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Chapter 1

Introduction

“Autonomous agents are computational systems that inhabit some com-

plex dynamic environment, sense and act autonomously in this envi-

ronment, and by doing so realize a set of goals or tasks for which they

are designed.”

—[Maes, 1995]

Multi-agent systems are systems of interacting intelligent actors, or agents, exist-

ing in some environment. This environment provides stimulation to the agents’

senses, and reacts to the agents’ actions. There is no global view, rather, each

individual is able to sense part of the system. Such systems are becoming increas-

ingly important as they draw together a number of important trends in modern

technology [Wooldridge, 2002]:

Ubiquity: As computing chips become smaller and cheaper it is possible to add

computational power and intelligence to many kinds of devices in almost

any location. Multi-agent systems made of networks of these ubiquitous

devices have much greater possibilities than individual devices, as well as

the potential for mobility.

Decentralisation: With the advent of the world wide web and computing net-

works, systems that distribute data and tasks among a network of machines

are increasingly common.

Openness and dynamism: Open systems are those in which agents may enter

or leave the system at any time, while dynamic systems have a constantly
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6 Chapter 1 Introduction

changing environment. Many real-world systems are modelled using open,

dynamic environments. In particular, there is a trend in computing to move

away from entering a static problem and waiting for a solution, towards

interactive systems which are able to respond to a changing environment.

Uncertainty: Uncertainty plays a large part in systems which respond to envi-

ronmental or sensor inputs. Moreover, a trend towards increasingly large

and complex systems means that frequently systems are effectively uncer-

tain, even if they are technically deterministic.

The combination of these features describes the kinds of decentralised data and

information systems which are increasingly required by many commercial and

industrial organisations. Multi-agent systems can be used to implement or to

model all or part of these systems. Example application areas are as diverse

as modelling eBay auctions [Rogers et al., 2006], modelling social structures [Sun

and Naveh, 2004], or creating fight scenes in films (agent systems were used in The

Lord of the Rings1). Consequently, multi-agent research is a lively and growing

area facing many challenges.

In particular, the creation of large-scale systems with predictable behaviour is a

formidable task. Current research (such as [Xu et al., 2005], [Shen et al., 2004])

focuses on the use of local models to generate desirable global properties. The idea

behind this technique is to enforce the desired properties within small sub-networks

of a large networked system. If this is done correctly, then the links between the

sub-networks propagate the properties through the network. However, systems

made up of many small components are liable to experience unexpected emergent

behaviour in the large scale [Scerri et al., 2005]. This is a potential disadvantage

of relying entirely on local, small-scale models. To combat this, researchers have

looked at a variety of mechanisms for sharing information between disparate agents

([Mataric, 1998]). This means that models of flexible communication for open and

dynamic systems form another area of active research. One final important area of

research is that of dynamically evolving or learning solutions to problems, either

to handle complex problems in large state spaces which cannot be programmed

manually, or to keep up with systems which are changing over time.

Against this background, we seek to bring these distinct areas together in order

to tackle the problem of coordination in complex, dunamic multi-agent systems.

Thus, extant models together with our solutions, will bring together work on

1http://www.massivesoftware.com/what massive.html

http://www.massivesoftware.com/what_massive.html


Chapter 1 Introduction 7

the use of local models, flexible communication, and online learning. To provide

a specific grounding for this research, we will consider the domain of disaster

response. As we outline in the next section, this has all of the aforementioned

characteristics.

1.1 Coordination in the Disaster Response Do-

main

Consider disaster scenarios such as terrorist attacks, floods or earthquakes. In such

scenarios, many different teams from a number of organisations must cooperate to

attempt to recover the situation. Their work may be interrupted by self-interested

actors such as journalists or (in the case of terrorist attacks) terrorist organisations.

Some of the cooperating organisations may have conflicting goals. For example,

suppose during an aeroplane crash an injured person is trapped in the wreckage

very close to the “black box”. The police will wish to keep the black box intact

for the purposes of determining what caused the crash, while ambulance teams

are concerned only with removing the injured person, perhaps necessitating the

destruction of the black box unless they are very careful.

Scenarios of this nature provide rich grounds for the implementation of agent

systems. In such applications, there is a scale determining the extent to which

the system itself is autonomous, and the extent to which the agents rely upon

human input or instruction. At one end of the scale, we may use multi-agent

systems to model every aspect of the disaster response, simulating the disaster,

the affected humans, and the response agents. Robocup Rescue2 (described in

detail in section 3) is an example of such a system. At the other end of the scale,

agent systems can be used alongside the human response teams, processing data

and interactively suggesting courses of action [Dorais et al., 1998]. In the middle

of the scale can be found human-robot teams [Schurr et al., 2005] or agents who

defer to humans in scenarios they are uncertain about [Scerri et al., 2004b]. The

focus in this work is the broadest possible: the use of multi-agent systems for

modelling the complete disaster response. The results of such models could be

practically used in human controlled interactive systems, in which the automatic

system’s function is to propose courses of action which may be explored by the

human user.

2http://www.rescuesystem.org/robocuprescue/

http://www.rescuesystem.org/robocuprescue/


8 Chapter 1 Introduction

Taking disaster response as our illustrative domain for exploring multi-agent sys-

tems motivates a number of important requirements for the domain. We propose

these as requirements which any coordination algorithm of interest ought to be

able to handle:

Large: Disaster recovery scenarios may involve hundreds or thousands of distinct

actors, organisations or teams, operating over a wide area.

Dynamic: It is unreasonable to assume that a realistic system will be static.

Environmental conditions are subject to constant change and agents must

be able to adapt to these changes. In disaster recovery scenarios agents must

react to changing weather, unexpected events such as building collapse or

fires and constantly moving traffic, among many other changing conditions.

Open: Systems of this nature will have agents moving in and out of the system

constantly. In the worst case, in disaster scenarios agents are liable to die,

hence vanishing suddenly. On the other hand, as volunteers and taskforces

from elsewhere rush to contribute help, new agents will enter the response

system.

Decentralized: [Panait and Luke, 2005] argue that providing a central server is

equivalent to reducing the system to a single-agent system. Furthermore,

in large and dynamic systems of the kind we are investigating, providing

a central controller is likely to be infeasible: there are unlikely to be the

resources to allow communications between one central controller and every

other node, one central controller is almost certainly not going to be able to

obtain a complete view of the system, and the potentially rapid changes as

agents enter and leave the system would be difficult to track.

Uncertain: Large, dynamic, open systems typically have inherent uncertainty.

Even if the system is technically deterministic, the complexity in the system

is likely to make it effectively uncertain. For example, in disaster recovery

scenarios taking place over broad areas, it is unlikely that any agent will

have a complete view of the situation. Moreover, information which reaches

the agent may be error-prone, increasing the uncertainty. At a different level

of granularity, environmental conditions such as the expected weather or the

height of a tide can be equally uncertain.

Heterogeneous: There are many different types of agents involved in a disaster

response scenario, with a variety of capabilities and (potentially conflicting)
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goals. At a minimum there will be the rescue teams, each with distinct tasks:

ambulances, police, helicopter teams, and there will be the people affected by

the disaster. Involved may also be journalists, crime teams, environmental

agencies, to name but a few.

Bandwidth-limited: One of the characteristics seen time and time again in dis-

aster scenarios is limited communication [Committee on using IT to En-

hance Disaster Management, 2005]. For example, mobile phone networks

are jammed and only a fraction of the messages initiated are able to reach

their destination.

Competitive: In domains such as disaster response, agents may have conflicting

goals, as in the example above. Furthermore, self-interested agents have no

reason to attempt to resolve the conflicts cooperatively.

There are many challenges when working in such domains, focusing on disaster

response scenarios. The essential task of an agent in a multi-agent system is to

process the inputs it receives, and plan to how to act. Actions will take place in the

context of other agents, and so planning must take the other agents into account.

Therefore, the two central challenges for such agents are information processing

and coordination (we consider coordinated planning to be a coordination task).

Information processing is a vital task as scattered, incomplete, potentially error-

prone, conflicting, time-delayed messages reach nodes in the system from many

heterogeneous sources. We briefly discuss information fusion techniques in section

2.1; however, they are focused on a single agent rather than being specific to multi-

agent systems. By contrast, acting in the context of other agents (coordination) is

central to the notion of a multi-agent system, and it is this which forms the focus

of the report.

