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Abstract

Traditional frequency-based audio restoration methods require complete data in order

to perform a deterministic Fourier transform before handling the data in the frequency

domain. We investigate the use of a probabilistic Fourier transform method, suggested

by Storkey [27], in an audio restoration application, focussing on inferring missing

and clipped points from music data. A practical implementation of the probabilistic

Fourier transform method is necessary; we explore a number of optimisers and their

associated performance and problems. We then investigate suitable models for Fourier

priors for audio–in particular, music–data, and compare the performance of the proba-

bilistic Fourier transform technique with Gaussian and t-distributed Fourier priors. We

find that t-distribution priors are better suited to audio data than Gaussian, but in gen-

eral it is difficult to perform effective audio restoration with incorporating perceptual

information to the model.
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Chapter 1

Introduction

Quantities of archived audio data exist in numerous contexts: examples include radio

recordings, recordings of concerts and home-made tapes. Some of these may have

been poor quality recordings, others may have degraded over time or been damaged at

some point. Damaged data may be noisy or hissy, clipped, poorly compressed, or have

gaps or clicks in the stream from damaged media.

There are a number of existing techniques for repairing audio data, and investi-

gation into improving these techniques, and introducing new algorithms, is a lively

research area. Techniques range from the simple interpolation methods attempted by

most CD players through Bayesian models of varying complexity to neural networks

and psychoacoustic analysis, using detailed knowledge about human perception.

Sound can be modelled either in the time domain, as sequence data, or in the fre-

quency domain, as a combination of frequencies. Which domain is more appropriate

will depend on the particular application and the way in which the data is to be mod-

elled. State-of-the-art audio applications are likely to use combinations of time and

frequency information to model the data.

Since time-domain applications are typically sequence based, they are not well

suited to situations where there are likely to be large blocks of missing or inaccurate

data. However, if it is known which data points are missing or faulty, then it may

be possible to improve upon traditional frequency techniques, which do not take this

information into account.

Storkey [27] has proposed a method for performing a probabilistic Fourier trans-
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Chapter 1. Introduction 2

form on missing or noisy data. The technique uses prior probabilities over the compo-

nents in the frequency domain. These can be updated to posterior probabilities based

on the known data points: from this, a maximum likelihood Fourier transform can be

computed if required. This project explores the practical use of this approach for the

restoration of music files with missing or clipped data.

In §2, we give a brief overview of the relevant background to the project. In §3

we explain the probabilistic Fourier transform in detail, and in section §4 we discuss

the practical issues associated with the implementation of the probabilistic Fourier

transform. In §5 we explore in detail the nature of audio data in order to suggest

suitable prior models for the frequency components. §6 develops these models. In

§8 we present the results of the system on both synthetic and real damaged music

data. In §9 we propose ways in which the system could be improved for music data

and possible future applications in other domains. Finally, in §10 we summarise the

conclusions we drew from the project.



Chapter 2

Background

2.1 Audio data

2.1.1 The nature of audio data

The human cochlea performs a frequency analysis of the signals which approach it.

Human sound perception is not consistent over all frequencies; the ear is particularly

sensitive to frequences around 3kHz, and frequencies outside the range 20Hz-20kHz

can rarely be heard. Fletcher-Munson curves (figure 2.11) describe audio frequency

perception.

A perceived sound is rarely made up of a single frequency, and interactions be-

tween frequencies can further affect perception. The most common effect is “mask-

ing”: strong frequencies may mask nearby weaker frequencies. However, the details

of the masking depend on the particular frequencies and on the tonality of the masking

frequency2.

Finally, humans also respond differently to different types of noise; impulsive noise

is more annoying to listeners than background hiss [12]. Successful audio restoration

algorithms should take into account these perceptual features.

1source: http://www.hibberts.co.uk/peals.htm, with thanks to Bill Hibbert.
2source:http://en.wikipedia.org/wiki/Psychoacoustics
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Chapter 2. Background 4

Figure 2.1: Human perception of loudness of audio frequencies. The curve depicts

constant perceived loudness.

2.1.2 Damaged audio data

Forms of distortion which may occur on audio data include:

Missing data This may occur, for example, when an audio file is sent over a low-

bandwidth connection. Lost packets may result in chunks of data missing from

the received file.

Clicks Audible clicks may occur as a result of damaged media, such as a scratched

record or CD. Other causes include slow sound drivers and nonconformant audio

file creation software3.

Clipping This occurs when the amplitude of the data has been constrained to be within

some fixed limit L. All the data points which in the true signal are larger than L

are represented as having the value L.

Quantisation This may take place in the amplitude domain, when a relatively small

number of amplitude values are available to represent the data points, or in the

3source: http://www.cdrfaq.org/faq03.html
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time domain, when the data has been sampled at a low rate.

Noise Stationary background noise, such as microphone hiss or drive motor hum, may

be caused by the recording media. Non-stationary noise may occur on home

recordings, caused by events in the background such as traffic or conversation.

Hiss Hiss is the result of random energy across the entire audio spectrum, generally

referred to as “white noise”.

There are many other forms of damage such as pitch variations (“wow”), crackling,

in which the background contains random noises, and tonal distortions. Depending on

the particular application, audio distortion effects may be subdivided in a number of

ways. For example, many of the Bayesian sequencing methods discussed below handle

linear distortions such as noise and hiss, and not non-linear distortions such as clipping

and quantisation. Another possible categorisation is those types of distortion which

can be treated as a missing data problem, perhaps alongside some other predictive

technique: clips and clicks (once detected) may both be included in this category,

albeit with potentially different models for the distribution and bounds for the inferred

data points.

2.2 Overview of audio restoration techniques

Time-series methods State of the art time-series methods are typically based on

Bayesian techniques. Godsill and Rayner [14] give an overview of Bayesian model-

based approaches to removal of clicks (in the time domain), hiss (in the frequency

domain) and other defects.

The Kalman filter [31] is based on a prediction of later states from current states

and may be applied in either the time or the frequency domain. It is commonly used

in the time domain to filter noise from a signal, but assumes Gaussianity and so may

perform poorly if the correct model is non-Gaussian.

Monte Carlo methods form a similar approach. In particle filter methods the current

datapoint is estimated based on the estimates for the preceding points. In particle

smoothing methods the probability for a sequence is maximised. Fong and Godsill [10]
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describe a way of exploiting substructure in Monte Carlo techniques to improve both

efficiency and performance. Troughton [28] uses Bayesian models with Monte Carlo

sampling to restore quantised data.

In [11], Fong and Godsill adapt the Monte-Carlo approach for non-linear distortion,

testing it on clipped and quantised data. Although their experimental results on clipped

and quantised data show some improvement in the audio signal, their discussion of this

approach in [13] describes the computational requirements as ‘prohibitive’ and observe

that they have had to make several simplifying assumptions.

Walmsley et. al [30] suggest a harmonic model for pitch estimation which could be

used to differentiate between, for example, distinct instruments. Godsill and Davy [19]

describe how to incorporate such a model into a Bayesian estimation system, using

sinusoidal functions, but estimating in the time domain. Such a pitch estimation tech-

nique combines frequency and time information, and could potentially form a part of

an audio restoration algorithm, although such an application is not described in the

paper.

Spectral methods Simple frequency domain methods include the Wiener filter, which

handles stationary additive noise and can be used for hiss reduction.

Time-domain interpolations are not well suited to filling in longer blocks of miss-

ing data. In [14], Godsill describes an interpolation which operates in the frequency

domain and is suitable for filling in longer blocks.

The multiresolution Fourier transform [32] is a two-dimensional analysis which

aims to examine a signal over a space of different frequency resolutions, in order to

identify both short-term and long-term patterns in the data. Wilson et. al demonstrate

how this can be used to pick out note and beat features from audio data. Scott and

Wilson [25] discuss the use of this analysis to restore audio signals. Their approach

relies on the existence of a prototype signal, possibly employing (for example) musi-

cians to give a rendering of a recorded piece which is being restored. This may have

some value for restoring data such as archived concert recordings, but is not widely

applicable.

Abel and Smith [1] describe the restoration of a clipped signal by exact methods in

a band-limited situation, making use of the DFT to provide bandwidth constraints on
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the potential reconstructions. Their method is not probabilistic; if the possible signals

which conform to the available constraints are not unique they propose the use of a

norm to choose a reconstructed signal.

In [33], Wolfe and Godsill provide an overview of perceptually motivated ap-

proaches to background noise removal based on Fourier transforms of short blocks of

data. These methods can include cost functions based on typical auditory perception,

and can make use of knowledge about masking frequencies. Temporal information

based on nearby blocks can be used to carry out the analysis on a particular block.

These methods are particularly applicable to noise reduction, where there is a constant

tension between removing enough of the noise to improve the signal, and not removing

so much of the signal as to lose its integrity.

Neural networks Czyzewski [8] describes an approach to removing impulse noise

based on learning a neural network. His approach uses two networks: one to detect the

disturbances, and one to recover the original data. The networks are trained on both

clean and distorted data. The disadvantage of his approach is that training neural net-

works is a time-consuming process, and distinct networks must be trained—requiring a

good body of training material—for distinct classes of either audio signal or impulses.

Czyzewski develops the use of neural networks further in [9], using the self-organising

map of Kohonen and a neuro-rough controller (one which uses rough sets [16]—that

is, creating approximations of sets) to remove non-stationary noise. The computa-

tional resources required for training remain an issue. Cocchi and Uncini [7] describe

a neural network approach, operating in the frequency domain, to interpolating large

blocks of missing data. They emphasize the advantages of non-linearity that neural

networks provide. Their use of subband rather than full-band analysis ameliorates the

performance difficulties somewhat.

Summary Clearly, audio restoration is a lively research area, and new approaches to

audio restoration in a number of directions are being actively explored. State of the art

restoration systems will typically combine a number of approaches, in both frequency

and time domains. Audio data is treated by the human ear as frequency data, and so

frequency approaches are well suited to capturing perceptual features of audio data and
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for expressing short term periodicities in the data. Nevertheless, there is a wide range

of effective sequence processing techniques for audio data which operate in the time

domain.

2.3 Spectral approaches to audio data

Away from audio restoration research, there is work on using spectral techniques to

improve audio analysis. This work could be incorporated into audio restoration tech-

niques. For example, Cai et al [6] use various feature structure patterns to distinguish

different types of audio signal. They also mention the use of principal component

analysis in the frequency domain for de-noising.

Roweis [24] describes an approach to the source separation problem using a fac-

torial hidden Markov model on spectrograms (a spectrogram is a representation con-

structed from the Fourier transform). Bach and Jordan [2] also use a spectrogram-

based technique to solve the same problem. However, their methods are computation-

ally heavy and resource intensive, involving large matrix calculations.

In [29], Tzanetakis and Cook explore feature-based classification of musical genre.

They include pitch and beat features as well as frequency-based features, but find

that frequency-based features provide the most accurate classifications. Pampalk [21]

describes a number of spectral features which represent musical “similarity”, imple-

mented in a MATLAB toolbox. Although even on a very general feature set some genre

distinctions are clear, application-specific information for a particular use could en-

hance the system.

One limitation of sequence processing techniques is the difficulty of applying them

to relatively long consecutive chunks of data, as errors tend to compound. However,

traditional spectral techniques require a translation into the frequency domain; some-

thing which can at best be estimated if there is missing data. Furthermore, the tendency

of errors to compound means that first estimating the frequency transform and then es-

timating the repair may cause unwanted inaccuracies.
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2.4 Probabilistic Fourier transforms

There has been some work on using a Bayesian derivation of the Fourier transform to

estimate the transform of incomplete data. Gregory [15] describes a method due to

Jaynes [17], using both systems with strong prior information and systems where the

only prior information is in the choice of model.

Another interesting approach is that of Storkey [27], which exploits the graphical

nature of the fast Fourier transform (FFT). This technique has the potential to be ef-

ficient as the FFT itself is an efficient technique. Storkey describes the application of

the technique to missing audio data; it should also be applicable to noisy data of other

kinds.

This approach could be incorporated into an audio restoration system. In its sim-

plest form it would provide a way of estimating missing data, making full use of both

frequency models (which we have suggested is appropriate for audio data) and the

known time-series data. The same transform could be used for clipped data, using an

appropriate model. The technique could be further extended to handle noisy data, or

as a part of a larger system. In the next section we describe the probabilistic Fourier

transform in detail.



Chapter 3

Probabilistic Fourier Transform

3.1 The Fourier Transform

Two well known periodic functions are the sine and cosine waves. It is a fact that

any odd periodic function which fulfils the Dirichlet conditions (figure 3.2) can be

expressed as a sum of cosine waves (an odd function is one for which f(x) = -f(-x);

an even function is one where f(x) = f(-x)). Similarly, any even function fulfulling the

same conditions can be expressed as a sum of sine waves (3.1).

Furthermore, any function can be expressed as a sum of an odd and an even func-

tion:

f
�
x ��� 1

2
�
f

�
x ��� f

���
x ���	� 1

2
�
f

�
x ��� f

���
x ���� feven

�
x �	� fodd

�
x �

It is therefore possible to write any periodic function as the sum of a sine series and

a cosine series.

f
�
x ��� ∞

∑
n 
 0

an sin
�
nπx � T ��� ∞

∑
n 
 0

bn cos
�
nπx � T �

where T is the period of the function.
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(a) f � x �� x3

An odd function. The green line shows the func-

tion, the blue the sum of the first five sine compo-

nents.

(b) f � x 	� x2

An even function. The green line shows the func-

tion, the cyan the sum of the first five cosine com-

ponents, and the blue the sum of the first fifteen.

