar, E., Kakade, S. M., & Mansour, Y. (2007). The value of observation for

monitoring dynamic systems. In M. M. Veloso (Ed.), 20th international joint

conference on artificial intelligence (IJCAI 07) (p. 2474-2479). California,

USA: IJCAI Incorporated.

Excelente-Toledo, C. B., & Jennings, N. R. (2005, August). Using reinforcement

learning to coordinate better. Computational Intelligence, 21 (3), 217–245.

Fischer, F., Rovatsos, M., & Weiss, G. (2004). Hierarchical reinforcement learning

in communication-mediated multiagent coordination. In Proceedings of the

third international joint conference on autonomous agents and multiagent

systems (pp. 1334–1335). Washington, DC, USA: IEEE Computer Society

Press.

Fitoussi, D., & Tennenholtz, M. (2000). Choosing social laws for multi-agent

systems: Minimality and simplicity. Artificial Intelligence, 119 (1-2), 61-101.

Fogel, D. B. (2002). Blondie24: playing at the edge of AI. San Francisco,

California, USA: Morgan Kaufmann Publishers Inc.

Friedman, N., & Singer, Y. (1999). Efficient Bayesian parameter estimation in

large discrete domains. In Advances in neural information processing systems

12 (NIPS 1999. Cambridge, Massachusetts, USA: MIT Press.

Fudenberg, D., & Levine, D. K. (1998). The theory of learning in games.

Cambridge, Massachusetts, USA: MIT Press.

Giampapa, J. A., & Sycara, K. (2001, July). Conversational case-based planning

for agent team coordination. In D. W. Aha & I. W. (editors) (Eds.),

Case-based reasoning research and development: Proceedings of the fourth

international conference on case-based reasoning (ICCBR 2001) (Vol. 2080,

pp. 189–203). Berlin Heidelberg: Springer-Verlag.

Gilpin, A., & Sandholm, T. (2007). Better automated abstraction techniques for

Bibliography 200

imperfect information games, with application to Texas Hold’em poker. In

Proceedings of the 6th international joint conference on autonomous agents

and multiagent systems (AAMAS 07) (pp. 1–8). New York, USA: Association

for Computing Machinery.

Gmytrasiewicz, P. J., & Doshi, P. (2005). A framework for sequential planning in

multi-agent settings. Journal of Artificial Intelligence Research, 24, 49-79.

Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming

for partially observable stochastic games. In Proceedings of the nineteenth

national conference on artificial intelligence (AAAI 04) (p. 709-715). Menlo

Park, California, USA: AAAI Press.

Hoar, J. (1996). Reinforcement learning applied to a real robot task. (MSc

Dissertation, Department of Artificial Intelligence, University of Edinburgh)

Hoey, J. (2001). Hierarchical unsupervised learning of facial expression categories.

International Conference on Computer Vision, Workshop on Detection and

Recognition of Events in Video.

Ishii, S., Fujita, H., Mitsutake, M., Yamazaki, T., Matsuda, J., & Matsuno, Y.

(2005). A reinforcement learning scheme for a partially-observable multi-

agent game. Journal of Machine Learning, 59 (1-2), 31–54.

Izadi, M. T., & Precup, D. (2006). Exploration in POMDP belief space and its

impact on value iteration approximation. In European conference on artificial

intelligence (ECAI 06), workshop on planning, learning and monitoring with

uncertainty and dynamic worlds (PLMUDW). Amsterdam, the Netherlands:

IOS Press.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting

in partially observable stochastic domains. Artificial Intelligence, 101 (1-2),

99–134.

Kim, Y., Nair, R., Varakantham, P., Tambe, M., & Yokoo, M. (2006).

Exploiting locality of interaction in networked distributed POMDPs. In

Proceedings of the AAAI spring symposium on “Distributed plan and schedule

management”. Menlo Park, California, USA: AAAI Press.

Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2007). Efficient sparse coding

Bibliography 201

algorithms. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in

neural information processing systems 19 (pp. 801–808). Cambridge, MA:

MIT Press.

Leslie, D. (2004). Reinforcement learning in games. Unpublished doctoral

dissertation, University of Bristol.