1.2 Multi-agent Coordination

Coordination is central to multi-agent systems. In the broadest sense, “coordina-

tion” refers to an agent being aware of other agents in its environment [Durfee,

2001]. This may be in the context of resource allocation and consumption, task

allocation, communication, or movement. Most approaches to coordination fall

into one of three broad categories, or are built from a combination of approaches

from these categories [Boutilier, 1996]:
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1. Conventions and roles are the simplest way of coordinating between

agents, and the least flexible. A convention is a commonly-known rule to

which agents adhere. There are many real-word precedents for coordina-

tion by convention. For example, traffic control is frequently based around

conventions such as stopping at red lights, or travelling faster in the right-

hand lane of a motorway than the left-hand lane. Such coordination has

the advantages of being simple and requiring no setup time [Fitoussi and

Tennenholtz, 2000]. However, it is inflexible, and relies on all participants

knowing the conventions and cooperating with them.

An extension to the notion of convention for coordination is the use of roles

within organisational structures. An agent’s current role determines which

conventions are appropriate, and which protocols are available to it. Hence,

organisational structures based around agent roles have more flexibility than

simple convention-based techniques, selecting between conventions based on

the current role. Role-based structures have been successfully implemented

for teams such as Robocup soccer teams [Tambe et al., 1999]. However, this

work is not applicable to very open domains as it considers teams which

are fixed over the relevant time period. It might be possible to implement

more flexible role-based structures which could adapt to agents entering or

leaving the system using appropriate conventions, although doing so without

causing confusing complexity would require care.

2. Communication is another common human coordination technique. Coor-

dination through communication has a small setup time and some bandwidth

costs. It requires a common language, and the flexibility of this language

determines the flexibility of the resulting coordination. There is potential

for probabilistic models of language [Fischer et al., 2005], permitting (for

example) adaptation to changing environments. Alongside a language for

coordination, agents must have some means of reasoning internally about

the outcomes. The nature of the coordination will thus depend considerably

on the agents’ internal coordination models. In any large system, such as

our focus domain, there must be some form of communication in order to

share information between agents; it will be impossible for any one agent to

sense all the information it needs to function effectively in context [Dutta

et al., 2004]. We expect to make limited use of communication beyond this

information-sharing, as the bandwidth restrictions will preclude it in most

cases.
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3. Learning is both the most complex and the most flexible means of coordina-

tion. It may be combined with conventions or communication: conventions

may be learned, for example, through communication [Kazakov and Bartlett,

2004]. There are many different ways of applying learning to coordination,

from learning to choose between coordination protocols [Excelente-Toledo

and Jennings, 2005], through learning to use simple communication tech-

niques for coordination as in [Kazakov and Bartlett, 2004], to evolving social

rules from scratch [Boutilier, 1996]. Learning techniques provide the poten-

tial for evolving detailed policies within large and complex state spaces, and

for adapting to dynamic systems. However, they have a high setup cost, as

learning good policies may be time-consuming and is potentially computa-

tionally intensive.

In a complex scenario, such as disaster response, an agent will typically be involved

in multiple coordination activities at any one time. There may be multiple levels of

coordination activity with a particular agent, such as a fire agent coordinating on a

choice of fire site, and then a particular building on a site, and then the particular

area of the building to target. There may be multiple types of coordination activity

with a particular agent, for example an agent may be concurrently negotiating

over a resource with one group of agents, while coordinating its position with

another group of agents. Finally, coordination activities may take place with many

agents in the system simultaneously. Moreover, there may be several dependencies

between these coordinations. For example, a fire agent F may need to refuel, but

it will not care whether it refuels from location A or location B. It negotiates

simultaneously with agents at A and B in order to decide on a refuelling location.

At the same time, other fire agents will be negotiating refuelling locations and so

F should try and be aware of potential traffic jams if all agents head for the same

fuelling point. Furthermore, F may be trying to minimise bandwidth during the

negotiation in order to leave sufficient bandwidth to receive instructions from the

central fire station.

In section 2, we discuss approaches to coordination in the light of our example

domain and these interaction issues. The extent to which current coordination

models take the possibility of interactions into account varies. We show that there

is very little work on explicitly relating coordination interactions and using this

information to improve all parts of the coordination. We suggest some ways in

which future work could build on current models to use such explicit relationships

when coordinating.
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1.3 Report Structure

The aim of this report is to shed some light on the issues associated with coordi-

nation in challenging domains as defined above, and to introduce the use of the a

disaster response testbed, Robocup Rescue, for investigating such issues. The rest

of this report is structured as follows:

• In section 2, we introduce the kinds of agents with which we will work and

discuss the state of the art with regard to coordinating such agents, focussing

on the three coordination models described above.

• In section 3, we describe the Robocup Rescue testbed and its application to

the coordination problems we have introduced. Some initial work within the

Robocup testbed is explained and preliminary results are presented.

• In section 4, we conclude the report, proposing a number of directions for

future study and a timeline for immediate work.



Chapter 2

Literature Review

This section begins with an overview of the kinds of intelligent agents which will

carry out coordination in domains such as our example scenarios (section 2.1).

We then introduce some of the issues relevant to coordination. The main body

of the chapter describes in more detail the three primary coordination techniques

introduced in chapter 1: conventions (section 2.2.1), communication (section 2.2.2)

and learning (section 2.2.3). Some of the issues related to learning in large domains

are then discussed (section 2.2.3). We conclude in section 2.3 with a summary of

the coordination mechanisms and the ways in which they will be used in our

example domains.

2.1 Autonomous Agents

A single agent functions by in some way responding to its environment. The kinds

of agent which interest us have a notion of a goal or goals, and the ability to

logically reason about their actions. Inconsistencies and conflicts in agent goals

and beliefs may crop up and the agent’s reasoning mechanism must be capable of

handling these in some way. We believe that probabilistic methods are the most

realistic of several possible techniques for doing this for a number of reasons. First,

such techniques are effective for simulating the way humans may reason. Second,

probabilistic representations are more straightforward than logical for both the

input data and the agent models.

An agent will also need to have some way of modelling its environment, including

any surrounding agent. It may do this explicitly, as in [Rovatsos, 2005] reasoning

13



14 Chapter 2 Literature Review

about the environment and agents, or it may only maintain a mapping of state

signals to behaviours, leaving the models implicit. Explicit models have more

potential for reasoning about states and behaviours as they store more informa-

tion explicitly. However, maintaining explicit models may be computationally and

memory intensive [Excelente-Toledo and Jennings, 2005]. We expect to work with

both kinds of agents, modelling states explicitly where practical, and maintaining

implicit mappings in computationally limited situations. In practice, if the world

is large and detailed, agents will only be able to model small parts of it accu-

rately. Determining which parts are of particular interest to any agent algorithm,

including our coordination work, will form a part of that algorithm.

In a multi-agent system, agents will interact with each other, as well as their

environment. Wooldridge’s model [Wooldridge, 2002] of this interaction is to define

each agent as having some sphere of influence within its environment. Overlapping

spheres of influence indicate some form of interaction between agents. The agent’s

model of these influences contributes to its coordination decisions. In the next

section, we discuss coordination in more detail.

2.2 Coordination in Multi-agent Systems

We take a broad view of coordination; agents acting in the context of other agents

[Durfee, 1999]. As described in chapter 1, at any one time, not only may agents

be performing a number of different coordination actions with different agents

or groups of agents, but they may be performing a number of different types of

coordination actions. The different forms of coordination may be controlled as

part of the same algorithm, or they may use completely separate structures. For

example, agents may use a known set of traffic conventions to manage their move-

ments, while negotiating for one set of resources, and allocating another resource

according to some organisational structure.

Regardless of the specific coordination method or level of abstraction, there are

are several issues pertaining to the process of coordination. One key issue is the

extent to which agents aim to perform cooperatively. [Shen et al., 2004] demon-

strated that agents whose aims consider only global welfare perform less well than

selfish agents, if their beliefs about other agents are false. Models should therefore

include not only the goals and capabilities of the other agents, but an evalua-

tion of the certainties in their model. In systems where agents communicate with

each other about environmental conditions or the capabilities of other agents, it is
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necessary to judge the accuracy of the communication—the system may be error-

prone, or agents may have self-interested reasons for offering false information

[Kar et al., 2002]. An alternative view of this interaction between an agent’s own

goals and cooperative or group goals is to describe agent schemas for roles, norms

and sanctions. These specify social rules which control the extent to which an

agent behaves cooperatively [Weiss et al., 2005], building partial cooperation into

the agent. Such schemas are more complex than a Bayesian model of certainty.