Figure 3.1: Functions as sums of series
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1. f
�
x � should be single-valued

2. f
�
x � should have finitely many discontinuities

3. The discontinuities should be finite

4. There should be a finite number of maxima and minima per period

5. The integral over a single period of � f �
x ��� should converge

Figure 3.2: Dirichlet conditions for convergence of the Fourier series of a function f
�
x �

Since eix � cos
�
x ��� isin

�
x � , we can reformulate the above as � ckeix fk � . Such a

sequence is called a Fourier series. The frequencies fk are obtained by fk � 2πk � T .

The coefficients, ck, are computed as

ck � 1
T

� a � T

a
f

�
x � ex fkdx

Any function which is only defined with a fixed range between two finite points

a and b can be treated as a periodic function, where the range
�
b

�
a � determines the

period.

In practice, if a ‘function’ is determined by a finite set of data points, as in the case

where the function is some audio signal, then we can treat it as a periodic function as

described above. As we only have a finite set of data points, we replace the integral

with a summation.

ck � 1
N

N � 1

∑
n 
 0

f
�
n � e2πikn � N

where the f
�
n � are the datapoints. Computing the set of � ck � from the f

�
n � is

known as a discrete Fourier transform (DFT).

The transform can be inverted to obtain the original datapoints f
�
n � from the

Fourier components ck:

f
�
n ��� N � 1

∑
k 
 0

cke2πikn � N
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Figure 3.3 shows the DFT in action. The original curve, shown in green, is a

short section of data from a music file1. The three curves show the original data offset

with the curves formed from the sum of the first five, twenty-five and hundred and

twenty-five Fourier components respectively. (There are a total of 256 data points in

the section, so 256 Fourier components reconstruct the data exactly).

3.2 Fast Fourier Transform

The obvious method of computing a Fourier Transform is an O
�
N2 � operation:

F � A f

where F is the N-dimensional vector of Fourier components:

Fk � 1
N

N � 1

∑
n 
 0

f
�
n � e2πikn � N

f is the N-dimensional vector of data points, and A is the NxN matrix of coeffi-

cients:

Aik � e � 2πikn � N

However, it is possible to carry out the Fourier Transform more efficiently than

this, using a recursive formula. We can construct the formula as follows (using Fk for

the Fourier components):

Fk � N � 1

∑
n 
 0

f
�
n � e2πikn � N

� N � 2 � 1

∑
n 
 0

f
�
2n � e2πik � 2n ��� N � N � 2 � 1

∑
n 
 0

f
�
2n � 1 � e2πik � 2n � 1 ��� N

� N � 2 � 1

∑
n 
 0

f
�
2n � e2πikn ��� N � 2 � � e2πik � N

N � 2 � 1

∑
n 
 0

f
�
2n � 1 � e2πik � 2n � 1 ����� N � 2 �

1 A Winter’s Tale, Davis Essex
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Figure 3.3: DFT example



Chapter 3. Probabilistic Fourier Transform 15

� Fe
k � W kFo

k (3.1)

where W k � e2πik � N . Fe is the transform of length N � 2 formed from the even com-

ponents of the original f(n) and Fo the corresponding transform formed from the orig-

inal components. (Proof due to Danielson and Lanczon, 1942. Reproduced in [23]).

As long as the data length, N, is a power of two, we can repeat this decomposition

recursively until we need only perform the transform on a single point: that is, the

identity operation. Next, it is necessary to determine which point corresponds to each

single-point transform. A single point transform will be described in the notation above

as

Feeo � � � oeo

for some pattern of es and os, where the es represent even tranforms and the os

represent odd transforms. By reversing the order of es and os and letting e � 0 and

o � 1, we have the binary value of n, where f(n) is the point used for this single-point

transform. This is essentially because the last bit of the binary representation of the

data determines its parity, thus which initial transform it is in.

These ideas make it possible to compute a Fourier transform in O
�
log2 N � opera-

tions. First the data is sorted into reverse bit order to obtain the single point transforms

(figure 3.4 shows an example). We then recursively combine the transforms according

to equation 3.1. This process is called the fast Fourier transform (FFT). We can rep-

resent this graphically, as shown in figure 3.5 (taken from [27]). The arrows indicate

the dependency of the data points on the Fourier components; they could equally be

reversed to demonstrate the dependency of the Fourier components on the data.

If the length of the available data is not a power of two, then we must do some

fudging to obtain the Fourier transform. One alternative is to pad the data with zeros

to obtain a power of two. Another is to break the data up into more than one section,

where the length of each section is a power of two, and then to perform the FFT on

each section separately. If the sections are sufficiently large then this can be made to

approximate the correct transform.
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Figure 3.4: Sorting data into reverse bit order

Figure 3.5: Network for fast Fourier transform
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3.3 Probabilistic Fourier Transform

In order to compute a Fourier transform as described above, it is necessary to have all

the data points. Typically, if some data is missing, it is filled in with zeroes before

the Fourier transform is applied. However, it would be more correct to compute a

posterior distribution over possible transforms, given the available data and some prior

distribution on the frequency components. Given such a posterior distribution we could

then take the maximum likelihood transform to use in a frequency-based application;

invert the maximum likelihood transform to estimate the original data points, or use

the full posterior distribution in an application.

3.3.1 Belief networks

A belief network is a representation of statements about the probability of events which

allows efficient propagation of observations to update probabilities elsewhere in the

network. The graphical structure for the FFT shown in figure 3.5 can be viewed as a

belief network, where prior probabilities are placed on the Fourier components, and

observations at the data points are propagated up through the network to obtain poste-

rior probabilities. It would then be possible to propagate this information back through

the network to obtain posterior probabilities for the un-observed nodes, given some

prior distribution on the nodes (which could be uniform if there is no prior information

about data points).

Note that this method applies equally well if it is the frequency data which is

known, and the sequence data on for which we have prior information; we can merely

replace the FFT with an inverse transform—that is, propagate information in the op-

posite direction.

There are a number of methods for propagating information through belief net-

works. The network, as shown in figure 3.5 is not singly connected; it contains (undi-

rected) loops. This means that exact propagation methods such as Pearl’s polytree

algorithm [22] are not valid. Nonetheless, it is possible to make use of this algorithm

as an approximation scheme. Some practical examples are dicussed in [20], but there

is no guarantee of convergence. In practice Storkey [27] found that there were con-
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vergence problems with the use of loopy propagation for FFT network of any size.

A belief propagation scheme is used in which clusters of nodes are formed to try and

avoid problems caused by the strong dependencies between the parents of a given node.

Initial experimentation with this scheme produced good results. However, its scaling

properties are not clear. Barber and Sollich [3] applied directed belief propagation us-

ing an “auxiliary variable trick” to the case in which the priors are Gaussian. They

found that both the stability and the accuracy were improved over the undirected prop-

agation used by Storkey. Unfortunately, this approach is not suitable for non-Gaussian

systems.

3.3.2 Exact optimisation methods

The posterior probabilities for the Fourier components F can be computed by finding

an exact solution to the equation

P
�
F � data �!� P

�
data � F �#" P

�
F �

P
�
data �

In the case where the data and hence P
�
data � are fixed,

P
�
F � data � ∝ P

�
data � F �#" P

�
F �

Finding the maximum likelihood posterior for this system is an optimisation prob-

lem. Exact optimisation methods iterate towards finding a solution vector which max-

imises some objective function (a function of the solution vector). Many exact optimi-

sation techniques use some form of hill climbing to move towards a solution, using the

gradient of the objective function to determine a direction in which to move the test

vector. The general form of this kind of search is an update to the estimated solution

w,

w $ w � λd

where d is the direction of search at that step and λ is chosen to minimise E
�
w � λd �

for the error function E. If we aim to minimise the objective function f , then E � f .

The updates continue until the change in w falls below some small tolerance value.
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Conjugate gradients are one such technique, using conjugate directions to deter-

mine the direction of travel, i.e. d is chosen such that

dT Hd � 0

where H is the Hessian (matrix of second derivatives) for the target function. Conjugate

gradients are well suited to the solution of quadratic systems where they are guaranteed

to converge in d steps, where d is the number of unknowns. For other distributions,

there are no such guarantees, but the convergence properties are often found to be good

in practical situations. A further advantage of the conjugate gradient method lies in its

popularity: there are many implementations available.

3.4 Further steps

We have discussed finding a maximum likelihood Fourier transform found which is

consistent with the original data. However, in a real application we may assume some

measurement error on the observed data. If there is some transform T of data which

is close to the observed data, and T has a much higher posterior probability than U,

the precise transform of the observed data, then T may be a better posterior transform

than U. In order to implement such a system, we would need to specify an acceptable

measurement error on the original data. This should vary over the data, and may well

depend on the data itself.

The theory described above applies equally well to any sequence data which can

be profitably considered in its frequency domain. All that is needed is the specification

of suitable priors on the Fourier components. In the next section, we discuss the im-

plementation of this probabilistic FFT in the context of an audio restoration algorithm.
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Implementation

4.1 System design% The core of the system is the module to perform the noisy FFT. This takes as

inputs a block of data including unknowns and a model for the Fourier com-

ponents, and returns the block of data with suggested values for the unknowns.

Ideally, the posterior probability distribution over the data points should also be

returned.% The layer above this core handles a complete signal, converting stereo data into

complex format, and passing each block to the probabilistic FFT core.% Above this layer a third layer handles the loading of audio files and the saving

of the repaired file. At this layer a set of model choices is provided and the user

need merely select one.

Figure 4.1 illustrates this system.

4.2 Design decisions

Noisy FFT The core of the system is the probabilistic FFT code, which computes the

maximum likelihood estimate for the unknown datapoints, given (1) the prior model for

the Fourier components and (2) the observed data. This optimisation is time-critical,

20
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Figure 4.1: Module design
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and forms the bottleneck in the system. It is therefore best implemented in a language

such as C, which will be fast. By also making available a MATLAB implementation,

which is simpler to write and use, the two versions could be compared. Optimisa-

tion methods are discussed separately in section §4.5.1; initially a conjugate gradient

optimiser implemented in C was used.

Noisy FFT models In order to use a gradient optimiser, the model must be supplied

in the form of an objective function and a gradient function. For simplicity, these were

written in MATLAB. C wrappers which called the MATLAB functions were included in the

C code.

Handling a data signal A stereo audio signal was treated as complex data, with the

two parts of the signal forming the real and imaginary parts of the data. Mono data

was not handled by the implementation, but it would be straightforward to modify the

code to do so. The signal was broken into blocks of a fixed size—512, 1024, or 2048

points—and each block was handled separately by the probabilistic FFT core.

An arbitrary data signal is unlikely to be a multiple of a power of two. In order to

handle the final points in the signal, the data can be padded with zeros. In practice, this

experimental system simply ignored the final points as they represented at most one-

twentieth of a second (no blocks larger 2048 points were operated on). For a practical

system zero-padding would be appropriate.

Further discussion of audio data and clipped audio follows in §5, in which models

for audio are explored.

Octave versus MATLAB Octave and MATLAB are very similar. The initial work was

carried out in Octave, as it is free software which could be run on any machine. How-

ever, the tools available for MATLAB and its greater efficiency made it more suitable for

this project. For example, there is no function to read a WAV format file into Octave;

files must be converted to a format such as .au. Octave also has difficulty with memory

management when loading large files.
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4.3 Software engineering

The software engineering model was based on the spiral development model [5]. De-

velopment within this model involves building and testing a system with basic func-

tionality, and then adding functionality and embellishments as a result of user feed-

back. In this case we began by implementing a very simple system which handled

only one half of a stereo signal and which operated with the simplest models, and

gradually built on this. Development of the the models ran parallel to development of

the system, as new models threw up new issues and numerical as well as algorithmic

problems.

4.4 A note on models

A full exposition of the models we used for the prior probabilities on the Fourier com-

ponents is in the following section. We note here that we experimented with two sets

of models, one with Gaussian priors and one with t-distribution priors. Both these

probability functions involve the computation of the Mahalanobis distance,

∆2 � �
x

�
µ � T Σ

�
x

�
µ �

where µ and Σ are parameters of the distribution and x is the data vector. Σ is a n x

n matrix which we refer to below as the covariance matrix, and it is this computation

on the covariance matrix that causes much of the complexity in the optimisation.

4.5 Implementation

4.5.1 Optimisation method

Conjugate gradients We considered two implementations of the conjugate gradient

algorithm: netlab1’s conjgrad, and a C optimiser, macopt2. The netlab version

was much slower, but provided useful sanity checks such as checks for the gradient

1http://www.ncrg.aston.ac.uk/netlab/
2http://www.inference.phy.cam.ac.uk/mackay/c/macopt.html
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function. For a Gaussian, the conjugate gradient technique is guaranteed to converge

in d steps, where d is the number of unknowns, so the maximum number of iterations

can be set based on the dimensionality of the data. The t-distribution does not have this

guarantee, but we found experimentally that the optimiser rarely reached the maximum

number of iterations. There was some similarity between the occasions when it did

reach the maximum for the Gaussian and the t-distribution. Since the failure with the

Gaussian must be attributed to numerical error, we conclude that the failure with the

t-distribution was also likely to be caused by numerical error.

The netlab version was also able to handle complex data. In order to use macopt,

the complex signal had to be broken apart into the real and imaginary parts. Ultimately

it was necessary to do this in any case, in order to handle data which had unknowns

in only one part of the signal at any point (such as clipped data). It was still possible

to provide complex parameters (mean and covariance) for the objective and gradient

functions as these functions were implemented in MATLAB and the parameters were

passed through to them untouched by the optimiser. The objective and gradient func-

tions were modified to reconstruct complex data from the broken apart data.