Lesser, V. (1999, January). Cooperative Multiagent Systems: A Personal View

of the State of the Art. Institute of Electrical and Electronics Engineers

Transactions on Knowledge and Data Engineering, 11 (1).

Littman, M. L. (1994). Markov games as a framework for multi-agent

reinforcement learning. In Proceedings of the 11th international conference

on machine learning (pp. 157–163). New Brunswick, NJ: Morgan Kaufmann.

Littman, M. L., & Stone, P. (2001). Implicit negotiation in repeated games.

In Proceedings of the eighth international workshop on agent theories,

architectures, and languages (ATAL 2001) (p. 393-404). Berlin, Germany:

Springer.

Mackay, D. J. C. (2003). Information theory, inference, and learning algorithms.

Cambridge, England: Cambridge University Press.

Marecki, J., Gupta, T., Varakantham, P., & Tambe, M. (2008). Not all

agents are equal: scaling up distributed POMDPs for agent networks. In

Proceedings of the seventh international joint conference on autonomous

agents and multiagent systems (AAMAS 08). New York, USA: Association

for Computing Machinery.

Matsuno, Y., Yamazaki, T., Matsuda, J., & Ishii, S. (2002). A multiagent

reinforcement learning method based on the model inference of the other

agents. Systems and Computers in Japan, 33 (12), 67-76.

Mitchell, T. M. (1997). Machine learning. Maidenhead, England: McGraw-Hill.

Murphy, K., Weiss, Y., & Jordan, M. (1999). Loopy belief propagation for

approximate inference: an empirical study. In Proceedings of the conference

on uncertainty in artificial intelligence (UAI 99) (p. 467-475). San Francisco,

California, USA: Morgan Kaufmann.

Naeem, U., & Bigham, J. (2008). Activity recognition using a hierarchical

Bibliography 202

framework. In Proceedings of the second international conference

on pervasive computing technologies for healthcare, 2008 (p. 24-27).

Washington, DC, USA: IEEE Computer Society.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D. V., & Marsella, S. (2003).

Taming decentralized POMDPs: Towards efficient policy computation for

multiagent settings. In G. Gottlob & T. Walsh (Eds.), ”18th international

joint conference on artificial intelligence” (p. 705-711). San Francisco,

California, USA: Morgan Kaufmann.

National Research Council. (2005). Summary of a workshop on using information

technology to enhance disaster management. Washington, DC, USA:

National Academies Press.

Nikovski, D., & Nourbakhsh, I. (1999). Learning discrete Bayesian models for

autonomous agent navigation. In Proceedings of the first IEEE symposium

on computational intelligence in robotics and automation (pp. 137–143).

Washington, DC, USA: IEEE Computer Society.

Oliehoek, F. A., & Vlassis, N. (2007). Q-value functions for decentralized

POMDPs. In Proceedings of the 6th international joint conference on

autonomous agents and multiagent systems (AAMAS 07) (pp. 1–8). New

York, USA: Association for Computing Machinery.

Otterlo, M. van, & Kersting, K. (2004, December). Challenges for relational

reinforcement learning. In P. Tadepalli, R. Givan, & K. Driessens (Eds.),

Proceedings of the workshop on relational reinforcement learning at the

international conference on machine learning (ICML 2004) (pp. 74–80). New

York, USA: Association for Computing Machinery.

Panait, L., & Luke, S. (2005). Cooperative multi-agent learning: The state of the

art. Autonomous Agents and Multi-Agent Systems, 11 (3), 387–434.

Paquet, S., Tobin, L., & Chaib-draa, B. (2005). An online POMDP algorithm for

complex multiagent environments. In Proceedings of the fourth international

joint conference on autonomous agents and multiagent systems (pp. 970–

977). New York, USA: Association for Computing Machinery.

Patel, J., Teacy, W. T. L., Jennings, N. R., & Luck, M. (2005). A probabilistic

Bibliography 203

trust model for handling inaccurate reputation sources. In Proceedings of the

3rd international conference on trust management (Vol. 3477, p. 193-209).

Rocquencourt, France: Springer-Verlag.

Powers, R., & Shoham, Y. (2005). New criteria and a new algorithm for learning in

multi-agent systems. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances

in neural information processing systems 17 (p. 1089-1096). Cambridge,

MA: MIT Press.