However, they could provide an elegant way of defining boundaries on cooperation

in a medium-sized or large agent society.

Another important issue is that in order to coordinate practically, agents may need

to coordinate at a number of levels of abstraction [Durfee, 1999]. For example,

a team of agents attempting to extinguish a fire must first form into a number

of clusters who will each tackle one part of the fire. Within these clusters, more

detailed coordination will take place determining the exact positioning of each

agent.

Alongside this hierarchical decomposition of coordination, there is a lateral inter-

action between coordination actions [Wagner et al., 2000]. Suppose, for example,

that an agent, Bertie, is attempting to find a route from A to Z, where the route

involves crossing a river. Bertie may travel via the tunnel, which has a toll whose

price may be negotiated. Alternatively, he may take the bridge. However, there

is a weight limit on the bridge, and a lorry is parked on it. Bertie will initiate

coordination protocols with both the toll booth and the lorry. Clearly these are

not independent; when one negotiation comes to a successful conclusion, the other

may be dropped. We can consider there to be coordination between the toll booth

and the lorry. Both hierarchical and lateral interactions are very much in evidence

in the kinds of large-scale heterogeneous scenario under consideration, and we will

investigate techniques for handling both, based on the structure definid in [Wagner

et al., 2000].

Finally, we must consider the way in which a coordination algorithm may be

evaluated. Coordination may be evaluated in a number of ways, depending partly

upon the particular test scenario. Algorithms may be compared according to how

quickly or how efficiently they enable agents to carry out a series of missions,

what resources agents consume over a period of time, what communication costs

the algorithms occur, or what computational costs they occur. The choice of

evaluation technique will depend on the particular requirements which we have

of an algorithm or scenario. For example, the computation requirements of a
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coordination technique become relevant if the method may be used in agents which

have very limited resources, such as the sensors in sensor networks. In other

situations, the computation resources may not be known in advance, necessitating

the use of an anytime technique.

Given some evaluation criteria, algorithms must be evaluated not only in the light

of a particular scenario or set of scenarios, but in the way they behave as the

setting becomes increasingly challenging. When we consider the way in which an

algorithm scales to more difficult cases, there are a number of dimensions which

can be considered [Durfee, 2001]:

1. Number of agents

2. Heterogeneity of agents

3. Agent complexity

4. Extent of interaction between agents

5. Degree of dynamism

6. Distributivity

We can match these challenges to the domain challenges listed in section 1.1.

In particular, we seek coordination algorithms that are able to scale up to large

numbers of other agents, and that permit agents to coordinate in the presence of

perhaps many heterogeneous agents. We also aim to meet the challenge of coor-

dinating within a dynamic environment. Scaling up through increasing degrees of

interaction or agent complexity are of less relevance to the disaster domain, where

these characteristics are generally consistent. The degrees of agent interaction are

determined by the locations of agents and the structure of the communication net-

works (web-based, radio, ’phone...), while agent complexity refers to the (possibly

human) disaster teams and other involved agents. On the other hand, several

of the algorithms discussed below rely on small-world networks for their scaling

properties—that is, an agent will be related to only a few other agents. However,

in the kinds of domain we consider, such properties cannot be assumed. This

is especially the case if we wish to consider interactions between coordinations

which may have completely different network structures. Finally, our challenge

domains may be highly distributed, with information sources and agents of all

types scattered throughout the scenario region.
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One final issue when evaluating an algorithm for scalability is the notion of ro-

bustness. This refers not just to graceful degradation, but to algorithms which

are robust against the possibility of emergent phenomena [Huhns et al., 2005].

This is particularly the case in competitive domains, where malicious agents can

exploit any emergent phenomena [Scerri et al., 2005] or predictable behaviour. In

a disaster rescue situation, we envisage the possibility of self-interested journalist

agents who would be prepared to exploit rescue agents.

Bearing these key issues in mind, we consider in more detail the three approaches to

coordination introduced in section 1.2 and their potential use within our example

domain.

2.2.1 Conventions and Roles

Social conventions or protocols are a low-bandwidth, commonly understood form

of coordinating. Human society relies on some adherence to conventions for effec-

tive functioning. For example, traffic in the UK keeps to the left-hand side of the

road; traffic on motorways travels faster on the rightmost lanes. In agent systems,

it is possible to use shared conventions for some kinds of coordination. Even in

dynamic, open systems of the kinds we investigate, we may assume some shared

conventions based on background knowledge: in a disaster scenario, for example,

there will be traffic rules known to the agents of the kinds described above. Other

conventions might include rescuing children first, or demarcation of boundaries

with red-and-white tape.

However, both rational and irrational agents in some situations may find them-

selves in positions where failure to adhere to the conventions appears to be an

appropriate course of action. For example, in a disaster situation in which all

the agents are attempting to travel in the same direction—away from a flood,

say—there is no need to keep to the left-hand side (or right-hand side) of the

road. This may result in a less well coordinated system. Consequently, intelligent

agents which choose to adhere to the conventions should be able to adapt to other

agents ignoring them.

In realistic scenarios, simple protocols or signals are likely to be insufficient to

obtain effective coordination: a simple set of rules is rarely enough to handle

complex scenarios, nor can it deal with coordinating distant agents who may not

be aware of each other. Furthermore, no one set of protocols will be able to cover all

possible developments in an open and uncertain dynamic environment. Therefore,
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large and complex situations, agent coordination will usually take place within

some organisational structure, or collection of organisational structures [Horling

and Lesser, 2005]. Individual agent roles within this structure may be associated

with some set of conventions. For example, the role of goalkeeper in a soccer game

may have a set of conventions determining where the goalkeeper is able to travel to.

Such conventions are clearly different for the different team members. Associating

conventions with roles permits a greater complexity of interaction than a uniform

set of conventions, and has been found to be sufficient for coordinating teams such

as Robocup soccer [Tambe et al., 1999].

In an arbitrary setting, or in open systems such as our example domain, it is

preferable not to specify a fixed organisational structure, but for the system to be

able to dynamically self-organise, and re-organise as the situation changes. Agents

may move about; the scenario may demand different expertises from the “leader”,

and in our open systems agents enter and leave the system and the structure must

adapt to this. Adaptive agents may use reasoning about the system, knowledge

of simple organisational conventions, or some form of online learning in order to

achieve this organisation [Horling and Lesser, 2005].

Other models separate out the coordination aspects of a structure or hierarchy

from the application specific aspects [Sims et al., 2004]. In so doing, agents may

be supplied with distinct coordination roles and goals which may or may not

be associated with their current task. This can provide a useful abstraction for

implementing coordination models separately from agent tasks. It may be possible

to apply such a model to open and dynamic domains where the specific agents

or tasks are changing, but the overall coordination structure can stay the same.

The separation of coordination and task-specific aspects of a structure can be

further extended to designate some agents as coordination proxies, delegating all

coordination management to these agents [Scerri et al., 2005]. Such a model

involves the use of communication, for the proxies to instruct the agents under

their control. In the disaster domain, one particular manifestation of this proxy

system could use humans to coordinate local agent teams, adjusting the model in

[Schurr et al., 2005].

Organisation and role-based models of coordination must be very flexible in order

to be effective in highly dynamic, open domains. Although common social con-

ventions may enable agents to adapt to changing situations, or agents entering a

system to quickly find a place in an organisation, relying on social conventions is

potentially subject to exploitation by malicious agents. For example, a woman
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stealing a baby from another at a disaster scene would be saved quickly, following

the convention that children are saved first (and the “mother” must go with her

baby).

One final problem with the use of such models in large, complex domains is that

there is little scope for managing the interrelations between different kinds of

coordination, each of which may correspond to a different organisational structure.

For example, a coordinated search of a disaster area by any available rescue teams

must be interlinked with a communication protocol. There may be at least two

separate communication structures; one through a mobile ’phone network and one

through a radio network. Interlinked with this search will be traffic conventions.