As we will show in §5, the covariance matrices for blocks of audio data are often

close to singular. This resulted in some numerical instability, causing the conjugate

gradient optimiser to become very slow and to reach its maximum number of iterations

without converging (since this convergence is guaranteed, this is an indication that

some numerical error was occurring). A number of other optimisation techniques were

therefore explored.

Exact optimisation This optimiser, based on code provided by Amos Storkey, com-

putes the full posterior mean and covariance for the unknown data. The mean of this

distribution is the maximum likelihood for the unknown value. This optimiser has the

advantage of being “correct”, not suffering from convergence issues, and returning a

distribution on the data points. However, it was very slow and scaled very badly as the

block size (and hence the size of the covariance matrix) increased. This made it im-

practical for use on a selection of problems, although it was valuable for small tests and

sanity checking on Gaussian problems. There was no equivalent code for t-distribution

problems.
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Quadratic programming Finding the maximum likelihood value in a Gaussian dis-

tribution is a quadratic programming problem; that is, we can state it in the form:

Optimise xT Qx subject to constraints Ax & b and Cx � d.

(The constraints Ax & b can be used to express equality constraints, since

Ax & b ' �
Ax & �

b ( Ax � b

However, it is conventional for convenience to express the equality constraints sepa-

rately).

For the optimisation with Gaussian priors, the term xT Qx corresponds to the Ma-

halanobis distance and the constraints correspond to the known data points and are

expressed as an equality constraint.

Code was provided by Amos Storkey which set up this problem and called the

MATLAB quadratic programming optimiser quadprog.

mosek provides a C implementation of a quadratic programming optimiser for con-

vex problems (that is, all the eigenvalues of Q are non-negative, as should be the case

when Q is a covariance matrix). This implementation provides an interface which is

compatible with MATLAB’s quadprog interface. It turned out that using the C version

was much faster and returned better results. We did not investigate the reasons behind

the difference in results; there is more than one way of solving quadratic programming

problems and it may be that mosek’s algorithm is less susceptible to slight numerical

error.

This code does not return the posterior distribution over the data points, nor is it

suitable for non-quadratic problems, such as a t-distribution prior. However, it was sat-

isfactory for many of the Gaussian problems in which the conjugate gradient optimiser

failed to converge.

Comparisons Table 4.1 summarises the optimisers which were tested. “Sufficiently”

fast is a rough measure, considered to be true if a ten-second stereo audio clip could

be repaired using a joint Gaussian model in under half an hour on a 3.80GHz Pentium,

while no other cpu-intensive processes are running.
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Method Arbitrary model Posterior “Sufficiently” fast Numerically stable

netlab conj grad Yes No No No

macopt conj grad Yes No When stable No

Exact No Yes No Yes

MATLAB quadprog No No No Yes

mosek quadprog No No For small covariances Yes

Table 4.1: Optimisation methods

At the same time, we experimented with improving numerical stability in other

ways, such as adding a jitter term or ensuring that all covariance matrices were gen-

uinely symmetric (in particular slight numerical errors sometimes occurred in inverting

the near-singular matrices, causing symmetry to be lost). These improvements permit-

ted the conjugate gradient optimiser (the fastest) to work for some of the t-distribution

problems which initially failed to converge, although it continued to run into difficul-

ties with the Gaussian function.

4.5.2 Efficiency

In order to make the system usable, various steps were taken to improve the efficiency.

Profiling helped to identify bottlenecks in the system. For example, passing the inverse

covariance directly to the Gaussian p.d.f. rather than the covariance saved inverting the

matrix on every iteration step. Careful ordering of equations could sometimes make

computations faster.

The scaling properties of this system have two main dimensions: the way in which

it scales with the fraction of the data which is unknown, and the way in which it scales

with the block size. The exact and quadratic programming methods scale in the size of

the covariance matrix, while the conjugate gradient method scales with the number of

unknowns, which is constant over a file regardless of the blocksize. For example, the C

implementation of quadratic programming on a missing data problem took two minutes

to repair a file using 512-blocks, but 45 minutes to repair the same file using 2048-

blocks. Although the conjugate gradient methods do not have such drastic scaling

issues, in practice the number of iterations per block is rarely the theoretical maximum,
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and does increase with the size of the covariance matrix. Furthermore, the work done

per iteration involves multiplying by the full covariance matrix, which is more costly

as the size of the matrix increases. Therefore, the conjugate gradient methods do also

take longer to solve a problem as the block size is increased.

Eigenvector decomposition When working with distributions with large square

covariance matrices or similar parameters, it may possible to improve performance

through eigenvector analysis. If only a fraction of the eigenvalues of the covariance

matrices are significant, the rest being very small, then a reduced-dimensionality ap-

proximation to the covariance matrix can be constructed

C � XT ΛX

where X � �
x1 )�)*) xn � consists of the eigenvectors corresponding to the n largest

eigenvalues, and Λ is the n x n diagonal matrix with the n largest eigenvalues on the

diagonals.

In the case of audio data, we find that many of the eigenvalues in the covariance

matrix are indeed very small (the details are discussed in §5.5.10). The eigenvector

approximation could therefore be appropriate, in particular for Gaussian distributions.

It can be applied both when using the exact method and when using the conjugate

gradient method, to simplify the computation of the Mahalanobis distance. For the

exact method, there is no efficiency gain if we are modifying the covariance matrix at

each step, as the eigenvectors and eigenvalues must be recomputed each time. For the

conjugate gradient techniques when many iterations are carried out at each step, there

may be some efficiency gain.

In practice, we found that using the an eigenvector decomposition within the con-

jugate gradient method, for a joint Gaussian distribution, reduced the numerical prob-

lems with the method, but was very slow. This might have been ameliorated by further

rewriting the equations to reduce the amount of computation done at each step; we did

not investigate further.

Preconditioning Preconditioning can be used to try to reduce the number of itera-

tions in a conjugate gradient optimisation problem. We did not experiment with pre-
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conditioning as the conjugate gradient method was for the most part sufficiently fast

for my purposes. Preconditioning works by pre-multiplying the linear system by a pre-

conditioner matrix, so it is possible that applying a preconditioner might have reduced

the numerical problems with the conjugate gradient method.

The above two approaches—eigenvector decompostion and preconditioning—would

have a dual effect on the conjugate gradient optimisation; the eigenvector decomposi-

tion reducing the per-step time, and the preconditioning reducing the number of steps.

Further speedups might be obtained by implementing the objective and gradient func-

tions in C rather than as MATLAB functions. However, this would add considerably to

the complexity of use of the system and the likelihood of bugs in those functions. It

would also not be possible to use netlab’s gradchek to check the gradient function.

4.6 Testing% Probabilistic FFT optimiser with conjugate gradients

1. Test with small vectors (4 elements) of data and a very simple model (ob-

jective function is data
�

4, diagonal covariance). Test with vectors con-

taining all NaNs, no NaNs, and NaNs in one or two places.

2. Extend to non-diagonal covariance.

3. Test with a more complex model (objective function is data2 �
4). Test

vectors as above. Diagonal covariance and then non-diagonal.

4. Test with an independent Gaussian model

5. Increase the size of the test vectors to 32 points

6. Test on a short section of a one-dimensional audio signal, using mean and

variance extracted from the signal and Fourier transforms of length 256.

Figure 4.2 demonstrates the results.% Once one optimiser was working, others could be tested by comparison.% Results could be sanity-checked (although not guaranteed correct) by visualisa-

tion (as in figure 4.2) and on real audio data by listening (although apparently
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(a) Broken data laid over clean data

(b) Repaired data laid over broken data

Figure 4.2: A small test. The data with blocks missing is shown in blue in 4.2(a), with

the clean data behind in green. The repaired data is shown in red in 4.2(b), with the

broken data laid over in green.
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sane results do not necessarily sound good).% At each stage of development with new models and new optimisers, we checked

backward compatibility against the previous work.

4.7 Conclusions

As predicted, the bottleneck in the system was in the probabilistic FFT core. In partic-

ular when working with large covariance matrices it was necessary to experiment with

techniques for accelerating the optimisers. Furthermore, the system was prone to nu-

merical difficulties, which in places caused the optimisation techniques to struggle. A

good deal of time was therefore spent in trying different optimisers and in attempting

to work around numerical difficulties.

The final system was much as planned, but with a variety of choices of optimisers,

not all of which were appropriate to arbitrary models. The core of the system does

not depend on the input data being audio data; it could equally well be used in an

application which handled image data, astrophysical series data, or geophysical data,

to name three examples. In this project, we explore the use of the probabilistic FFT

for audio restoration, focusing on music. We have mentioned the use of the Gaussian

and the t-distribution in our experiments; in the next section we present our analyses

of audio data and the justification for our model choices.
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Audio Data

In this project we focus on the modelling of music data. I collected a corpus of wav

files containing music from a variety of genres. The files were initially stored as mp3

and good quality, typically taken from CDs.

Block size The probabilistic FFT code we have implemented will operate on chunks

of data, not on the whole file at once: it is not practical to consider FFTs of a million

data points in situations involving the use of large matrices or conjugate gradients. We

therefore consider how large these chunks might practically need to be.

The files we used were recorded at a sampling rate (data points per second) of

44.1kHz. The Nyquist sampling theorem states that the maximum frequency which

can be detected is half the sampling rate. Therefore, the maximum frequency which

could be detected in these files is approximately 22kHz, just above typical human

hearing limits. The lower limit of human hearing is approximately 20Hz. To detect

signals at frequencies of 20Hz, we must sample twice the number of points which form

a complete period of such a signal at this sampling rate. A signal at 20Hz undergoes

a complete period in 2205 points when sampled at 44.1kHz. To detect these signals

we would need to sample of 4410 points. The smallest power of two larger than this

value is 8192, so in an ideal system we would use blocks of 8192 points. Practically,

we would detect all audible signals using a block size of 4096 points.

However, for a real application it is not necessary to attain these theoretical optima

for at least two reasons:

31
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theoretically required.% Low-frequency sounds are not strongly perceived (see the Fletcher-Munson curves

in figure 2.1) and are unlikely to contribute much to the signal as a whole.

We therefore chose to experiment with blocksizes no larger than 2048 points, and

with a default block size of 512 points, sufficient to detect all frequencies over 200Hz

(for comparison, telephones typically transmit above 300Hz).

5.1 Datasets

We worked with three data sets:

1. Bells: Sound of the Swan Bells, Perth

2. Songs: Songs from my collection–mainly pop songs

3. Classical: A variety of classical music from my collection

Songs and classical music provided two examples of different styles; there was

a good deal of diversity within each of the two broad genres. The full data sets are

listed in appendix A. The bells provided a slightly different type of data set: in these

pieces there are a small number of similar instruments (the bells) each with a single

note which has strong harmonics. Only one note is struck at any one time so the

frequencies should be distinctive. We stored the data in .wav format which is readable

by MATLAB.

5.2 General information% The samples varied in length, mostly around four minutes. However, we re-

stricted our work to ten second or thirty second samples from the files; either

contiguous, or sampling small blocks (of the current block size: 512, 1024 or

2048) at random from throughout the file until we had 10s or 30s worth of data

points.
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Figure 5.1: Time series information for a sample file
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songs are converted to 8kHz, there is no audible difference in the quality as

played through a laptop and headphones, while the bells recordings are notice-

ably lower quality at 8kHz. This may be relevant to restoration applications as it

may suggest that a higher error rate is acceptable for songs files than bells.% All the samples contained stereo data. For the rest of this paper we refer to the

“left” and “right” parts; the decision of which part is which is less directed, but

the “left” part refers to the first column of data read into MATLAB by wavread and

the “right” part the second. Where only one column of data is examined then it

is the “left” part unless stated otherwise.

Figure 5.2 shows the left part of one of the “Bells” files (Bells 1), and both left and

right parts of 512 block from that file. The large-scale regularity (5.1(a)) in the data

points is a feature of the sound of bells ringing.

5.3 Data points

Figure 5.2 shows histograms of the size of the data points for three of the files, one from

each data set. A number of differences can be seen. For example, “Morning Mood” is

mostly both high and quiet, which combine to result in many of the datapoints having

low amplitudes. It is also noticeable that the three histograms are shaped differently,

indicating different distributions of datapoints. It is clear that these files would be

represented by rather different models in the data domain. We hope that there will be

more obvious regularities in the frequency domain.

The mean value of a datapoint is around zero—silence—for each of the files. This

is expected; data points are equally likely to be positive or negative. However, the

mean absolute value of a datapoint varies between the files: for “Morning Mood” the

mean absolute value for the left signal is 0.017; for “Wannabe” it is 0.17, ten times the

size. Two of the audio tracks from the bells CD (bells 4 and bells 7) have similar tunes

on the same number of bells, but are in different keys. The mean absolute values are

0.13 for the lower one and 0.083 for the higher. “Moonlight Shadow” and “Hometown
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(c) Amplitude for “Wannabe”

Figure 5.2: Data point amplitudes
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(b) Amplitudes for “Sarabande”

Figure 5.3: Histograms of data point values: left and right

Girl” have similar perceptual loudnesses, but the mean absolute value of datapoints in

“Moonlight Shadow” is 0.077 while in“Hometown Girl” it is 0.091.

This gives us a brief overview of what kind of time-series data we are dealing with:

data which does not have a clear distribution shape, data whose mean absolute value

varies with both the loudness and the type of music.