Powers, R., Shoham, Y., & Vu, T. (2007). A general criterion and an algorithmic

framework for learning in multi-agent systems. Journal of Machine Learning,

67 (1–2), 45–76.

Ramamritham, K., Stankovic, J. A., & Zhao, W. (1989). Distributed scheduling

of tasks with deadlines and resource requirements. Institute of Electrical and

Electronics Engineers Transactions on Computers, 38 (8), 1110–1123.

Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine

learning. Cambridge, MA, USA: MIT Press.

Reisinger, J., Stone, P., & Miikkulainen, R. (2008, July). Online kernel selection

for Bayesian reinforcement learning. In Proceedings of the twenty-fifth

international conference on machine learning (ICML 2008). New York, USA:

Association for Computing Machinery.

Ren, Z., & Williams, A. B. (2003). Lessons learned in single-agent and multiagent

learning with robot foraging. In Institute of electrical and electronics

engineers transactions on systems, man, and cybernetics (IEEE 03) (Vol. 3,

pp. 2757–2762). Washington, DC, USA: IEEE Computer Society.

Rivest, F., Bengio, Y., & Kalaska, J. (2005). Brain inspired reinforcement learning.

In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information

processing systems 17 (p. 1129-1136). Cambridge, MA: MIT Press.

Rogers, A., David, E., Schiff, J., & Jennings, N. R. (2007). The effects of

proxy bidding and minimum bid increments within eBay auctions. ACM

Transactions on the Web., 1 (2), 9.

Ross, S., Chaib-draa, B., & Pineau, J. (2008). Bayes-adaptive POMDPs.

In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in

Bibliography 204

neural information processing systems 20 (NIPS 2007) (pp. 1225–1232).

Cambridge, Massachusetts, USA: MIT Press.

Ross, S., Pineau, J., Paquet, S., & Chaib-draa, B. (2008). Online planning

algorithms for POMDPs. Artificial Intelligence Research, 32, 663-704.

Roweis, S. (2003). Hidden Markov models. (SCIA Tutorial)

Roy, N., & Gordon, G. (2002, December). Exponential family PCA for belief

compression in POMDPs. In S. Becker, S. Thrun, & K. Obermayer (Eds.),

Advances in neural information processing (p. 1043-1049). Vancouver,

British Columbia, Canada: MIT Press.

Sadikov, A., & Bratko, I. (2006). Learning long-term chess strategies from

databases. Journal of Machine Learning, 63 (3), 329–340.

Sallans, B. A. (1999). Learning factored representations for partially observable

Markov decision processes. In Advances in neural information processing

systems 12 (NIPS 1999 (p. 1050-1056). Cambridge, Massachusetts, USA:

MIT Press.

Sallans, B. A. (2002). Reinforcement learning for factored Markov decision

processes. Unpublished doctoral dissertation, University of Toronto.

(Adviser-G. E. Hinton)

Scerri, P., Sycara, K., & Tambe, M. (2004). Adjustable autonomy in the context

of coordination. In American institute of aeronautics and astronautics 3rd

“unmanned unlimited” technical conference, workshop and exhibit (AAAI

04). Chicago, Illinois, USA: American Institute of Aeronautics and

Astronautics. (Invited Paper)

Schurr, N., Marecki, J., Lewis, J. P., Tambe, M., & Scerri, P. (2005).

The DEFACTO system: Coordinating human-agent teams for the

future of disaster response. In R. Bordini, M. Dastani, J. Dix, &

A. El Fallah Seghrouchni (Eds.), Multi-agent programming:languages,

platforms and applications. multiagent systems, artificial societies, and

simulated organizations (Vol. 15, p. 197-215). Heidelberg, Germany:

Springer.

Shani, G., Brafman, R. I., & Shimony, S. E. (2005). Model-based online learning

Bibliography 205

of POMDPs. In Proceedings of the European conference on machine learning

(ECML 2005) (p. 353-364). Oporto, Portugal: Springer.

Shi, J., & Littman, M. L. (2002). Abstraction methods for game theoretic poker.

In Revised papers from the second international conference on computers and

games (CG 00) (pp. 333–345). London, England: Springer-Verlag.