At the same time, agents may be negotiating for resources such as vehicles, water

pumps, or bulldozers. The results of these negotiations may affect their willingness

to contribute to a search. Role-based models lack the expressive power to handle

these relationships well.

However, there may be some place for the use of social rules within our domain.

In particular, as modelling disaster response scenarios involves some modelling of

human society, rules such as traffic rules may be applied. It may also be the case

that some organisational structures can be used as part of a coordination algo-

rithm. Nonetheless, neither conventions nor roles seem sufficient for the formation

of a complete coordination solution in such a domain.

2.2.2 Communication

In its simplest form, communicating may be a form of signalling information, an

agent effectively announcing “I am going to do X”, or “Y has occurred”. The

primary coordination mechanism may still be based around social convention, or

some learnt mechanism; the purpose of the announcement is to enable the listeners

to update their world view. As I bicycle in the UK, when I indicate right on the

main road, I communicate the message “I am likely to turn right”. The cars behind

me respond to this message by slowing down.

This simple signalling can be extended to share all kinds of information about the

system. Information may be shared about the capabilities of other agents [Dutta

et al., 2004], beliefs about their intentions [Seo and Sycara, 2005], or about other

parts of the environment [Becker et al., 2005]. When I pull up at the traffic lights,

the driver beside me who has been listening to his car radio may lean over to tell

me about a crash on a nearby road, encouraging me to change my route plan to
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avoid that road. He might also tell me that the driver of the lorry three places

back appears to be somewhat drunk, so I should leave plenty of room when the

lorry tries to pass. I must make my own judgments about how much to trust this

information, but if it is accurate, both the items enable me to coordinate better

with the rest of the road traffic.

Suppose, however, that when I pull up beside the driver at the lights, they are

just about to change. Before driving away, he will have time to tell me just

one of the two pieces of information above. He must choose which one has the

greatest value to me. In agent systems, Bayesian techniques are often used to

make decisions about when and what to communicate in such bandwidth-limited

scenarios [Goldman and Zilberstein, 2003], [Shen et al., 2003]. The driver’s decision

may take into account whether he will have another opportunity to communicate

with me in the future. If so, he may choose to save his energy at this point [Becker

et al., 2005], or to mention the lorry driver now with the intention of describing

the crash at the next lights.

One of the complications of using communication for coordination is that the

bandwidth itself is likely to be a coordination subject. A potential solution is

to use one technique to manage use of bandwidth, while communication actions

coordinate some other parts of the system. One example of this would be the

coordination of a Mother’s Union jumble sale with a predefined telephone tree for

communication between members.

Another complication, touched on above, is that of communications which may be

false, either because self-interested agents have some motivation for transmitting

false information (if Bertie the lorry driver tells all the other drivers that Road A

is blocked, they will avoid Road A, leaving it clear for Bertie to drive down), or

because the communication is lossy or subject to transmission errors. Probabilistic

techniques and maintaining detailed models of the other agents can be used to

manage these difficulties (e.g. [Patel et al., 2005]) We will use both of these

methods when tracking communication.

Information sharing of the kind we have described, and in particular the sharing

of non-local information, is likely to be very useful within the kinds of large and

dynamic domains under our consideration, where it is impossible for an agent

to determine the full picture independently. Indeed, it should be unnecessary

for any agent to have the full picture, but some communication of important

information will be necessary to enable agents to coordinate effectively [Scerri
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et al., 2004a]. This is powerfully demonstrated in the Robocup Rescue testbed

discussed in section 3.

Beyond information sharing, communication may be used within an organisational

structure to transmit explicit instructions to agents. If agents are reduced solely

to responding to explicit instructions, then they are no longer autonomous agents.

However, the agents with which we will be working are likely to be maintaining

complex goal structures and may be performing several actions at a time (for

example: moving, communicating, giving or accepting some resource) towards the

accomplishment of their goals. Accepting instructions from time to time does not

prevent them from being autonomous.

Contrasting with a hierarchical (uni-directional) approach, another traditional use

of communication in coordination is coordination via negotiations [Ramchurn,

2004]. In an agent negotiation there is some shared language which agents can use

to “discuss” a task or resource until they come to a shared conclusion. There are

many examples of human coordination in this fashion. In a human negotiation, the

full power of human language and world knowledge is available, and for example

haggling over a price may involve many diverse references intended to persuade

the opponent to give way. Agents will have a much more limited language and

usually some straightforward reasoning rules to apply to the situation.

Agent negotiations may be useful in situations where there is no clearly applicable

set of conventions and sufficient bandwidth to carry out the negotiation. They

apply equally well to coordination with agents disposed to be cooperative and

those disposed to be non-cooperative. Furthermore, they guarantee that should

they reach a conclusion, it is satisfactory to all communicating parties—although

not necessarily optimal. However, in large domains and when communicating with

unknown opponents, there is a risk of reaching deadlock. Furthermore, negotiating

may be both time and bandwidth consuming. In a problem such as disaster

response, it is reasonable to use simple negotiations for some small-scale problems

in local sub-scenarios. This may be integrated with a coordination model at a

higher level of abstraction, which could determine the reasoning agents use in

deciding what solutions are satisfactory.

Specifically, we propose to use communication primarily for information sharing

at all levels of a multi-level coordination model. Bayesian techniques such as those

mentioned above will be used to determine when and what to communicate, and

individual agents will maintain probabilistic models of the world based on inte-

grating received communications. We may also use negotiations or instructions
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for some parts of the coordination, where appropriate. These will be within coor-

dination models which are being used on some subsystem involving small numbers

of agents and perhaps having a short-term coordination requirement.

2.2.3 Learning

There are several reasons for incorporating learning into multi-agent systems. Gen-

erally speaking, in large and complex systems it is impossible to suggest policies

for every eventuality. Instead, agents may be initialised with some simple policies

and left to learn appropriate behaviour based on the situations which actually

occur. This is particularly relevant in dynamic systems where agents need to be

able to adapt to changes over time. Finally, coordination in large open systems

relies on agents learning about the agents around them, who may have entered

the system at any point. For example, in a disaster scenario, human agents may

volunteer to help as the situation progresses, or computing power may be donated

to build software agents.

There are, therefore, a number of ways we can use learning in a system which is

ultimately trying to learn to coordinate effectively:

• Learning conventions (this may be from scratch, or it may be that conven-

tions are gradually changing over the course of the play and we need to keep

up)

• Learning to choose between conventions

• Learning about parts of the environment not visible to us.

• Learning about the capabilities of other agents.

• Learning about the intentions of other agents.

• Learning languages and ontologies for communication.

• Learning what information may be useful to communicate.

• Learning when to communicate.

Approaches applicable to learning when to communicate may also be applicable to

learning about other coordination actions. For example, we can consider commu-

nication traffic in a limited bandwidth network in an equivalent fashion to motor
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traffic on a transport network. The value of communication actions is parallel

to the value to an agent of being in a particular location (where there are either

resources it needs, or agents it needs to cooperate with). This means that there

may be scope for re-using learned models in varied situations.

Maintaining models of the other agents is important in the cases where we are

learning from other agents (from their actions [Price and Boutilier, 2001] or their

communications [Goldman and Rosenschein, 1995]), or about other agents [Chalki-

adakis and Boutilier, 2004], [Dutta and Sen, 2003]. For example, when learning

about conventions, we will give less weight to signals from agents whom we do not

trust to conform to conventions [Boutilier, 1996]. Similarly, when learning about

the environment, if we suspect an agent is motivated to be dishonest, we will treat

its messages with caution.

In the context of the domains and challenges introduced in section 1, we consider

the following properties particularly relevant to learning:

Openness: Learning may be used to discover the characteristics of new agents

joining the domain.

Dynamism: Online learning potentially enables the agents to track changes to

the environment over time and adapt to new scenarios.

Levels of abstraction: Agents can learn to determine which level of abstraction

is appropriate in a situation and flexibly adjust between these levels as the

situation changes.

Relations between coordination actions: Agents can learn about relation-

ships between coordination actions in situations where they may not be

easy to specify explicitly.