5.4 Handling stereo data

Figure 5.3 compares the histograms for the left and right parts of two files, “Moon

River” (a song) and “Sarabande”: in general in music data the loudnesses of each part

must be much the same, or one part would be likely to become less audible. In “Moon

River” the two parts are, unusually, quite different (shown in figure 5.4), but the data

histograms are still similar–in particular, they are shaped the same way. It may be that

the ranges of frequencies used also vary in a similar way. In the “Hall of the Mountain

King”, the left and right signals sound quite different in places, but the data plots look

very similar.
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Figure 5.4: Comparing the left and right signals
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File Correlation coefficient

Bells 0.416

“Hometown Girl” 0.725

“Moonlight Sonata” 0.407

“Allegro con Brio” 0.274

“Dressed for Success” 0.585

Table 5.1: Correlation coefficients between left and right data points

Here we use a method of displaying the histogram which allows us to view more

than one histogram on a single plot: the curve represents a line drawn through an

imaginary point at the top of each histogram bar. We will use this method in a number

of later diagrams.

As seen above, the two parts generally (although not always) follow one another

on a fairly large scale, although there will be differences at the small scale. The overall

loudnesses will be similar, but it’s possible that some parts of the tune—a high-pitched

voice or instrument, for example—may occur only on one part of the signal (this is the

case with the woman’s voice which occurs briefly in “Hall of the Mountain King”, for

example). Table 5.1 shows the correlation between the left and right data points for a

selction of files. All of these coefficients are positive, indicating that the loudnesses

of the two parts increase and decrease together, and non-zero, however they vary in

magnitude and hence in significance.

In the frequency domain, this will be represented by left and right signals which

tend to follow one another quite closely, although the signals themselves may vary in

the details. The upsurge of one signal is likely to be near to the upsurge of the other.

Looking back at figure 5.1(b) we can see this effect on the block of 512 datapoints

depicted. Although there is one place at about point 160 where the two signals reflect

one another, and although in places there are small “bumps” in the opposite direction

on a larger downward (or upward) curve, for the most part they are indeed positively

correlated.
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Representation We can represent a stereo signal as complex data, with the real part

representing the left part and the imaginary part representing the right part. Since

Fourier transforms are complex, a complex representation of the data is appropriate

for carrying out a Fourier analysis. If we were to perform Fourier transforms only on

one part of the signal at a time, so that the Fourier transforms are on real data, then we

will find that Fj � FN � j " (where * represents the complex conjugate). That is, only

half the Fourier components are needed to specify the full transform.

5.5 Fourier components

In general, predictions on time series data are based on predicting data points based

on the preceding data points. Predictive models must therefore capture regularities in

the data. In this project we propose to try to encapsulate the data by providing prior

information about the periodicity in the data—its frequency properties. The remainder

of this chapter is devoted to an exploration of these properties for the music data we

have.

As discussed, we intend to break the data up into chunks. Our prior information

should therefore be a prior over the n Fourier components in a single chunk. In order to

obtain statistical information about these Fourier components, we can examine a large

number of such chunks, and extract from them appropriate patterns.

There are two steps in this process. The first is to consider the Fourier components

in a chunk to be independent entities, and suggest n separate models, one per com-

ponent. The second step is to consider the interactions between the components, and

to propose a single n-dimensional model. The first case then becomes a special case

of the second. Each of these models may be extended to a time-dependent version

in which the model for a single block is dependent upon information abot the blocks

which have already been seen.

The statistics were collected by selecting samples worth 30s of data from the au-

dio files (as described in §5.2), breaking them into blocks, and computing the Fourier

transform of each block. These collections of Fourier transforms could then be exam-

ined to suggest properties which could be used to model the components of the Fourier
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transforms. Unless otherwise stated, we use blocks of 512 points.

We begin by examining some general properties of the individual Fourier compo-

nents.

5.5.1 Phase independence

Figure 5.5 shows scatter plots of the real and imaginary components for a set of data

(The “Bells 1” file). From figure 5.5(a) we can see that the frequency components at

each end of the transform have independent real and imaginary parts. The first compo-

nent, representing the data points, is rather the odd one out: we see some correlation in

this component (shown in blue) as the amplitudes of the left and right parts of the sig-

nal will be correlated (as discussed previously). For the very small components around

the middle of the transform (in this case, around 250; we saw similar effects for the

components around 120 when looking at transforms on 256-blocks), we see that there

is positive correlation between the two parts.

For a block size of N, the formula for the (N/2) Fourier component is

FN � 2 � N

∑
n 
 1

fne � iπ2n � N � 2 ��� N

� N

∑
n 
 1

fne � inπ

applying de Moivre’s theorem:

FN � 2 � N

∑
n 
 1

fn
�
cos

���
nπ ��� isin

�+�
nπ �

� N

∑
n 
 1

fn
�����

1 � n �
� N � 2

∑
n 
 1

f2n
� N � 2

∑
n 
 1

f2n � 1

If, as we expect, there is no particular bias towards odd or even values, this will tend

towards zero. There is no obvious reason for positive correlation to occur. It is possible

that the small values are the results of small numerical inaccuracies. However, since
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Figure 5.5: Scatter plots comparing real and imaginary components of the Fourier trans-

form
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these components are generally so very small, it is unnecessary to be too concerned

about the slight anomaly.

In conclusion, it will be sufficient, when examining the properties of the Fourier

transforms, to look just at the real parts of the components; the spherical nature of

the significant parts of the scatter plots (aside from the first component) allows us to

assume that the real and imaginary parts will have the same properties.

5.5.2 Shape equivalence

We consider just the shape of the Fourier components, after normalising the data to

zero mean and unit variance. This enables us to see that the Fourier components for

a particular music file all have the same shape—that is, they can be represented by

the same distribution, although the (mean and variance) may not be the same for each.

This provides us with justification for examining in detail only a small number of the

Fourier components, and assuming that the behaviour of the other components will be

similar.

It is also noticeable that the shapes differ very little between the four files, although

the audio data in each is aurally very different.

5.5.3 Time dependence

We collected two sets of “30-second” data; one by taking blocks at random from

throughout the file until there were sufficient blocks to represent 30 seconds of data

(at 44.1kHz, that’s 1323000 data points, or 2584 512-blocks), and one by taking 30

seconds of continuous data. Figure 5.7 compares some of the histograms for the tenth

Fourier component. In each case the data taken randomly from throughout the file

has a heavier-tailed distribution than the continuous data. Since there are the same

number of data points contributing to each histogram, it must be the case that there is

more variation over a shorter part of data than the average variation over the whole file.

Thirty seconds represents a large number of data points and it is surprising that such a

relatively large period of time still shows this effect.

From this, we can conclude that the use of available local information in the model
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Figure 5.6: Overlapping histograms of the value of the normalised Fourier components

for a selection of the data files
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Figure 5.7: Histograms of the value of the tenth Fourier component for a block of con-

tiguous data (left) and data taken from throughout the file (right).



Chapter 5. Audio Data 45

Block size Mean Variance

512 0.3369 + 0.0877i 488

1024 -0.4752 + 0.1096i 1106

2048 -0.9624 + 0.8896i 3952

(a) Effect of block size: As Cool As I Am

Block size Mean Variance

512 0.1836 + 0.3049i 268

1024 -0.5559 + 0.6026i 368

2048 0.5516 - 0.1497i 1081

(b) Effect of block size: Never-Ending Story

Figure 5.8: Effect of varying block sizes on the parameters for the tenth Fourier compo-

nent of two different files

may be helpful.

5.5.4 Block size

We used a default block size of 512, appropriate to cover all audible frequencies. How-

ever, it is worth noting what the effect of block size may be. Table 5.8 looks at the

parameters for the 10th Fourier component for two of the files. In each case it is clear

that as the block size increases, so does the variance, resulting in a broader distribution.

5.5.5 Model shape

Having looked at some general properties of the Fourier components, we have pro-

posed that if we treat components independently, each of the components could be de-

scribed by the same distribution, although with potentially different parameters §5.5.2.

We now attempt to determine a suitable distribution to describe these components.

5.5.5.1 Normal distribution

A distribution which occurs commonly in many applications is known as the “normal

distribution”, or the the “Gaussian distribution”. In this section we consider whether a

Gaussian distribution is a good fit for our data.

Figure 5.9 shows the histograms for a selection of Fourier components for several

of the files with normal distributions (with the appropriate parameters) superimposed

in red. The goodness of the fit varies between files and components; for the bells a
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(c) “Pomp and Circumstance”: log likelihoods: -14545, -14890, -8823

Figure 5.9: Normal distributions over histograms for 10th (left), second (middle) and

first (right) Fourier components
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normal distribution is a fairly good fit; for “Pomp and Circumstance” it is repeatedly

too broad. It is interesting, then, that the likelihood of the data is conistently higher

for “Pomp and Circumstance” than the Bells. The likelihoods are higher for the less

common components, perhaps indicating that these components are more the result of

random effects than particular frequency information in the pieces.

5.5.5.2 t-distribution

Although the Gaussian distribution might form a useful first approximation to the

data—useful because it is common and has useful analytical properties—these dis-

tributions are not so much bell-shaped as tight around the mean and heavy-tailed. The

one-dimensional Student’s t-distribution is such a heavy-tailed distribution. The t-

distribution is described by the mean, a scale parameter S, and a third parameter ν,

representing “degrees of freedom”; smaller values of ν result in heavier tails (this can

be seen on the plots below). In the limit where ν , ∞, the distribution is Gaussian.

The univariate t-distribution with parameters
�
µ - S - ν � is given by:

P
�
x � µ - S - ν �!� Γ

�
ν � 2 � 1 � 2 �

Γ
�
ν � 2 � �

Sνπ � 1 � 2 . 1 � ∆2

ν / �!� ν � 1 ��� 2

where

∆2 � �
x

�
µ ��0 �

x
�

µ �
S

is the squared Mahalanobis distance from x to µ (* denotes the complex conjugate).

While for the Gaussian distribution there are closed forms to estimate the parame-

ters of the distribution from data, for the t-distribution there are no such closed forms

and the parameters must be learned via an iterative procedure. The parameters interact

with each other, so cannot each be optimised separately. Ideally, all three parameters

should be optimised together. [18] describes an E-M algorithm for doing this (which is

also applicable to a multivarate t-distribution). However, optimising the three parame-

ters together is difficult and may converge to local rather than global optima. We used

code which was available to me based on the theory in [4] to learn values for
�
µ - S � for

a given ν. To estimate an optimal value of ν, the following search procedure was used:
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1. Try values at intervals of 5 between 1 and 100. Let the best be ν1

2. Try values at intervals of 1 between ν1
�

5 and ν1 � 5. Let the best be ν2

3. Try values at intervals of 0.1 between ν2
�

1 and ν2 � 1. Let the best be ν3

where ‘best’ refers to the greatest maximum likelihood of the data after learning the

mean and covariance parameters. This procedure does not come with any guarantees,

even to find a local optimum (beyond the one in step 3). However, we hoped that for

most cases it would suggest a “good” value for ν. In practice we found that similar

results were obtained on each of the data files. Taking the tenth Fourier component

as representative of all the components in each case, we found that for 512-blocks,

typically the ν selected was around 6 or 7; for 1024-blocks around 8, and for 2048-

blocks around 10.

Figure 5.10 shows the components with a learnt t-distribution superimposed. These

plots were generated using the aforementioned code. The likelihood for the best of the

three curves is noted with the plots. In all cases there was little difference between the

likelihoods for the three curves.

The likelihood values are higher than those for the normal distribution, and we can

see the curves fitting better to the data histograms. Again the highest likelihoods occur

with the component 50, generally the least used of the three. However, it is the sparser

distribution which fits best to this component.

In figure 5.6 we observed that subject to normalisation to zero mean and unit vari-

ance, the histograms had the same shape. However, here it appears that different values

of ν appear best for different distributions. This appearance may be misleading; we are

looking only at a few specific values of ν so it may be the case that there is some other

value which fits all of the histograms better. For each value of ν a different mean and

covariance will be learnt.

In conclusion, the Gaussian distribution may provide a convenient approximation

to the probability density function, but we expect to obtain better results by using a

student’s t-distribution. Having looked at the general shape of these components, we

now examine in detail some of the parameters of the distributions.
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Figure 5.10: t-distributions: Red: ν � 0 ) 1, Green:ν � 1, Cyan:ν � 5
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5.5.6 Fourier mean

This is the mean value of the Fourier transforms of the data. It can be computed by tak-

ing all the n-dimensional Fourier transforms as n-dimensional vectors, summing them,

and dividing by the total number of these vectors. It should represent an “average”

Fourier transform.

Since the Fourier transform is a linear transformation, and since the mean value of

the datapoints is approximately zero, the mean of the Fourier transforms of the data is

the Fourier transform of the mean of the data, and the Fourier transform of zero is zero

(there are no frequency components). That is to say, there is no prior information about

what the expected value of a particular Fourier component may be. This is because any

component is as likely to be
�

z as it is to be z, for any given z

5.5.7 Spectral mean

Although a particular Fourier component may be as likely to be
�

z as it is to be z, it

is not necessarily the case that its absolute value is as likely to be y as it is to be z, for

given y and z. To investigate the expected absolute value of the components, we look at

the power spectrum. If F is a vector of Fourier components, the corresponding power

spectrum P is defined by:

P �21 F 0 ) F
where * denotes the complex conjugate. The expected power spectrum can be

computed from a collection of power spectra using the same procedure as we proposed

to compute the mean of the Fourier components.

Figure 5.11 shows the expected power spectra for a selection of the audio files. We

can see that the Fourier components at either end of the spectrum—representing the

highest and the lowest frequency components—have the highest coefficients, while

the ones in the middle are non-existent. This explains a single Fourier transform in

terms a small number of high frequency components which “sit on” a line defined by

the combination of a small number of sinusoidals whose period is almost the whole

width of the transform. Figure 5.12 demonstrates this shape for a case where there is
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Figure 5.11: Power spectra–Red:”Dressed for Success”, Blue:”Caged”, Green:”Fur

Elise”

one small frequency and one large. In the audio case there is more irregularity over

the signal. We can also see that the range of frequencies used varies between files,

with “Dressed for Success” (voice and backing) having a wider range than “Fur Elise”

(piano).