Sims, M., Corkill, D., & Lesser, V. (2004, November). Separating

Application-Specific and Organizational Coordination Issues during Multi-

Agent Organizational Design and Instantiation (Computer Science Technical

Report No. 04-98). Cambridge, Massachusetts, USA: University of

Massachusetts.

Smith, A. J. (2002). Dynamic generalisation of continuous action spaces in

reinforcement learning: A neurally inspired approach. (Ph.D. thesis, Division

of Informatics, Edinburgh University, UK.)

Stenning, K., & Lambalgen, M. van. (2005). Semantic interpretation as

computation in nonmonotonic logic: the real meaning of the suppression

task. Cognitive Science, 29 (6).

Sun, R., & Naveh, I. (2004). Simulating organizational decision-making using a

cognitively realistic agent model. Journal of Artificial Societies and Social

Simulation, 7 (3).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction.

Cambridge, Massachusetts, USA: MIT Press.

Szer, D., Charpillet, F., & Zilberstein, S. (2005). MAA*: A heuristic search

algorithm for solving decentralized POMDPs. In Proceedings of the twenty-

first annual conference on uncertainty in artificial intelligence (UAI 05) (p.

576). Arlington, Virginia: AUAI Press.

Takeuchi, I., Kakumoto, S., & Goto, Y. (2003). Towards an integrated earthquake

disaster simulation system. First International Workshop on Synthetic

Simulation and Robotics to Mitigate Earthquake Disaster.

Tambe, M., Bowring, E., Pearce, J. P., Varakantham, P., Scerri, P., & Pynadath,

D. V. (2006). Electric elves: What went wrong and why. In Proceedings of

the AAAI spring symposium on what went wrong and why: Lessons from AI

Bibliography 206

research and applications. Menlo Park, California, USA: AAAI Press.

Tanner, B., Bulitko, V., Koop, A., & Paduraru, C. (2007). Grounding

abstractions in predictive state representations. In Proceedings of the

twentieth international joint conference on artificial intelligence (IJCAI 07)

(pp. 1077–1082). California, USA: IJCAI Incorporated.

Tesauro, G. (2004). Extending Q-learning to general adaptive multi-agent systems.

In Advances in neural information processing systems 16 (NIPS 2003).

Cambridge, Massachusetts, USA: MIT Press.

Thrun, S. (2000). Monte Carlo POMDPs. In S. Solla, T. Leen, & K.-R. Müller

(Eds.), Advances in neural information processing systems 12 (NIPS 00) (pp.

1064–1070). Cambridge, Massachusetts, USA: MIT Press.

Toni, F., & Bentahar, J. (2008). Computational logic-based agents. Autonomous

Agents and Multi-Agent Systems, 16 (3), 211–213.

Toussaint, M., Harmeling, S., & Storkey, A. (2006, Dec). Probabilistic inference

for solving (PO)MDPs (Tech. Rep.). Edinburgh: University of Edinburgh.

Varakantham, P., Marecki, J., Yabu, Y., Tambe, M., & Yokoo, M. (2007).

Letting loose a SPIDER on a network of POMDPs: generating quality

guaranteed policies. In Proceedings of the 6th international joint conference

on autonomous agents and multiagent systems (AAMAS 07) (pp. 1–8). New

York, USA: Association for Computing Machinery.

Virin, Y., Shani, G., Shimony, S. E., & Brafman, R. I. (2007). Scaling up: Solving

POMDPs through value based clustering. In Proceedings of the twenty-second

AAAI conference on artificial intelligence (p. 1290-1295). Vancouver, British

Columbia, Canada: AAAI Press.

Vu, T., Powers, R., & Shoham, Y. (2006). Learning against multiple opponents.

In Proceedings of the fifth international joint conference on autonomous

agents and multiagent systems (AAMAS 06) (pp. 752–759). New York, USA:

Association for Computing Machinery.

Wooldridge, M. (2002). An introduction to multi-agent systems. Chichester: Wiley.

Yuichi, Y., Makoto, Y., & Atsushi, I. (2007). Multiagent planning with trembling-

hand perfect equilibrium in multiagent POMDPs. In Proceedings of the

Bibliography 207

tenth Pacific Rim international workshop on multi-agents (PRIMA 2007)

(Vol. 11). Bangkok, Thailand: Springer-Verlag LNCS.