Of the many ways in which learning can be incorporated into coordinating multi-

agent systems, we do not envisage agents learning to coordinate from scratch,

which is a large and time-consuming problem. Rather, we believe that agents

should use online learning techniques in order to track the dynamics of the do-

main and to model interactions between the coordination processes which are

occurring. Using learning in this way is a means of allowing additional flexibil-

ity and dynamism on top of the existing coordination mechanisms. By contrast,

learning to coordinate from scratch would be a daunting and time-consuming task,

more appropriate as an offline function than in time-critical scenarios.
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In large and complex domains, online learning faces the challenge of state spaces

which are equally large and complex. In the following section we discuss ways in

which we might manage such state spaces when learning in our example domain.

State spaces in complex domains

Machine learning is a way of mapping a state signal to some kind of “action”

or decision. The state signal comes from the agent’s environment in some way.

Agents maintain a policy: a mapping of states to actions. A very simple policy can

be stored as a table, but in realistic domains, more innovative ways of mapping

states to actions must be considered, especially as the state signal itself may not

be discrete.

There are a number of different methods of managing the state space. The simplest

is to partition by discretizing state signals [Sutton and Barto, 1998]. The number

of partitions for each signal is determined by practical computational limits, and

by an estimate of the accuracy needed from the signal. It may well be that the

partitions will not be of the same size. For example, an obstacle-avoiding robot

with a sensor range of 1m could have the “distance from object” input broken into

three sections: far, near, touching. The “near” signal might refer to 0–5cm, while

the “far” signal refers to 5–95cm. A more sophisticated method of partitioning is

to dynamically determine or adjust the partitions, based on the areas of the state

space most frequently visited [Sutton and Barto, 1998].

An alternative to explicitly discretizing the state space is to use some form of

function to map from states to actions. One such mapping is the neural network.

Other functional approximations include tiling of the state space, or radial basis

functions [Sutton and Barto, 1998]. A more sophisticated form of approximation

is the use of Kohonen maps, which attempt to model the topology of the state

space, using clusters based on this topology to generate the inputs to a neural

network [Smith, 2002].

While such techniques may be effective, they can be computationally intensive,

and the outputs of something like a neural network are often hard to understand.

Relational reinforcement learning [van Otterlo and Kersting, 2004] is a principled

approach which attempts to model the state space using a set of logical predicates

and constants. It is then possible to abstract the policy by replacing state constants

with appropriate variables. Approaches to this abstraction may be inductive or

deductive.
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In a similar vein is a hierarchical approach to reinforcement learning [Fischer et al.,

2004] : a small set of high-level actions is mapped to a small set of high-level

states. The high-level action can then be broken down into a specific policy. This

framework has been successfully tested on a model of agent communication, but

could be equally appropriate in the granular coordination problems we investigate.

In addition, such a framework would permit the use of different coordination

models at different levels of abstraction, such as we propose to investigate.

There are advantages to both the relational and the hierarchical models. It may

be possible to combine them: high-level states in the hierarchical model would

correspond to very abstract states in a relational representation. Concretising

some parts of the abstraction then moves the state down the hierarchy. This has

not yet been tried.

In our work, it is not immediately clear how large the effective state space will be.

The learning models we are proposing may apply only to small parts of the envi-

ronment. This would be true, for example, if we were learning about the abilities

of new agents which join the domain, in which case the “state signal” is solely

the visible actions of the agent of interest. While the rest of the domain may be

affected by the actions of the agent, we assume that it will be too complex to use

this information to infer the agent’s behaviour. It may, therefore, be sufficient ini-

tially to use a simple partitioning of the state space when learning. In other cases,

such as to track (and adjust) conventions, it may be necessary to consider more

complex state signals. For such complex states, we propose to use the combined

relational-hierarchical model.

2.3 Summary

There are a variety of methods which have been used to coordinate effectively in

a diverse range of domains. Techniques based around common conventions are

very simple and well-suited to problems where agents need to share a common un-

derstanding quickly. However, they are generally restricted to local coordination,

tend to be inflexible and may not be robust to deliberately destructive agents.

They are also often insufficient in complex environments. In environments where

agents have limited knowledge, for example because the domain is too large to

investigate it all, or in an open domain with complex heterogeneous agents where

the other agents are unknown factors, some form of communication may be nec-

essary to aid coordination. This may take the form of agents sharing information
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about the environment with one another, or it may be that agents negotiate with

each other to come to a common agreement. Some kind of communication is likely

to be absolutely necessary in large and dynamic domains. However, bandwidth

limitations and potential trust issues with agents mean that it should be used with

care. Finally, agents can adapt to dynamic situations or learn about the impor-

tant parts of the environment using learning techniques in combination with some

other coordination mechanism.

In the kinds of large and complex domain we are exploring, we believe that a

combination of coordination techniques should be used, with different methods

appropriate at different levels of abstraction. This may be because understood

conventions break down at certain levels of granularity, or because the environ-

mental conditions are different—for example, communication can often take place

freely on a local scale, but not on a wider scale. Another example of combin-

ing techniques would be to combine learning with some understood conventions,

allowing agents to adapt the conventions as the situation changes over time. In

such a system, each agent will dynamically select both the level of abstraction at

which it wishes to coordinate with another agent, and the technique it uses for

this coordination.

One important issue in such complex domains is the way in which different coor-

dination processes emanating from the same agent may interact with other. An

explicit representation for these interactions will be useful for effective coordina-

tion and permit better integration of the different coordination techniques which

may be used for the separate processes. This is an avenue worthy of further investi-

gation. A possible starting point for such an investigation is Sycara’s coordination

mechanism based on token passing [Xu et al., 2005], as this has scope for defining

relationships between tokens. A model can be defined based on these relationships.

We propose to investigate this possibility, and other ways of explicitly represent-

ing relationships between interactions, further. Coordination models based on

flexibly combining different coordination techniques will be also explored. In the

next chapter, we describe the use of the Robocup Rescue system for investigating

coordination.



Chapter 3

Coordinating in the Robocup

Rescue Domain

This section describes the use of a testbed, Robocup Rescue, for exploring co-

ordination algorithms in realistic situations where there is more than one level

of granularity. The work done in this domain, to date, has focused on simple

convention-based coordination. The purposes of this work were to:

• Familiarise ourselves with the Robocup testbed and its use for evaluating

coordination algorithms.

• Allow us to observe simple coordination in action in a realistic scenario,

thereby obtaining some intuitive insights into which techniques might be

appropriate to such domains.

• Provide a baseline for working with more elaborate coordination techniques

in the Robocup testbed.

In the following section we introduce the Robocup testbed and its relevance to

our problem. We then describe the Robocup scenario in more detail (section 3.1)

and discuss some of the approaches to solving the Robocup problem (section 3.2).

A simple approach is then given (section 3.3) and the results discussed (section

3.3.1). We conclude in section 3.4 with some insights about the effectiveness of

our simple approach.

In more detail, the Robocup Rescue simulation1 models a medium-scale disas-

ter response scenario. It is a non-homogeneous, decentralized, uncertain scenario

1http://www.rescuesystem.org/robocuprescue/
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which relies on coordination between agent strategies if agents are to function well,

and has limited communication. It is therefore an interesting testbed for explo-

ration of multi-level, decentralized, bandwidth-limited coordination strategies, of

the type discussed in this report.

We chose to use the Robocup Rescue platform for our work for several reasons:

• Robocup Rescue is used throughout the international research community as

a platform for testing aspects of integrated information fusion and agent sys-

tems. This means that there is a body of existing work within the Robocup

domain which we can draw on, and against which our work can be evaluated.

• The Robocup Rescue scenario is based on real-world scenarios, with detailed

simulators modelling different parts of the system. This provides a more

thorough and useful testbed for coordinating agents than, for example, a

simple gridworld model such as that used by [Tan, 1998].

• The Robocup Rescue base is open-source and the base is extensible in many

ways. For example, it is possible to add new simulators to model different

kinds of disaster scenario. This gives us the flexibility to test scenarios not

encompassed by the base system and to develop new scenarios following

evaluation of the initial work.

• Robocup Rescue is particularly pertinent to exploring coordination at differ-

ent levels of granularity, and coordination processes which interact with each

other. The scenario it models is well suited to a combination of local and

global coordination, and there are a number of separate coordination pro-

cesses (traffic management, global map search, communication decisions)

which should all be integrated.

In the next section we describe the Robocup Rescue scenario and the coordination

challenges which are found in a Robocup Rescue simulation.