Figure 5.13 shows the power spectra for “Never-ending Story” for a number of

different blocksizes. We can see from figure 5.13(a) that although the Fourier compo-

nents become almost zero at a frequency around 20, they do not quite reach zero on this

smaller block size. This suggests that although most of these frequency components

are only contributing tiny amounts to the spectrum these amounts are not non-zero.

However, as explained above, the contribution should be very close to zero for the N/2

component; the small amounts may be numerical issues. This means that to obtain

enough information to represent the full frequency range, we are unlikely to need the

full 512-blocks. However, for the reconstruction process it may be beneficial to use

larger block sizes in order to use a broader range of known information in the optimi-

sation.
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Figure 5.12: A simple periodic function consisting of the sum of a high and a low fre-

quency component

5.5.8 Variance

The standard deviation of a variable is roughly an indication of how likely a particular

instance of the variable is to be close to the mean. Broadly, if the standard deviation

is large, then the variable will often be much larger or smaller than its mean, as the

standard deviation tends to zero then we can become increasingly certain of seeing the

variable at its mean. The square of the standard deviation is known as the variance.

For an arbitrary one-dimensional dataset,
�
x0 )�)*) xn with mean µ,

Var
�
x �3� n

∑
k 
 0

�
xk

�
µ � 0 �

xk
�

µ �
(where * denotes the complex conjugate).

Figure 5.14 shows the standard deviation of the Fourier components for a selection

of the data files. The shape of the plot follows the power spectra: where values are

likely to be large, so is the variance.

We can conclude that over all the data, some frequencies are more commonly used

than others. For those which are more common, the values associated with them vary

considerably over a file. The most commonly used frequencies vary from file to file,

although they are in a similar range around the highest and lowest Fourier components.
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Figure 5.13: Power spectra–varying blocksizes
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Figure 5.14: Standard deviation of Fourier components–Blue:”Venus” (Bananarama),

Black: “Bells 1”, Green: “Fur Elise”, Red: “Pomp and Circumstance”

5.5.9 Covariance

The covariance is an extension of the variance to a multi-dimension dataset. A covari-

ance matrix contains a representation of the interactions between variables,

Ci j � n

∑
k 
 0

�
xi

k
�

µi ��" �
x j

k
�

µ j �
Such a matrix has the variances on its diagonals. The value in Ci j is a measure of

how much information we have about xi if we are given x j. This particular measure is

a symmetric measure; covariance matrices are symmetric.

Since, as discussed, the mean of the data is approximately zero, the covariance

matrix is what we expect to form the primary differentiator between files, and the nub

of the models we will develop. We therefore spent some time examining the properties

of the covariance matrices.

The covariances between two distinct components (i,j) are much smaller than the

variances (the covariance between a component j and itself); for example, the maxi-

mum variance in “Hometown Girl” is 864 but the maximum covariance between dis-

tinct components has absolute value 91. The mean of the variances is 13; if we take
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the maximum covariance for each component (that is, for each component we con-

sider only the distinct component with which it is mostly highly correlated), the mean

of these covariances is 3.7. For a bells file, the maximum variance is 379 and the maxi-

mum covariance between distinct components 133. The equivalent means are 11.7 and

5.0. For “Marlene on the Wall” the differences are even more pronounced: 460 and

2.7 for the two maxima, and 9.9 and 1.0 for the two means.

In all the diagrams shown below we take the log of absolute value of the covari-

ances (which are complex); using the log is necessary if the high variances are not to

dominate the plots. Unless stated otherwise, all the plots are for 512x512 matrices us-

ing data from transforms on 30 seconds worth of 512-blocks selected randomly from

throughout the file.

Figure 5.15 shows separate covariance matrices for the left and the right signals.

Other files showed a similar effect to these: the same patterns for each part of the stereo

signal, but one part tending towards higher covariances than the other (a brighter plot).

This was true of all the files we looked at, including the Allegro Con Brio which has

the lowest correlation coefficient among its left and right data points (table 5.1). We

therefore conclude that we can see all the interesting features of the matrix by looking

just at the covariance matrices for the combined complex signal.

Figure 5.16 shows a close up few of the corners of two of the covariance matrices.

The corners, corresponding to the high and low frequencies (which we have already

shown are the most commonly used) are where most of the action is to be found. Fig-

ure 5.16(a) shows a corner of the covariance matrix for ‘Fur Elise’, a piano piece.

The white diagonals show the variance; in general the lighter colours represent higher

values. From the figure we can see that there are some ‘stripes’ of high or low co-

variance, representing bands of frequencies which are more common in the piece, or

under-represented. We can also see some blockiness around the higher frequencies (1–

50), representing frequencies which tend to occur together. For the bells file 5.16(b),

clear stripes can be seen, representing the notes of the bells and their harmonics, but

there is almost no blockiness (interaction between frequencies) beyond some variation

around the diagonal.

Figure 5.17 and 5.18 show the full 512x512 covariance matrix for “Fur Elise”, and
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(b) Covariance matrix for right signal

Figure 5.15: Comparing real and imaginary parts of signal for bells file
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(b) Corner of “Bells 1” matrix

Figure 5.16: Close-ups of two covariance matrices
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the equivalent matrices for a selection of other pieces: another piano piece, “Moonlight

Sonata”; a woman’s voice in “Dressed for Success” and a man’s in “Hometown Girl”;

a group of voices in “Wannabe”; a ’cello piece, and an orchestral piece, “Allegro con

Brio”. Looking at these we can start to see ways in which the covariance matrices can

differentiate between pieces according to certain characteristics:% The single instrument pieces (5.15, 5.17(a), 5.17(b), 5.18(b)) have a small num-

ber of stripes around the edge of the matrix, representing the frequencies associ-

ated with the instrument.% The voice pieces (5.17(c), 5.17(d), 5.18(a)) have a block of lighter colour some-

where along the diagonal, presumably representing the frequency ranges of the

singers. The block in 5.17(d) is more towards the centre of the matrix than the

ones for the female voices, suggesting that the artist’s voice is around 450Hz

(Fourier component 100, corresponding to a signal with a complete period once

every 100 datapoints), towards the low end of typical human voice frequency.% The pieces with more singers (5.18(a)) or instruments (5.18(c)) tend to have

larger blocks of interaction, representing a broader range of notes (frequencies)

available.% The central part of the matrix has a circular pattern for instrumental pieces, and

a square pattern for voice pieces. This suggests a much sharper cutoff in the

frequencies in the voice pieces; perhaps a lack of harmonic information. The

difference between the two similar piano pieces, 5.17(a) and 5.17(b) suggests

that this effect is very much instrument-specific.

Figure 5.19 show close-ups of two songs by the same artist (male voice and guitar).

It’s possible to see similar shapes within the images, suggesting that the characteristics

of the singer are important in determining the distribution of the frequency transforms.

Figure 5.20(a) shows a close-up from the “Moonlight Sonata”; we can compare this

with “Fur Elise” 5.16(a): the two have many similarities.

Finally, figure 5.21 shows the covariance matrices for two different pieces on ex-

actly the same instruments: the Swan bells, Perth. These show the strong circular
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(d) Hometown Girl

Figure 5.17: Four covariance matrices
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(c) Allegro Con Brio

Figure 5.18: Three covariance matrices
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(b) ‘Hometown Girl”

Figure 5.19: Close-up of covariance matrices for two songs by the same artist
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(b) Bells

Figure 5.20: Close ups from two covariance matrices
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(a) Bells 1
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(b) Bells 11

Figure 5.21: Two different tunes on the Swan bells

pattern tending towards the centre. The stripes (figure 5.20(b)) pick out the notes and

frequent harmonics associated with these bells. The two different tunes on these bells

produce nearly identical covariance matrices.

It is clear from this that there are quite different covariance matrices associated

with voice, piano, bells or other instrumental pieces. It seems that there are general

patterns associated with voice, a single instrument, or orchestral pieces, and within

each of those categories there are patterns associated with the particular voice or voices,

or instruments. Finally, of course, every piece is slightly different. The covariance

matrices mainly serve to pick out the frequency range or ranges typical to the piece,

therefore identifying the instruments (or singers) used in the recording, but providing

limited information beyond that already contained in the variances.

It is not therefore clear how much we will gain by considering a joint distribution

over all the components rather than treating each Fourier component as independent.

There may be some advantage: for example, some range of frequencies will correspond

roughly to a “piano” piece, and so if we know that several of those frequencies are
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Figure 5.22: Averaged covariance matrix over all files

present we may suppose that the rest are likely to be.

5.5.9.1 Combined covariance matrices

Suggested by the above, we also computed some covariances as averages over col-

lections of datasets (appendix B demonstrates the working for averaging covariance

matrices). Figure 5.22 shows the covariance matrix taken over the whole dataset of

144 files from diverse sources, and a corner of this matrix. Compared with any indi-

vidual matrix, there is some blockiness around the diagonal indicating some blurring of

the frequencies there; more stripes indicating the wider range of frequencies that occur

over the collection of files, and few blocky patches. Essentially this matrix represents

the variance, with some blurring of frequencies around the diagonal. Figure 5.23 shows

the covariance matrix over all the files from the Swan bells, and figure 5.24 shows the

same information for all the songs by a single musician. In figure 5.24 some of the

blocks characteristic to the artist can be seen, but much of it has been obscured by the
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Figure 5.23: Averaged covariance matrix over bells files

averaging. For the bells, there is a similar distinctive pattern to that seen in the individ-

ual covariances although with more stripes; again there is very little blocking in this

covariance matrix, merely picking out the common frequencies.

5.5.9.2 t-distribution

The means and covariances above form the maximum likelihood parameters for the

Gaussian distribution. They capture certain properties of the data. There are equiva-

lent maximum likelihood parameters for the multivariate t-distribution which capture

similar properties of the data. These parameters, like those for the Gaussian distribu-

tion, are typically known as µ and Σ. They are estimated via iterative procedures and

are dependent upon the value of ν.

As in the Gaussian, µ represents the mean of the data and in our audio context is

zero. Figure 5.27 shows the magnitude of the computed µ for one of the files; it is

similar in shape to the Gaussian mean.
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Figure 5.24: Averaged covariance matrix over Dave files

Figure 5.25 illustrates three of the Σ matrices found for a t-distribution, plotted in

the same way as the covariance matrices above and figure 5.26 shows a close-up of one

of these.

The Σ matrices have similarities to the Gaussian covariance, with blocky corners

indicating the characteristic frequencies of the piece, but the frequency stripes are no

longer obvious. The difference between the variance on the diagonal and the cross-

variances is very obvious. the first component has a magnitude larger than 1. This

may indicate a problem with the maximum likelihood estimation. Once again we see

curving towards the centre for the more instrumental piece, 5.25(a), and a sharper cut-

off for the voice piece, 5.25(c). “Solitude Standing” falls between the two.

Optimising the parameters for a multivariate t-distribution with fixed degrees of

freedom ist time consuming. The above parameters are taken for a t-distribution with

the degrees of freedom fixed at 1. This is likely to be too low to obtain a good optimum,

but should be sufficient to get some idea of the behaviour of the t-distribution. The

likelihoods on a 512-dimensional data set with 1 degree of freedom were of the order
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Figure 5.25: Covariances for the t-distribution
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Figure 5.26: Close up of the t-distribution covariance parameter
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Figure 5.27: Value of µ-parameter for a multivariate t-distribution
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(a) Eigenvalue plots:Blue: Moonlight sonata, Black:
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Figure 5.28: Eigenvalue plots�
1 � 5, an order of magnitude lower than the one-dimensional likelihoods.

5.5.10 Principal Components

We looked at the eigenvalues of the Gaussian covariance matrices and their corre-

sponding eigenvectors—these can be considered to be the “principal components” of

the matrix and examining them may yield interesting results. We look at a piano piece,

“Moonlight Sonata”; a song, “Hometown Girl”; and an orchestral piece, “Allegro Con

Brio”.

Figure 5.28 plots the eigenvalues on a linear scale(5.28(a)) and a log scale(5.28(b)).

From the plots we can see that the magnitude of the eigenvalues varies between files,

as does the magnitude of the covariances. However, for all the files there are only a

few very high eigenvalues, and most of them are close to zero. Table 5.29 lists the top

twenty eigenvalues for the three files.

When a large proportion of the eigenvalues are approximately zero, the covariance

matrices are close to singular. This may cause problems in working with the inverted
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matrices; care will have to be taken to avoid numerical difficulty.

Given a set of eigenvalues λi ordered by size of their associated eigenvectors xi, we

can reconstruct the original covariance matrix as

C � ΛT XΛ

where X � �
x1 )�)�) xn and Λ is the diagonal matrix with the λi on the diagonals.

We can use this formulation to reduce the dimensionality of C by using only m � n

of the eigenvectors. The relative error in reconstructing C is then

∑n
i 
 m � 1 λi

∑n
i 
 1 λi

The remaining portion,

∑m
i 
 1 λi

∑n
i 
 1 λi

is called the fraction of the data “explained” by the first m eigenvectors. Table 5.30

shows the number of eigenvectors needed to explain various proportions of the covari-

ances matrices for the example audio files. It is possible to explain “most” of the data,

for some value of most, with a relatively small number of eigenvalues; in no case is it

necessary to use as many as a quarter of the eigenvalues to explain 99% of the data.

Figure 5.31 shows the set of eigenvalues for one bells file’s covariances plotted

against the eigenvalues for another bells file’s covariance. In figure 5.21 we saw that

these two covariance matrices are very similar, so it is not surprising that their eigen-

values should scale the same way, although one set is larger than the other.