	Abstract
	List of Figures
	List of Examples
	List of Algorithms
	Acknowledgements
	Abbreviations
	Notation
	Key terms
	1 Introduction
	1.1 Multi-agent systems
	1.2 Disaster response as a multi-agent system
	1.3 Coordinated decision making
	1.3.1 Decision making under uncertainty
	1.3.2 Approaches to coordination
	1.3.3 Bayesian learning for scalable coordination

	1.4 Research contributions
	1.5 Thesis structure

	2 Literature Review
	2.1 Autonomous agents
	2.2 Markov decision processes
	2.2.1 Partially observable Markov decision processes
	2.2.2 Reinforcement learning
	2.2.3 Bayesian reinforcement learning

	2.3 Multi-agent learning
	2.3.1 Partially observable stochastic games
	2.3.2 Learning about other agents

	2.4 Extending MDP techniques to larger scale systems
	2.4.1 State abstractions
	2.4.2 Policy approximations

	2.5 Summary

	3 A Bayesian model of partially observable multi-agent systems
	3.1 Definitions
	3.2 Bayesian MDPs
	3.3 Belief networks
	3.4 Improving efficiency
	3.4.1 Finite-horizon Q-computation
	3.4.2 State abstraction using statistical clustering
	3.4.2.1 The partially observable state model

	3.4.3 Policy abstraction using finite state machines
	3.4.3.1 Definitions
	3.4.3.2 A polynomial FSM learning algorithm
	3.4.3.3 An online learning algorithm

	3.4.4 Efficient sampling techniques
	3.4.4.1 Sparse priors
	3.4.4.2 Weighted sampling
	3.4.4.3 Sampling with repair

	3.5 Summary

	4 The ambulance rescue problem
	4.1 Model instantiation
	4.2 Summary

	5 Coordination in the presence of partially observable actions
	5.1 Evaluating the general model with partially observable actions
	5.1.1 Performing the updates
	5.1.2 Best response computation
	5.1.3 Exploiting reward structure

	5.2 Ambulance rescue with partially observable actions
	5.2.1 Experimental setup
	5.2.2 Experimental evaluation
	5.2.2.1 Alternative implementations
	5.2.2.2 Varying the sample size
	5.2.2.3 Varying the move predictability
	5.2.2.4 Varying the number of agents
	5.2.2.5 Varying the board size

	5.3 Ambulance rescue making use of reward information
	5.3.1 Experimental setup
	5.3.2 Experimental evaluation
	5.3.2.1 Varying the sample size
	5.3.2.2 Varying the move predictability
	5.3.2.3 Varying the number of agents
	5.3.2.4 Varying the board size

	5.4 Summary

	6 Coordination in the presence of partially observable states
	6.1 Evaluating the general model with partially observable states
	6.2 Ambulance rescue with partially observable states
	6.2.1 Experimental setup
	6.2.2 Experimental evaluation
	6.2.2.1 Finite state machine properties
	6.2.2.2 Examining the learning rate
	6.2.2.3 Varying the visibility
	6.2.2.4 Varying the victim arrival rate
	6.2.2.5 Varying problem size factors

	6.3 Summary

	7 Coordination in the presence of dynamism and openness
	7.1 Modelling dynamic and open domains
	7.2 Ambulance rescue in dynamic domains
	7.2.1 Experimental setup
	7.2.2 Experimental evaluation
	7.2.2.1 Single, one off changes
	7.2.2.2 Multiple, oneoff changes
	7.2.2.3 Multiple, gradual changes

	7.3 Ambulance rescue problem in open domains
	7.3.1 Experimental setup
	7.3.2 Experimental evaluation
	7.3.2.1 Single changes
	7.3.2.2 Multiple changes

	7.4 Summary

	8 Conclusions
	8.1 Thesis Summary
	8.2 Research contributions
	8.2.1 A general model for partially observable multi-agent systems
	8.2.2 Partially observable actions
	8.2.3 Partially observable states
	8.2.4 Open and dynamic domains

	8.3 Future work
	8.3.1 Scaling up using sophisticated approximation techniques
	8.3.2 Finite state machine properties and improvements
	8.3.3 Theoretical properties
	8.3.4 Incorporating graphical model techniques
	8.3.5 Future trends

	References
	References