3.1 Scenario

A robocup rescue scenario is based around a map of a city (or of a virtual or

imagined city). The basic unit of a map is a node. Roads are connected by

nodes, and buildings can be found opening off nodes. There may also be rivers
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Figure 3.1: Robocup visualisation

Agent Type Task Target type
Ambulance Rescue buried civilians Civilians

Fire Extinguish fires Burning Buildings
Police Remove blockages Blockades

Table 3.1: Robocup Rescue agent tasks and abilities

on the map. Certain buildings are marked as refuges. Figure 3.1 shows the 2-d

visualisation of a robocup scenario a short way into a simulation.

The scenario begins by assuming that there has been an earthquake in the city.

At the beginning of a simulation, a number of the buildings may have collapsed,

possibly with humans buried inside. Building collapse may cause road blockage.

Finally, some of the buildings may have ignited.

All robocup rescue agents are able to see 10 metres around them, and the agents

have x-ray vision; this distance is fixed even through building walls! In order to
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obtain a wider view of the map, they must communicate with one another. How-

ever, communication bandwidth is limited. During each minute, ground (“pla-

toon”) agents may receive no more than four messages, each of no more than

256 bytes. Their central offices (or “centers”), if they have such, may receive 2*n

messages (of no more than 256 bytes), where n is the number of platoon agents.

Agents may also communicate with other nearby agents—local communication is

unlimited and has a range of 30 metres.

Robocup rescue agents have specific capabilities: ambulance teams are able to

recover buried civilians, and transfer them to refuges (where they can be tended

to); fire teams are able to extinguish fires, and police force teams are able to clear

blocked roads. Table 3.1 summarises these capabilities. In a particular Robocup

Rescue scenario, each type of rescue agent may have a team center. Centers

have no action capabilities—their function is solely to pass messages to members

of their platoon or other centers (message content is decided by the strategy).

Consequently, they have considerably more communication bandwidth than the

platoon agents.

The challenge for a Robocup Rescue team is to save the lives of as many humans as

possible, and to minimise the area of the city which is burnt, during a simulation

run of 300 virtual minutes. This is evaluated using a formula which takes into

account the percentage of live citizens (including the rescue agents), the state of

health of live citizens, and the average building damage (both fire and water).

Scaling factors are used to adjust the relative importance of each of those.

To meet this challenge, each platoon must have a strategy related to its specific

task (as defined in table 3.1), as well as strategies determining its part in the global

tasks of searching and monitoring. These strategies should be coordinated with

each other and among the agents. We describe these coordination challenges in

more detail.

3.1.1 Coordination Challenges in Robocup Rescue

The first challenge facing a Robocup Rescue team is to provide a strategy for

each platoon—police, fire and ambulance. Each platoon must have some means of

prioritising its targets and a coordinated protocol for dispatching agents to targets.

Platoons should be able to coordinate whether or not they have centers. Each

platoon needs a slightly different coordination strategy. Only one police agent is

able to work on a particular blockage at any point. By contrast, ambulance and
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fire agents may carry out a task faster if there are several agents at a site. Fire

agents, however, must coordinate to distribute themselves around a site as well as

to decide on a target site.

The second challenge is to coordinate between platoon types. Primarily, this

involves a coordinated exploration of the map from the beginning of the simulation,

and a common communication protocol for sharing discoveries. Agents must also

cooperate to avoid traffic jams at hotspots on the map. Finally, agents may

cooperate with each other in task-specific ways. For example, police agents who

have no blocked targets may monitor civilian health to aid ambulance teams, while

fire agents may concentrate their efforts on extinguishing buildings which are close

to civilian targets.

3.2 Handling a Robocup Disaster Scenario

A complete Robocup Rescue strategy consists of: deciding on an organisational

framework (within the existing structure), determining the communication proto-

cols within this framework, creating a target prioritisation strategy for the platoon

agents, and deciding how to coordinate agents as discussed above. These issues

are interconnected: for example, the communication protocol will depend on the

organisational structure and will restrict the possible agent strategies. Each of

these points is discussed further below.

Organisational framework: In scenarios where a platoon has a center present,

it is possible to use the center to collect information from all the platoon agents and

then to determine the coordination within that platoon, sending out instructions

to platoon members. This form of centralized coordination is most effective if there

are centers for every platoon, as centers may only receive messages from platoon

agents of their own kind. Any strategy which uses centralized coordination must

also be capable of functioning efficiently in the cases where there are no centers.

This could be by having distinct strategies for the different cases, and selecting

one at run-time based on the scenario.

It is also possible to design a kind of centralized coordination by appointing platoon

agents as leaders. This has the advantage of flexibility—the leader may change over

the course of the run, and that more than one leader per platoon may be appointed

if appropriate. For example, there may be a fire agent coordinating the group
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at each burning site. However, such coordination must be carefully negotiated.

Bandwidth is very limited, and many simple coordination protcols rely on the

assumption that an agent has an up-to-date world world view. Therefore, using

bandwidth on coordination protocols in this way may not be effective (although

there is, of course, room for experimentation).

Communication: Clear and well-coordinated communication is vital to the

functioning of successful agents. It is tempting to clutter the communication

protocol with “special” messages requesting a blockade clearance or a monitoring

target. However, researchers have found it to be more effective to use commu-

nication purely for transmitting information about what has been sensed, leav-

ing agents to decide their own targets [Habibi et al., 2006]. The same target-

prioritisation algorithms may be used either way; transmitting information rather

than requests makes it likely that the prioritisation algorithms will have more

information to make use of (information fused from different sources), and may

enable the agent carrying out tasks to balance them better as it can prioritise

several targets together, making use of (for example) proximity information about

targets of different types.

Prioritisation: Current approaches vary from hand-writing strategies [Skinner

et al., 2004], to making use of sophisticated genetic sequencing techniques to de-

termine targets [Kleiner et al., 2004]. Successful techniques use learning methods

for making priority decisions [Eker and Akin, 2004]—the details of the interactions

in the system are too complex for simple models to handle. We do not go into

details of specific approaches for the agent types, as prioritisation techniques can

be considered separately from the coordination techniques which interest us.

Coordination: As discussed, each platoon type will use a coordination protocol

suited to its type and strategy, while using some global protocol for information

sharing, contributing to the global search, and monitoring civilians where possible.

The means of coordination must be entangled with the choice of communication

protocol. In particular, if communication is intended solely to distribute informa-

tion, then agents will not be able to negotiate with one another to coordinate,

limiting coordination to being based upon shared conventions within a known

organisational structure.
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Evaluation: There is considerable interaction between agent strategies, so quan-

titatively evaluating one agent type alone is unrealistic. It is important in complex

scenarios such as Robocup to evaluate strategies by observing a simulation and

looking for ways in which agent behaviour appears to be strange or suboptimal,

as well as by qualititatively scoring different strategies.

3.3 A Simple Strategy

Our main focus in this report is on the police agents, for whom coordination with

other agents is inherent. The police agents should prioritise targets based entirely

on their perception of the needs of the other agents, freeing stuck agents and

ensuring there is access to refuges and fire sites before clearing the other routes on

the map. Once the map has been searched and cleared, police agents can monitor

other target types (civilians and fire sites), notifying the appropriate agents if there

is a change in status which might require action.

Below, we describe our simple strategy with respect to the key issues identified

in section 3.2. The strategy described here was used in the Robocup Rescue

competition in Bremen in 2006, where it performed well but not brilliantly. We

discuss the competition performance further in section 3.3.1.

Organisational framework: Initially, only scenarios where there was guaran-

teed to be a center agent for each platoon were considered. The extension to the

full decentralized architecture is left for future work. We used the centers only

for message passing, preferring to aim to give each agent as much information as

possible with which to decide its own targets.

Communication: The communication protocol is a key part of agent strate-

gies, and provides the backbone structure for agent coordination. We imple-

mented a communication protocol which mostly transmitted information about

what agents had sensed around them, but incorporated a small number of ded-

icated requests. In particular, agents which determine that they are stuck send

a STUCK REQUEST which is transmitted to the police agents (it need not be

transmitted to agents of the other platoon types). It would be possible to eliminate

this message if the stuck agents sent their location and a list of known blockages

(pure information). A police agent could then run the is stuck inference algorithm
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for all known agents on the map to determine which were stuck. However, this

would be a large efficiency hit (each run of the is stuck function requires a call to

the route planner) in return for a small bandwidth saving.