The eigenvectors associated with the m largest eigenvalues are known as the first

m principal component. They represent the basis vectors for the lower dimensional

representation of the data. Figure 5.32 compares the (real parts of the) first and second

principal components for a number of the example files. Just the interesting parts of

the vector are shown. They are all fairly similar and large in the same places as the

power spectrum and variance are large.

5.5.11 Principal Components for t-distributions

The Σ matrix for a t-distribution has some similarities to the Gaussian covariance.

However, it is clearly not the same thing. We examined briefly the eigenvalues and
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Moonlight Sonata Bells Allegro con Brio Hometown Girl

11.10 331.8 42.02 53.79

11.33 339.7 43.13 69.17

11.61 350.1 45.87 74.55

14.08 368.7 49.48 81.80

18.31 375.8 51.37 92.16

21.25 389.5 54.45 98.62

26.39 398.4 56.48 103.97

30.11 411.9 58.68 116.35

31.39 423.1 65.03 134.95

35.22 476.8 68.64 175.54

37.66 505.5 73.13 222.26

39.80 556.6 75.61 235.62

40.70 579.6 79.81 264.25

61.60 641.0 83.71 269.93

63.89 678.5 88.00 297.92

67.44 781.2 93.42 426.82

80.43 815.4 102.41 493.17

87.85 867.9 109.80 713.18

153.89 997.4 114.51 762.51

257.48 1064.7 124.54 847.15

292.57 1199.6 129.86 947.14

Figure 5.29: Eigenvalues
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% explained Moonlight Sonata Bells Allegro con Brio Hometown Girl

50 3 12 14 4

66 6 20 24 8

75 9 26 30 10

90 18 44 52 22

95 26 57 72 43

99 41 96 127 115

Figure 5.30: Eigenvalues
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Figure 5.31: Eigenvalues for the two “bells” covariance matrices plotted against each

other
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Figure 5.32: First principal components
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Figure 5.33: The eigenvalues for a t-distribution matrix
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(a) First principal component of the t-distribution Σ
matrix for “Solitude Standing”
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distribution Σ matrix for “Solitude Standing”

Figure 5.34: Parts of the principal components for a t-distribution Σ matrix

eigenvectors for the “Solitude Standing” Σ matrix (figure 5.25(b)). Figure 5.33 plots

the eigenvalues. As in the Gaussian case, the eigenvalues drop nearly to zero after the

first 100. However, in this case there is a far smaller distinction between the largest

eigenvalue (6.0547) and the smallest (0.0001). We also looked at the top principal

components; these we found to have a similar shape to the Gaussian ones. Figure 5.34

shows parts of the top two components.

5.6 Summary

We have examined a selection of our music files from a range genres, considering a

variety of instruments and voices. We have found that individual Fourier components

have a characteristic distribution best described by a student’s t-distribution with a

mean of zero. We have observed that in general those Fourier components close to the

maximum block size or the minimum block size are the ones which occur the most, or

associated with the largest values. We have examined the interactions between Fourier

components and concluded that the information stored in the distribution parameters

for a Fourier prior of either t-distribution or Gaussian form contains primarily infor-
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Figure 5.35: Rate of point removal at various clipping levels

mation about which frequencies are used in a piece. This differentiates pieces by the

instruments or voices used in the recording.

5.7 Damaged data

When handling real clipped data, we will want to be able to estimate what the extent

of the clipping is, in order to re-scale the data to leave room for the repaired larger am-

plitude data points. It would be possible to do this after the repair, but there are issues

with doing so if the repair has been particularly optimistic. In particular, in practice,

we often observed a small number of overoptimistic spikes. It may also be useful to be

able to include bounds on the data points in carrying out the repair, although we do not

examine doing so in this project. We therefore examined re-scaling before repairing

the data.

Figure 5.35 shows the distribution of the fraction of points removed at a number

of clipping levels on a log scale, and the distribution with error bars attached. It is

clear that the removal of points is approximately proportional to the log of the num-

ber clipped, but also that it is difficult to be accurate about this without some prior

information about the “loudness” of the file.
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File Mean dist. between points

Bells 1 0.022

Bells 2 0.013

Ride of the Valkyries 0.0038

Fur Elise 0.0021

Minuet in G 0.0077

I am cow 0.0043

Beautiful Morning 0.038

Streets of London 0.023

I vow to thee my country 0.00092

Wham! - Last Christmas 0.0079

Table 5.2: Continuity between data points

5.8 Evaluation metrics

There are two possible straightforward evaluation metrics on audio data of this form:

the mean squared error of the data points, and the mean squared error of the frequency

components. A third related measure is the mean squared error of the power spectrum.

However, these measures do not necessarily capture the particular qualities of audio

data. In this section we examine the data from the point of view of attempting to

capture heuristic information which identifies a “clean” music file.

In order to obtain some evaluation metrics suitable for audio data, we considered a

number of heuristics. By examining typical values and the variation in the values for

the proposed heuristics for the known data we hoped to be able to determine heuristics

which would be suitable for identifying “clean” data. We required two kinds of metrics:

ones which could be used to compare a repaired file to its original “clean” file, and

ones which could be used to describe the quality of a repaired file without access to a

an original file.
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5.8.1 Continuity

Audio data is suited to frequency-based approaches because of the typical wave-like

shape of the signal. It is rare for two consecutive points to be a large distance apart.

We therefore computed the mean distance between consecutive data points. Table 5.2

shows this metric for a selection of files. Note that in a clean file this value should not

be too high; there should be a “good” degree of continuity. However, neither should

it be too low; we do not expect to find blocks of data points which do not change at

all from one to the next. In the table above, there is a difference of a factor of 40

between the smallest value (I vow to thee my country) and the the largest (Beautiful

Morning). It is not immediately obvious what characteristics of the files might account

for these differences. The amplitude of the file has some effect (I vow to thee my

country is relatively quiet, and Beautiful Morning relatively loud), perhaps as a result

of steeper curves, however it cannot account for all (or most) of the variation. Hence

although if a continuity value is particularly large or small we can assume the file is

poor quality, we must accept a broad range of values for an unknown file, meaning that

a continuity-based metric would have limited usefulness.

5.8.2 Variance

As a consequence of the continuity constraint, small block of clean data will typically

contain data points which are similar to one another. If there is typically large variation

in the data points over a block of data, then the block is possibly erroneous. Table 5.3

shows the mean standard deviation on data points over blocks of 100 and 500 data

points for a selection of files. They vary between Bells 1 (the largest value) and I vow

to thee my country (the smallest value) by a factor of ten. Looking more closely, these

differences can be approximately accounted for by considering the mean amplitude of

the file. The final column of the table demonstrates this, showing considerably consis-

tency over most of the files: “Last Christmas” is the exception, having a smaller σ than

the mean amplitude would suggest. This suggests that dividing the mean variance of

data points over a block by the mean amplitude of the data points may be a plausible

heuristic.
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File σ: 100-blocks σ: 500-blocks amplitude 100-blocks / amplitude

Bells 1 0.0013 0.00027 0.10928 0.011

Bells 2 0.00067 0.00013 0.055862 0.012

Ride of the Valkyries 0.00019 4.1452e-05 0.016 0.011

Fur Elise 0.00031 6.7465e-05 0.02848 0.010

Minuet in G 0.00088 0.00023 0.09653 0.0091

I am cow 0.00029 6.26e-05 0.025 0.011

Beautiful Morning 0.0011 0.00027 0.11 0.010

Streets of London.mp3.wav 0.0012 0.00027 0.11 0.011

I vow to thee my country 0.00015 3.5e-05 0.014 0.010

Wham! - Last Christmas 0.00030 0.0001 0.042 0.0072

Table 5.3: Variances over blocks of data points

5.8.3 Penalties for grouped errors

A single point error in an audio signal at 44.1kHz is undetectable. One hundred single

point errors distributed over a one-second clip are probably undetectable. However,

one hundred single point errors gathered together in a block will produce briefly au-

dible noise in the audio file. We investigated experimentally how various rates of per-

block error sound. In order to do this, we took the data file, broke it into blocks of 500

points, and in every tenth block set a fraction of the data points, chosen randomly, to

zero. We then ran a second set of tests setting the broken points to one. This provides

a only a rough estimate of how errors might sound.

Table 5.4 shows the perceived effects on three different files, measuring quality on

a scale of 1 (pure noise) to 10 (a perfect file). Estimating such effects qualitatively is

difficult. Ideally we should ask a large sample of people to suggest a value, and take

an average. In practice we were able to obtain a single second opinion. It was also

noticeable that the errors sounded “different” between the different files: in the Bells

file large proportions of zeros resulted in a throbbing effect, while in in Eine Kleine

Nachtmusik the errors were audible as crackles. The errors set to one were audible as

clicks in all cases. Given this table it seems that the error perception is roughly linear,

the gain in constructing an evaluation metric which attempts to penalise grouped errors
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% removed filename quality (removed=0) quality (removed=1)

10 Bells 9 4

25 9 4

50 6 3

65 5 3

75 4 3

10 Boyzone – “Love me for a reason” 10 6

25 10 6

50 7 6

65 6 4

75 6 4

10 Eine Kleine Nachtmusik 10 6

25 9 6

50 8 5

65 7 5

75 7 4

Table 5.4: Perceived effects of rates of breakage

more heavily than individual error will be likely to be small.

However, one thing which is evident from this table is that guessing too high is far

more audible than guessing too low. This will be because the mean amplitude of the

data points is much nearer to zero than to one.

5.8.4 Frequency perception

At least two effects contribute to audible frequency perception:

1. Frequencies towards the middle of the human hearing range are perceived as

louder than those towards the edges (Fletcher-Munson curves 2.1). The effect is

non-linear and varies considerably from person to person.

2. Some frequencies may mask others. These effects are exploited in audio com-

pression algorithms such as MPEG. In general, strong frequencies may mask
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nearby weaker frequencies. However, the details of the masking depend on the

particular frequencies and on the tonality of the masker1.

For the purposes of this project it is unreasonable to consider complex measures

such as frequency masking effects. It would however, be possible to apply a cost

function to the frequency error computation, but this may not be worth doing. The

perceptual qualities of the music may contribute to the frequency effects in the sound

and thus incorporated implicitly in the model.

5.8.5 Other cues

Roweis [24] mentions heuristics based on common fate cues (frequencies which tend

to have similar points of onset and off set), pitch, and associating harmonics. This

is just the kind of information which we hope to be encapsulated by the covariance

matrix and hence contained within a good model.

5.8.6 Summary

We have examined a small number of properties of the data which we hoped might lead

to perceptually motivated evaluation metrics. Unfortunately, we have not identified any

metrics which are obviously suitable for this purpose.

5.8.7 Comments

One of the primary aims of this project was to experiment with a variety of models

and extend the use of the noisy FFT techniques beyond the independent Gaussian

priors previously tested [27]. From the point of view of testing the effectiveness of

this technique on real data, the perceptual qualities of the data are not relevant; unless

the models as well as the evaluation metrics incorporate these qualities (explicitly or

implicitly) we cannot expect improved models to perform better perceptually.

The use of these audio-specific evaluation metrics may therefore help to determine

if the models are not supplying sufficient problem-specific information, but will not say

1source:http://en.wikipedia.org/wiki/Psychoacoustics



Chapter 5. Audio Data 80

anything about the effectiveness of the noisy FFT technique itself, or its applicability

to other types of problem.
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Models

6.1 Choosing models

Following the exploratory analysis we felt that the following points would be worth

investigating:% A Gaussian distribution as an approximation to the distribution of Fourier com-

ponents. The Gaussian appears to be less good a fit than the t-distribution but the

handling of Gaussian distributions is well-known and straightforward; a Gaus-

sian distribution will therefore form a good baseline.% A t-distribution appears to be a good fit to the distribution of Fourier components.% Since there appears to be more variation over a whole file than over part of a

file, the incorporation of some form of time-dependency into the model may be

appropriate. This could take the form of updating the covariance matrix to more

closely approximate the covariance matrix of the original file as we move along

the file, or of using a distribution such as a time-dependent Gaussian distribution.% Files appear similar in their Gaussian parameters if they contain similar instru-

ments and combinations of instruments. Choosing priors based on some known

information about the type of sound in the file may therefore be worthwhile.

81
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teristic to a file. However, this is limited. Use of a full covariance matrix rather

than an independent model may therefore not add enormously to the model.

This leads to the following set of models:% Independent Gaussian (each component is considered separately)% Multivariate Gaussian% Time-dependent Gaussian (multivariate)% Independent t-distribution (each component is considered separately)% Multivariate t-distribution

There is no known (closed) form for a time-dependent t-distribution.

6.1.1 Modelling decisions

ν-values We use the same value of ν for every component within the independent t-

distribution model. It is not clear from the exploratory analysis whether this is optimal.

Initial experimentation showing the histograms having the same shape suggested that

it should be. However, when fitting t-distribution curves we found that different values

of ν seemed to be good for different components. This may just be because none of

the choices were optimal.

Handling clipped data We chose to treat the clipped data as a missing data problem.

All data points which were found by the system to be at the cut-off point for clipping

were set to zero, and then handled in precisely the same way as missing data. There

were two reasons for not incorporating a more complicated model even to the extent of

forcing the data to be at least as large as the clipped value. One was the simplicity of

handling the data uniformly in this way; the other was in order to investigate the extent

to which the model succeeded in inferring the correct values for the data without the

additional cues.
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Handling real clipped data Synthesizing clipping problems is straightforward; one

chooses a cut-off point and fixes all the data points originally larger than the cut-off

at that point. The space between the cut-off point and 1 is then available for repaired

data points. However, when real data has been clipped, it is necessary to rescale it

either before or after repairing the file. If the rescaling is done before repairing the file,

then it is necessary to estimate what the scaling factor should be, knowing only the

distribution of the remaining data. In §5.7 we will discuss some of the issues in this

estimation. Our system performed the rescaling before the repair, in order to base the

scaling on the values in the correct data, and not on possibly inaccurate repaired data.

The rescaling was done by a simple rule on the logarithm of the number of clipped

points, as suggested by the results in §5.7.

(There would be potential for more experiment here: the algorithm performance

may depend on the scale of the data, although this seems unlikely. More evident is the

fact that the scale of the data does affect the noise perception, as discussed in §5.8.3.)

Multivariate time-dependent distribution We chose to move immediately from the

multivariate Gaussian distribution to the multivariate time dependent distribution with-

out considering a univariate time-dependent distribution. This stemmed from an initial

assumption that much of the information propagating from one block to the next would

be between Fourier components rather than on a particular component. Further reflec-

tion and our results suggest that this assumption may be invalid; we leave a univariate

time-dependent Gaussian distribution as a suggestion for future work.

6.1.2 Parameters

Alongside this set of models I investigated the effects of changing the size of the

Fourier blocks, of the initial parameters and of modifying the parameters during the

restoration process. The next section develops the models mathematically.
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6.2 Developing the models

6.2.1 General form of the model

Model Given a block of n data points containing m known points, m � observed j � ,

we aim to find a vector unk of n
�

m points such that P
�
block � �

observed - unk �*� is

maximised; that is P
�
block � �

observed - unk ��� observed � is maximised.

From Bayes’ rule,

P
�
block � observed � ∝ P

�
observed � block � P �

block �
By monotonicity of log, this is maximised when

log
�
P

�
observed � block � P �

block ���3� logP
�
observed � block ��� logP

�
block �

is maximised.

Since block � �
observed - unk � , P

�
observed � block �4� 1, and logP

�
observed � block �5�

0.

The prior probabilities we have are not for P
�
block � , but for P

�
f

�
block �*� , where

f
� )�)6) � is the Fourier transform.

Applying rules for transformation of variables,

P
�
block ��� P

�
f

�
block �*�7� J �

f
�
block �8- block ���

where

J
�
X - Y ��� ∂

�
x1 - )�)�) - xn �

∂
�
y1 - )�)�) - yn � �:9;;< ∂x1

∂y1 )�)�) ∂xn
∂y1

... . . . ...
∂x1
∂yn )�)�) ∂xn

∂yn

=?>>@
is the Jacobian.

So

logP
�
block ��� log

�
P

�
f

�
block �*�7� J �

f
�
block �8- block �����

� logP
�
f

�
block �*�	� log � � J �

f
�
block �A- block �����



Chapter 6. Models 85

We therefore need to compute J
�
f

�
block �A- block � .

Letting F � �
f1 - )�)*) - fn � be the Fourier transform of X � �

x1 - )�)�) - xn � ,
∂ f j

∂xk
� ∂

∂xk

1
N

N � 1

∑
n 
 0

xie � 2πi jn � N� 1
N

e � 2πikn � N

which is a constant, so for the purposes of maximisation,

logP
�
block � ∝ logP

�
f

�
block ���

Gradients In order to use gradient optimisation techniques, we must be able to com-

pute the gradient of the probability function;

∂
∂xi

log
�
P

�
F ���

where F � �
f1 - )�)�) - fn ��� f

�
x1 - )*)�) - xn � .

Applying the chain rule,

∂
∂xi

logP
�
F ��� ∂

∂F
logP

�
F � ∂F

∂xi� N

∑
j 
 1

∂
∂ f j

logP
�
F � ∂ f j

∂xi� N

∑
j 
 1

∂
∂ f j

logP
�
F � ∂ f j

∂xi

∂
∂ f j

logP
�
F � depends on the probability distribution. Writing l p j � ∂

∂ f j
logP

�
F � ,

∂
∂xi

logP
�
F �3� N

∑
j 
 1

l p j
∂ f j

∂xi

Where the ∂ f j
∂xi

are as computed above, giving

∂
∂xi

logP
�
F �3� 1

N

N

∑
j 
 1

l p je � 2πi jk � N

� f f t
�
LP �

Equivalently, we could replace the Fourier transform with the inverse Fourier trans-

form throughout.
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6.2.1.1 Gaussian Components

Objective function

P
�
x �3� 1�

2π � d � 2 B � Σ � e � 1
2 � x � µ � T Σ C 1 � x � µ �

where d is the dimensionality of the data.

logP
�
x �3� log

� 1�
2π � d � 2 B � Σ � ��� � 1

2
�
x

�
µ � T Σ � 1 �

x
�

µ �
∝

� 1
2

�
x

�
µ � T Σ � 1 �

x
�

µ �
If the components are assumed independent, then Σ is a diagonal matrix, with the

variances of the components on the diagonals. Letting v � �
v1 - )�)*) - vn �5� �

Σ11 - )�)*) - Σnn � ,
v � 1 � � 1

v1
- )�)�) - 1

vn
� and x " Σ � 1 � x ) v � 1.

Gradient function

∂
∂x

logP
�
x � ∝

∂
∂x

��� 1
2

�
x

�
µ � T Σ � 1 �

x
�

µ �*�
∝

∂
∂x

�
x

�
µ � T Σ � 1 �

x
�

µ �� ∂
∂x

xT Σ � 1x
�

xT Σ � 1µ
�

µT Σ � 1x � µT Σ � 1µ

� 2
�
Σ � 1x

�
Σ � 1µ �

∝ Σ � 1 �
x

�
µ �

This can be similarly simplified if the components are independent, so Σ is diago-

nal.

6.2.1.2 Time-dependent Gaussian Components

We can improve the accuracy of the model by including not just the observations in the

current block, but also the estimate for the previous block of data. That is, we compute

P
�
blockt � observedt - blockt � 1 �
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∝ P
�
observedt � blockt - blockt � 1 � P �

blockt � blockt � 1 �� P
�
blockt � blockt � 1 �� P

�
blockt - blockt � 1 �

P
�
blockt � 1 �

If P
�
blockt � 1 - blockt � is Gaussian with mean

�
µt � 1µt � and covariance matrixD

Qtt Qt � 1 E t
Qt E t � 1 Qt � 1 E t � 1 F

then (by Gaussian partitioning theory) P
�
blockt � 1 � blockt � is Gaussian with mean

µt � 1 � Qt � 1 E t �
Qt � 1 E t � 1 � � 1 �

blockt
�

µt � (6.1)

and covariance

Qt � 1 E t � 1 �
Qt � 1 E t �

Qt � 1 E t � 1 � � 1Qt E t � 1 (6.2)

Note that if the covariance matrix is diagonal, these updates reduce to:

µt � 1 G t � µt � 1

and covariance

Qt � 1 G t � Qt � 1 E t � 1

This is unsurprising; if the covariance matrix is diagonal, then the datapoints give

no information about other datapoints, and so knowing one set of datapoints cannot

help infer anything about later points.

However, we should be clear about what the covariance matrixD
Qtt Qt � 1 E t

Qt E t � 1 Qt � 1 E t � 1 F
contains in this application.

P
�
blockt � 1 - blockt �*� is proportional not to P

�
F � f f t

�
blockt � 1 - blockt � , but to

P
�
F1 � f f t

�
blockt � 1 �8- F2 � f f t

�
blockt ��� . The top-left and bottom-right corners of
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the covariance matrix therefore contain (roughly speaking) the covariances of indi-

vidual Fourier transforms, and the bottom-left and top-right corners contain the in-

teractions between two transforms. It will therefore not necessarily be the case that

considering the Fourier components independently (so that the covariances of indi-

vidual transforms are diagonal) results in the time-dependent covariance matrix being

diagonal.

Objective function, gradient function These functions are Gaussian, as above. How-

ever, the mean and covariance will be updated at each time step, using equations 6.1

and 6.2.

6.2.1.3 Student t-distribution

Objective function For the univariate t-distribution,

P
�
x � µ - S - ν �!� Γ

�
ν � 2 � 1 � 2 �

Γ
�
ν � 2 � �

Sνπ � 1 � 2 . 1 � ∆2

ν / �!� ν � 1 ��� 2

where

∆2 � �
x

�
µ ��0 �

x
�

µ � 2

S
is the squared Mahalanobis distance from x to µ (* denotes the complex conjugate).

It is usual for convenience and necessary in order to avoid numerical issues (very

small probabilities which appear as 0) to use the log probability,

L
�
x;µ - S - ν �3� logZ � P log . 1 � ∆2

ν /
where

Z � Γ
�
ν � 2 � 1 � 2 �

Γ
�
ν � 2 � �

Sνπ � 1 � 2

P � �H�
ν � 1 ��� 2

Gradient function

d
dx

L
�
x;µ - S - ν �3� PI

1 � ∆2

ν J 2
�
x

�
µ �

Sν
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6.2.1.4 Multivariate t-distribution

Objective function The t-distribution can be generalised to d dimensions, where it

takes the form:

P
�
x � µ - Σ - ν �K� Γ

� ν � d
2 �

Γ
�
ν � 2 �7� Σ � 1 � 2 �

νπ � d � 2 . 1 � ∆2

ν / �K� ν � d ��� 2

where

∆2 � �
x

�
µ ��0 �

x
�

µ � 2

S
and Γ

� ) � is the Gamma function.

The log probability is given by

L
�
x;µ - Σ - ν �3� logZ � P log . 1 � ∆2

ν /
where

Z � Γ
� ν � d

2 �
Γ

�
ν � 2 �7� Σ � 1 � 2 �

νπ � d � 2

P � �L�
ν � d �*� 2

Gradient function The gradient function becomes

d
dx

L
�
x;µ - Σ - ν �3� P . 1 � ∆2

ν / � 1 2Σ � 1 �
x

�
µ �

ν



Chapter 7

Problem Set

7.1 Data Files

To form a problem set, we selected a variety of files with different audio characteristics.

We chose two files from the “Bells” dataset; one with sixteen bells (fast ringing) and

one with just six (much slower). From the exploratory analysis we have seen that

there is little variety in the frequency domain among files from this dataset. From the

“Songs” dataset we selected two song sung by male voices (“Hometown Girl”, “Moon

River”), songs sung by a range of female voices (“This was Pompeii”, “Marlene on the

Wall”, “Caged” ), and a song sung by a group (‘Wannabe”). These songs were also

selected to have different backing music/instrumentals. From the “classical” dataset,

we chose four pieces: “Fur Elise”, on the piano, “Morning Mood”, an instrumental

piece with flute solos, the “Dance of the Sugar Plum Fairy”, another instrumental piece,

including a glockenspiel, and “the Ride of the Valkyries”, an operatic female voice

backed by full orchestra.

For each file, we took three ten-second clips; one from close to the beginning of the

file (beginning ten seconds in), one from close to the end (beginning twenty seconds

from the end), and one from the middle of the file. We carried out experiments on

the three clips to obtain a reasonable representation of the results on each file without

having to perform analysis on what summed to hours of audio data.

The intention was not to try every model on every file in the problem set, but to

90
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Figure 7.1: Signals for a selection of the problem set files.

Top: 6 bells; Middle: Marlene on the Wall; Bottom: Morning Mood
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have a variety of files along with a variety of possible breakages, and to select examples

for examining each model.

7.2 Missing data

We experimented with four different average block sizes to remove. Using a Fourier

block size of 512, it will mostly be interesting to consider missing blocks no larger than

the Fourier block size, although as we propagate time-dependent information through

the file it will be possible to consider large chunks of missing data. For the non-time-

dependent distributions we compared average block size removals of 128 and 384. For

the time-dependent distributions we also considered removing blocks with an average

size of 768 points.

We used a normal distribution centred around the mean (128, 384, 768) to deter-

mine block size, and removed blocks from random points through the file. A ten-

second clip at 44.1kHz contains 441,000 data points; 861512 blocks. 500 blocks of

data were removed from each of the three clips.

The files were stored with zeroes representing the missing data. Any zeroes in the

files to start with were therefore treated as missing data for the reparation. In each

case there were some isolated points at zero: in Morning Mood; 1742, in Caged; 88

and in Wannabe; 92. Of the 1.36 million data points, this is a tiny fraction. However,

this explains the apparent non-Gaussianity in the plots. Table 7.1 provides some more

statistics about the missing data distribution. These values are taken over all three ten-

second clips. The counts are taken ignoring lone zeroes. There is evidence of some

overlapping in the blocks which were removed: in no case does the total reach 1500.