While there is potential for applying compression algorithms to the communicated

information, our initial work does not go this far. In order to function more ef-

fectively within the limited bandwidth, messages were prioritised, with the stuck

requests receiving the highest priority (always sent); messages about sick civilians

being prioritised above messages about fires (which can be seen from larger dis-

tance and hence will be reported by more agents), and messages about searched

buildings given a low priority among fire and ambulance agents (since the building

search is primarily carried out by the police agents—the reasons are explained in

the “coordination” section).

Prioritisation: The ambulance teams prioritise targets by estimating how im-

minent death of the target is if it is not rescued. They use a scheduling algorithm

to allocate agents to targets, possibly assigning more than one agent to each tar-

get to quicken the rescue. Each agent computes the full allocation of agents to

targets and then moves to its own target—that is, coordination by convention.

The convention is the commonly known scheduling algorithm which every agent

uses.

The fire teams prioritise targets using a combination of features based around mod-

els of how fires spread and in what situations they can be successfully controlled.

There is essentially no coordination among the fire teams. However, distance from

a target is incorporated into the prioritisation, so that agents may distribute them-

selves among fire sites. Random movements during the search phase should cause

fire agents to spread out even if they are initially at the same point on the map.

This provides the background for the police strategies. Their aim is to keep the

roads clear for the ambulance and fire teams. Their targets are therefore prioritised

according to their beliefs about the needs of the other teams. The highest priority

is to free agents which have been completely blocked in. Other high priorities are

clearing roads close to refuges (so that the ambulance teams can take civilians

there) and clearing roads around fire sites, allowing the fire teams access. The

priority ordering was decided empirically by observation of many Robocup Rescue

simulations.
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Figure 3.2: Passing a message between platoon agents in Robocup Rescue

By contrast with the ambulance teams, only one police agent may be clearing a

blockage at any one time. It is therefore reasonable to supply only an ordering on

target priorities without caring about relative importance. Agents are allocated

to the highest priority targets first.

Coordination—global search: In the initial stages of the simulation, or at any

point when they have no targets, all kinds of agents contribute to a coordinated

search, travelling across the map and entering buildings to seek buried civilians.

All agents communicate what they have searched so that they all share a world

view.

All communication-based protocols for coordination will be lossy (since agents

may have to ignore some of the messages they receive). Furthermore, there can

be a delay of several cycles in transmitting information, since to get a message

from one platoon agent to a platoon agent of a different type the message must go

via the two centers, taking a minimum of three messages (see figure 3.2). Finally,

although the agents aim to communicate all their knowledge to all other agents,

inevitably there will be some differences between the agents’ views at any one

time. In particular, rescue agents are able to move very quickly across the map,

meaning that their perceptions of each other’s locations are liable to be out of date.

We therefore introduced a coordination protocol for the search using a convention

which agents would be able to compute independently. Agents will assume that

they have similar world views to other agents, but that they do not know anything

about the location of the other agents.

The search protocol is based around the allocation of agents to fixed sectors. The

sectors are determined at agent initialisation using the k-means data clustering
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algorithm to create clusters of buildings. This algorithm is a simple way of clus-

tering the region so that buildings that are within the same block are likely to be

within the same cluster. It works as follows:

1. (Initialisation) Define k n-dimensional points as centres (in this case n = 2,

as the points are x-y coordinates). We use the agent locations, which are

known at the point of agent initialisation, as the initial centres.

2. Data points, here the building midpoints, are then allocated to the nearest

centre, forming k clusters.

3. The centres are recomputed as the cluster centres.

4. Unless the clusters have stabilised (i.e. the centres have not changed), repeat

from 2.

Figure 3.3 shows a viewer depicting the world view of one police agent (the blue dot

towards the bottom left-hand corner). The buildings shaded yellow are those in the

sector allocated to that agent. Those shaded white are the ones which the agent

believes to have been searched at this stage in the simulation (a few cycles in).

Two civilians have been discovered so far (the green dots at the top and towards

the bottom on the right of the map). It is clear from the disparity of the searched

locations that different agents have carried out the searches, communicating their

discoveries to the agent whose world view is being shown.

One set of sectors is generated for each platoon, so each platoon could potentially

search the whole map. Typically, however, after a short search, civilians will be

found who must be rescued promptly if they are to be rescued at all. Similarly,

fires should be extinguished promptly if they are to be controlled effectively. A

good strategy will therefore take fire and ambulance agents out of the search fairly

early on, as they go to deal with their own targets. This means that the majority

of the search is likely to be carried out by the police.

Once an agent has been allocated a sector, it searches buildings which it believes

to be unsearched, selecting targets based on to their proximity to the agent. There

is nothing to prevent agents of different types carrying out overlapping searches.

However, providing two agents of different types do not start from the same place,

this should not occur.

This approach is somewhat ad-hoc approach at present. Essentially, it is a small

collection of manually designed conventions which have been gathered together.
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Figure 3.3: A police viewer, showing the search sector

However, it is both a simple and apparently effective approach which does not

require any communication. One minor improvement might be to enable agents

to detect when there are rescue agents close by (using the local communication

protocols) and use some convention to separate the agents. This would still be

fairly ad-hoc; an agent might end up bouncing around its entire sector running

into other agents and moving away from them. Testing would determine whether

this is a practical problem.

Coordination—police teams: As in the search, police are coordinated among

targets using a sector-based convention. High-priority targets are considered im-

portant enough for agents to leave their sector. Targets are allocated in order of

priority and each agent is allocated to the nearest unallocated target, where “near”

is a measure of the distance between sector centres. This simplistic method is

straightforward for each agent to compute without knowledge of the other agents’

locations. It assumes that agents will be close to their own sectors—the initiali-

sation of the k-means algorithm based on agent locations attempts to ensure this,

although it may not always be possible (imagine, for example, the case where all

the agents begin at the same point).
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Several minor variations on the police strategy were tested. For example, the

search strategy was crudely modified to try and ensure high-level coverage of the

entire sector (that is, to have agents who had passed within sensing distance of

each building) before the detailed building search. Another variation combined

high-priority blockage targets into clusters, and assigned one agent per cluster.

This reduced traffic jams in some cases, but sometimes resulted in high-priority

targets not being cleared as soon as necessary.

Evaluation: Although our interest is primarily in the police agents, individual

strategies can only realistically be evaluated in the context of the complete strat-

egy. However, it is possible to get some insight into agent behaviour by testing

some subparts of the strategy. As described, the police behaviour consists of three

phases: searching, clearing blockages, and monitoring targets. Although in a real

scenario agents will move back and forth between phases, it is possible to generate

simplified scenarios which test some of these phases separately. A scenario with

no buried civilians and blockades allows us to test the search phase exclusively.

De-prioritising the search and initialising all agents with knowledge of the blockage

locations provides a way of testing the clearance phase.

3.3.1 Results

The initial work done in this domain is somewhat limited, and we do not present

a detailed set of comparative results here. Rather, we try to give a flavour of the

way in which the algorithms behave for the police teams. We present some results

for the speed at which the agents are able to search simple maps, discussing the

results and the insights we can obtain from these results. We then discuss the

behaviour of the full strategy in more general terms.

The four maps used are shown in figure 3.4. Table 3.2 shows the numbers of roads,

nodes and buildings in these maps. The simplest (smallest) of the maps is Kobe

(3.4(a))). Of medium complexity, but with quite different structures, are Foligno

(an Italian town) and VC (“Virtual City”) (3.4(b) and 3.4(c)). Foligno has narrow

curved roads, with blocks of buildings tightly packed between them. Traffic jams

occur easily on the many single-lane roads. Routing around the Foligno map with

its many roads and nodes is less straightforward than it is in the structured VC.

The most complex of the maps is the Random Large (3.4(d)). Another virtual
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(a) Kobe

(b) Foligno

Figure 3.4: Robocup Rescue maps

city, less structured than VC, the main source of difficulty in this map is its sheer

size.

Search: Table 3.3 shows the time taken for a team of police agents to search the

buildings on a map on which there are a small number of civilians, no fires, no

blockages, and no other rescue agents. This is not a realistic scenario, but gives us

some insights into the behaviour of the coordinated search strategy. Two results

are missing from the table: with only five agents the largest map, RandomLarge,
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(c) VC

(d) RandomLarge

Figure 3.4, continued: Robocup Rescue maps
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Kobe VC Foligno RandomLarge
Property
Number of roads 820 621 1480 3002
Number of nodes 765 530 1369 2872
Number of buildings 734 1263 1078 2727

Table 3.2: Map properties for the four maps used

Kobe VC Foligno RandomLarge
NumAgents

5 98 145 200 80% completed
10 55 80 92 212
15 41 53 66 148
20 38 46 63 -

Table 3.3: Time taken to search a blank map

ROAD

ROAD

ROAD

(a) (d) (e)

(f)
(b)

(c)

Figure 3.5: Poor target planning in a Robocup Rescue map. The agent will travel
among the buildings in the order shown, causing it to move back and forth along the
road several times

was only 80% searched within the 300 timesteps available; with twenty agents the

machine did not have sufficient memory to run the simulation, resulting in the

agents failing to move at all.

We examine the way in which the search strategy scales across larger maps, par-

ticularly as the number of buildings increases, and the way in which it improves

as the number of agents is increased. Although the trend indicates that the search

time is roughly proportional to the number of buildings, we can see from the results

for VC and Foligno that this is not always the case. The additional complexity of

the Foligno map results in it taking longer to search than VC, although there are

fewer buildings to enter. Part of the reason for this is a deficiency in the search

strategy: an agent targets the nearest building as the next building. In some cases

this may be the building backing onto the current one, while the next door one is

unsearched necessitating unnecessary travelling (see figure 3.5). This occurs more

frequently in the Foligno map where there are densely packed small buildings.

As the number of agents increases, the rate of improvement in the search com-

pletion time decreases. This is partly because agents complete their own sector
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quickly, but are not then required to help out other agents, so that the total time

corresponds to the time taken for the last agent to travel from its initialisation

point on the map to its sector, and then complete the search. If agents were to

move to incomplete sectors after finishing their own, this would only mitigate the

scaling problem slightly because of the time taken to travel.

A second problem that occurs as the number of agents increases is that although

the search may in fact be complete, many agents will believe it to be incomplete,

because too many updates are being transmitted between agents for all them to be

received. This highlights the importance of careful prioritisation of communication

messages. During the search, for example, it is not actually necessary for agents

to know which buildings have been searched in an area unless they are close to

that area; they need only know pertinent information such as whether there are

injured civilians in a building or blockages nearby. An improved search strategy

might therefore prioritise these messages.

Complete strategy: Analysing a complete strategy is as much as matter of

watching the agents’ behaviour in a situation as creating a series of graphs. The

Robocup Rescue competition provides a good opportunity for observing and com-

paring a number of agent strategies, as well as for testing our own simple strategy

in challenging scenarios.

During the Robocup Rescue competition in Bremen this year, our agents per-

formed respectably, demonstrating that they were capable of coming within the

top eight agent teams of the twenty qualified entries. The police search strategy

was competent, although there is room for tuning—civilians towards the edges of

sectors were not always found on the large maps, for example. Two of the simu-

lations were badly affected by failure of the police to clear important blockades,

rendering some of the agents impotent. Police monitoring of civilians rarely had

the opportunity to take place, and had little effect on the overall results. The

ambulance team strategy performed reliably throughout; again, with some room

for improvement. By contrast, the fire teams with their more complex strategy

performed admirably in some scenarios and poorly in others.

Some of the lessons learned from this year’s competition are:

• An otherwise effective strategy can be utterly ruined by failure to clear im-

portant blockages.
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• A strategy for quickly homing in on civilians during the search is more im-

portant than searching and clearing blockages from the entire map.

• Rescue agents which are running on the same machine need to cooperate

not just for resources within the Robocup scenario, but for computational

resources. Anytime algorithms are particularly important when there may

be many agents competing for CPU power.

• Although saving civilians is usually the most important way of gaining

points, a strategy which allows the entire city to burn will drop the points to

zero. Strategies should therefore try and integrate both tasks where possible.

• It is important to test for and be able to respond to pathological edge cases

(that is, agents should be robust to difficult or unexpected scenarios)!

3.4 Summary

We have described an initial attempt at a complete strategy for Robocup Res-

cue, focussing on the techniques used for coordination. The current approach

is often ad-hoc and based on intuition or observations combined with simple

communication-free conventions. By improving the model for information shar-

ing, and integrating it with other parts of the agent behaviour such as the global

search, it will be possible to use some of the communication bandwidth for coor-

dination messages, improving the overall quality of the strategy. As a result of

this initial work we identify the following key challenges for coordination in the

robocup rescue scenario:

• Flexible coordination with limited communication.

• Making use of local messages for local coordination.

• Taking a global view when coordinating.

• Testing coordination protocols on much larger robocup rescue scenarios.

• Explicitly identifying interactions between different coordination processes

such as the global search and platoon coordination, and using this informa-

tion for improving agent behaviour.
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Most of these challenges are familiar to us as being related to those we have

discussed in the introductory section and literature review, along with ways of ap-

proaching these problems: using flexible coordination models with online learning

incorporated, initially perhaps using a token-based model to identify relationships

between coordination interactions. In the next section we conclude the report with

a number of specific directions for future work using these ideas.



Chapter 4

Conclusions and Future Work

In this report we have discussed issues relating to coordination in large multi-agent

systems, focusing on the disaster response problem as an example domain. We

have highlighted the problem of explicitly representing coordination interactions

as one worthy of further investigation, with the intention of creating a holistic

coordination strategy for a multi-agent system, such as could be deployed in a

disaster response scenario. In section 3 we introduced Robocup Rescue as a testbed

for coordination related work, and demonstrated a simple strategy within that

testbed.

We now identify a number of directions for future work (see figure 4.1):

• Extending the Robocup kernel (T3):

– Increasing the flexibility of the kernel to connect different types of

agents

– Adding the ability to have agents enter and leave the scenario through-

out the duration of the run

– Modelling lossy or error-prone communication

These additions will enable us to test competitive, open scenarios, and to

test scenarios with inexact information. These two types of framework are

important cases within the proposed example domain.

• By running the agents on the Southampton Beowulf cluster, large problems

(with perhaps hundreds of agents) can be tested in the Robocup domain

(T4). This is a useful way of testing coordination algorithms in large and

challenging domains.

45
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• We will explore methods of combining coordination mechanisms (T1). From

the work done to date on Robocup, we have seen that a good strategy should

use different mechanisms for local coordination among nearby agents, for

coordination among platoons, and for the global coordination. We will ex-

periment with different ways of combining coordination models and compare

the results.

• Additionally, we will aim to develop a model for automatically adjusting

the coordination models where appropriate (T1), as the system is altered

or scaled up. The novelty of this proposal lies particularly in the scope of

the domain: the combination of large, heterogeneous, and open domains will

form a demanding test environment.

• Another important research direction we intend to focus upon is the interac-

tions between different forms of coordination (T2). For example, in Robocup

we might consider communication, traffic management, search, and agent-

specific tasks all to be separate coordination tasks which interact with each

other. The relationships between them should be explicitly represented and

used to improve the overall coordination—this is the kind of problem moti-

vated in the introduction. Development of a coordination model which takes

into account these interactions will be a useful extension to the current state

of the art. This could be based on a variation of the token-passing model in

[Xu et al., 2005]

Milestone:
paper summarising
results

Milestone:
paper summarising
results

coordination
algorithms

 flexibly combining

modelling 
interactions between
coordination 
actions

T1

T2

T3

T4

extension of 
robocup
testbed

testing in 
robocup 
scenarios

August FebruaryJanuaryDecemberNovembOctoberSeptemb March

Milestone:
transfer report

Figure 4.1: Timetable of work
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To a large extent, the results of the work will drive later progress. However, we

believe that firstly, future work should include testing the models in other chal-

lenging testbeds and other example domains with similar properties to the disaster

response domain. This will provide more thorough testing for the algorithms and

enable exploration of more of the scaling dimensions identified by [Durfee, 2001].

Secondly, we expect there to be potential for incorporating online learning into

the last item above. Agents would be able to learn about the interactions between

coordination actions, and the strengths of these interactions. They could then

flexibly adjust their coordination appropriately.
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