As the block size increases, so does the chance of overlap. Despite this, the mean block

size removed is less than the intended mean, perhaps because of the prior presence in

the data of some very small blocks of zeroes.
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Figure 7.2: Distributions of missing data
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Piece Breakage Mean size removed Contiguous blocks removed

Morning Mood 128 89.5384 1146

Caged 128 89.1705 1161

Sugar Plum Fairies 128 85.9438 1138

Suzanne Vega - Marlene On The Wall 128 89.6245 1153

Bells 128 82.6617 1150

Morning Mood 256 177.8526 1099

Caged 256 178.7635 1095

Sugar Plum Fairies 256 185.4366 1065

Suzanne Vega - Marlene On The Wall 256 195.265 1053

Bells 256 174.7635 1095

Morning Mood 384 259.653 977

Caged 384 292.7038 996

Sugar Plum Fairies 384 294.9652 978

Suzanne Vega - Marlene On The Wall 384 281.3457 1047

Bells 384 288.2688 1008

Morning Mood 768 623.9564 780

Caged 768 644.4703 774

Sugar Plum Fairies 768 648.285 786

Suzanne Vega - Marlene On The Wall 768 594.8589 801

Bells 768 653.599 813

Table 7.1: Distribution of missing data
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7.3 Clipped data

The amplitude for data points varies between -1 and 1. To simulate clipping, we re-

moved all data points whose absolute value was larger than some cut-off point. Four

cut-off points were: 0.1, 0.3, 0.6 and 0.9. Most of the files were affected barely or not

at all by the higher cut-off points (table 7.2) — only in “Wannabe” did as many as as

1 in a hundred datapoints have an amplitude above 0.6. However, even the small frac-

tions of clipping were audible: blocks of points with a high proportion clipped cause a

brief hiss; in the files clipped at higher cut-off points the hisses were rarer, occurring

perhaps twice in a clip for “This was Pompeii” at a cut-off of 0.6, for example. How-

ever, the hisses themselves remained audible. For the cut-off of 0.9, the breakage was

virtually undetectable in all but “Wannabe”—in some pieces it is possible to identify

short problematic points by ear, but they do not disrupt the audio signal. Figure 7.3

shows histograms of the sizes of continuous blocks of clipped data. It is clear that for

the most part data was not clipped continuously in large quantities, although many data

points from a block of true data may have been removed.

7.4 Real data

7.4.0.4.1 Clipped data One way in which clipped data may arise in a real-world

situation is when sound is recorded onto a computer with the volume set poorly. We

created real examples of clipping in this way, recording audio signals from tapes onto

my machine. These signals were recorded at 8kHz, which limits the maximum possible

quality. Two of the clips were from songs of different styles: “Westside Story” and a

children’s tape. The third was the sound of bells. Table 7.3 shows the fraction of points

which were at the maximum amplitude and therefore probably clipped, for each of the

files.

The distribution of the clipped points was different in each of the files. The bells

were clipped consistently throughout (figure 7.4(a)), while the children’s song had

several “peaks”, with the audio quality reasonable in between (figure 7.4(b)).
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File 0.1 0.3 0.6 0.9

Caged 0.54 0.085 0.0015 7.18e-05

Dar Williams - 05 - This Was Pompeii 0.26 0.019 0.00076 0.00055

Suzanne Vega - Marlene On The Wall 0.26 0.0081716 0.00016175 0.00014

Hometown Girl 0.34 0.0089 0.00015 0.00011

Frank Sinatra - Moon River 0.21 0.0049 0.00043 0.00043

Spice Girls - Wannabe 0.605 0.18237 0.016 0.00076

Ride of the Valkyries 0.177 0.010515 0.00030 0.00022

Morning Mood 0.0013 0.0013 0.0013 0.0013

Sugar Plum Fairies 0.32 0.013 0.00016 0.00012

Fur Elise 0.038 0.00036 0.00036 0.00036

Bells–16 bells 0.584 0.11 0.0044 0.00013

Bells–6 bells 08 0.34 0.0090 0.00012 0.00012

Table 7.2: Fraction of points removed from the problem set files (mean over the three

clips)

File Fraction clipped

Bells 0.29

Westside story 0.24

Children’s song 0.22

Table 7.3: Clipping levels on real data
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(a) Sizes of clipped blocks for files clipped at 0.1: Left, “Morning Mood”; Right, Bells 1
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(b) Sizes of clipped blocks for files clipped at 0.3: Left, “Marlene on the Wall”; Right, Bells 1

Figure 7.3: Sizes of clipped blocks at two levels of clipping
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Figure 7.4: Clipped audio files
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7.5 Statistic sets

For the Gaussian distribution, estimating the parameters from data is straightforward.

We collected three parameter sets:

1. An overall
�
µ - Σ � , estimated from the entire data set.

2. Several sets of group-specific
�
µ - Σ � : bells, Carpenters, Dar Williams, Dave,

Suzanne Vega and Within Temptation. These represented a variety of the songs.

We did not create group-specific parameters for the classical dataset as it was

more difficult to determine what might consititute a group; music played by the

same orchestra, perhaps.

3. a
�
µ - Σ � pair for each file.

We used the same mean for both the independent and joint Gaussian distribution,

and took the diagonals of the joint covariance for the independent Gaussians.

Estimating the parameters for the time-dependent Gaussian distribution is similar.

For the t-distribution, an iterative process is used to estimate the parameters and

both degrees of freedom and
�
µ - Σ � must be optimised for. This is time-consuming,

and makes it more difficult to obtain parameters averaged over large data sets: all the

data must be examined at once. Rather than obtain overall parameter sets, I computed a

single set of parameters for each of the files in the problem set and some files “similar”

to those in the problem set (songs by the same artists, for example). We estimated a

value for ν by the procedure described in §

For the above distributions, we collected information using block sizes of 512,

1024 and 2048. For the multivariate t-distribution, maximum-likelihood parameter

estimation was much slower, and we only considered block sizes of 512, using the

same data sets as for the univariate t-distribution.

The methods for computing the parameters are as described during the exploratory

analysis.



Chapter 8

Results and Analysis

8.1 Experiments with a single file

We began with experiments on a ten-second clip from the middle of “Caged”. This

clip contained only instrumental sound; primarily a bass guitar. It began with a burst

of loud noise and then proceeded at a fairly even loudness. Most of the restoration

attempts resulted in the poorest results on that first burst, succeeding better over the

remainder of the file.

We examine the performance on the four problem set files which we’ll refer to

as Missing-128, Missing-384, Clipped-0.1, Clipped-0.3. Missing-128 and Clipped-

0.3 were quite pleasant to listen to; in particular Clipped-0.3 was barely damaged.

Missing-384 was less pleasant; the missing data throughout manifested itself in a throb

which disturbed the true signal. Clipped-0.1 was little more than a harsh hiss. A

selection of our results are presented below.

In the results below we have sometimes included the “perceived” quality of a file.

It should be emphasized that this is a very rough measure which varies from person

to person. However, it may give some idea of which files were better “restored” and

which models are suited to audio data. Perceived quality is on a scale of 1 to 10

where 1 denotes pure noise and 10 denotes perfect quality. Where possible we enlisted

unbiased opinions on file quality.

As stated previously, our intention was not to carry out every test on every file in

100
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Distribution MSE (data) MSE (Fourier) MSE (power) Diffs Variance Perceived

Independent Gauss 0.0103 0.825 696.157 0.00312 0.00946 9

Multivariate Gauss 0.0098 0.791 640.280 0.0033 0.00948 8

Time dependent Gauss 0.00967 0.783 609.828 0.00389 0.0095 7

Independent t 0.00620 0.505 480.356 0.0102 0.0100 9.5

Multivariate t 0.0246 1.977 2477.522 0.0152 0.0103 6

(a) Missing-128

Distribution MSE (data) MSE (Fourier) MSE (power) Diffs Variance Perceived

Independent Gauss 0.0157 5.88 20392.19 0.00602 0.00663 6

Multivariate Gauss 0.0229 8.59 22455.66 0.00300 0.00704 4

Time dependent Gauss 0.102 38.4 24939.169 0.0711 0.0797 1

Independent t 0.0205 7.68 20796.62 0.0087 0.00894 6

Multivariate t 0.0289 10.82 23212.49 0.0046 0.00986 4

(b) Clipped-0.1

Figure 8.1: Tests with the different distributions on two of the “Caged” problemset files.

The “diffs” and variance:amplitude ratio of the clean file are respectively 0.01002 and

0.01012

the problem set, but to explore a selection of models over a variety of problems. Where

there are gaps in the tables below, this indicates a test which we did not carry out either

due to difficulties with numerical instability or because we considered it unnecessary.

8.1.1 Distribution

We compared the five distributions discussed earlier. Figure 8.1 shows the results of

applying each of the distributions to the file, using a block size of 512. For the Gaus-

sians, the overall µ and Σ were used. For the t-distribution, the ν, µ, and Σ estimated

to be best for a different audio file, “Hometown Girl” were used. These we had deter-

mined experimentally behaved well as an “overall” parameter set. The column “Diffs”

refers to the average difference in amplitude between two datapoints; the continuity
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Figure 8.2: Time-dependent Gaussian on missing data. The green line indicates re-

paired data, the red line the original data

parameter discussed in §5.8.1

For the missing-128 file, the perceived quality approximately follows the MSE

values, which match one another, although the scales vary. The continuity is consis-

tently lower than the continuity in the file. It is highest for the perceptually “best”

repair. The sound of the errors in the clipped-0.1 is quite different for the indepen-

dent t-distribution and the independent Gaussian distribution. In the file repaired with

independent-t distribution there is a sort of “underwater” noise throughout the file,

while with the Gaussian distribution there is just a hissing noise obscuring the clean

data. This may be partially attributable to the use of a less general parameter set for

the t-distribution—the “underwater” noise may be the model attempting to force the

characteristic sound of the file used for the parameters onto this file.

Figure 8.2 shows an extract from the results of the time-dependent Gaussian dis-

tribution on the missing-128 and the clipped-0.1 problems. The green line indicates

repaired data, the red line the original data. We can see that the system has filled in

the missing chunks with plausible values, apart from a tendency for too many higher

frequency components to be included.

Figure 8.3 shows an extract from the results of the joint Gaussian on the clipped

data. It is clear what is happening here; the interpolation is rarely sufficiently large.
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Figure 8.3: Joint Gaussian on clipped data. The red line represents the original data

with points above 0.1 all set to zero. The green line represents the repaired values.

This could perhaps be improved upon by constraining the clipped data points to be

above the level of clipping.

The time-dependent Gaussian distribution behaves particularly badly on the miss-

ing data. In terms of assault on a listener’s ears, painfully badly! Figure 8.4 shows

clearly why this is the case: after the first block, which are not time-dependent, the

interpolated data is far too large to be correct. This occurs because the small values

in the covariance matrix result in overly large estimated means at each time step. It

might be possible to ameliorate this effect to some extent. For example by treating the

individual Fourier components independently, although this would lose any benefits of

exploiting correlations between frequencies.

Figure 8.6 shows an extract from the results of the two t-distributions on clipped

data. The broken signal is shown in red over the “repair” in green. We can see that

there are some similarities, but the multivariate t-distribution tends towards larger am-

plitudes, and in particular to upward spikes. There are several instances of upward

spikes in the diagram for the multivariate t-distribution where the spikes are downward

in the independent t-distribution, or where the spikes have twice the amplitude in the

multivariate t-distribution. In the case of the independent t-distribution, we can pick

out the form of a sinusoidal which undulates once during the block under examination.
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Figure 8.4: Time-dependent Gaussian on clipped data. The red line represents the

original data with all points above 0.1 set to 0. The green represents the repaired data.
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Figure 8.5: The multivariate t distribution on missing data
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Figure 8.6: The t-distribution on clipped data
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Distribution Parameters MSE data MSE

Fourier

MSE power Diffs Variances Perceived

Independent Gauss overall 0.0134 2.70 2701.4 0.0012 0.00819

Independent Gauss Never-ending Story 0.0152 2.80 2965.4 0.0026 0.0085

Multivariate Gauss overall 0.0123 2.75 3083.48 0.00074 0.0082

Multivariate Gauss Never-ending Story 0.020 4.56 4806.2 0.0086 0.0104

Independent t “overall” 0.0165 3.463 5583.8 0.0048 0.00882

Independent t Never-ending Story 0.0159 3.220 3574.4 0.00499 0.00955

(a) Missing-384

Distribution Parameters MSE data MSE

Fourier

MSE power Diffs Variances Perceived

Independent Gauss overall 0.0157 5.88 20392.1 0.00603 0.0066 6

Independent Gauss Never-ending Story 0.014 5.46 18805.9 0.00841 0.00766 6

Multivariate Gauss overall 0.022 8.59 22455.6 0.003 0.00704 4

Multivariate Gauss Never-ending Story 0.0223 8.47 21191.8 0.0064 0.00948 4

Independent t “overall” 0.0204 7.68 20796.62 0.00873 0.00894 6

Independent t Never-ending Story 0.0104 3.93 16726.24 0.015 0.0092 6

(b) Clipped-0.1

Table 8.1: Effect of initial parameters

This is not evident in the multivariate case.

The overall effect is that the errors caused by the multivariate distribution are louder

errors. A similar problem occurs with the multivariate t-distribution on the missing

data: the resulting file sounds worse than the original as the interpolated points are too

large.

8.1.2 Parameters

Choice of initial parameters For each of the Gaussian distributions, we compared

the effects of using the “overall”
�
µ - Σ � with using

�
µ - Σ � taken from another song by
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the same artists, “Never-ending Story”. For the t-distributions we compared the ν, µ,

and Σ from “Hometown Girl” with the t-distribution parameters from “Never-ending

Story”. Figure 8.1.2 shows some example results. For the missing data problem, there

is little difference between the two options; the “Never-ending Story” parameters are

slightly better for the t-distribution and slightly less good for the Gaussian, but there

is little to choose between them. On the clipped data the results are more interesting:

the “Never-ending Story” parameters with the t-distribution behave quite differently

from the “overall” (“Hometown Girl”) parameters. However, despite the much lower

mean-squared errors, the effects of using the “Never-ending Story” parameters are less

audibly pleasing; the underwater sound is worsened. Figure 8.7 shows short sections of

each; it is difficult to see from this why the version using “Never-ending Story” has the

underwater noise as its characteristic—it may be the effect of the bass guitar in Never-

ending Story–but it is clear that the two examples are different in character, with the

“Never-ending Story” version frequently having higher frequency components (which

is not consistent with our hypothesis of a bass guitar causing the effect).

The degrees of freedom parameter for the t-distribution, ν, as found by our ad-

hoc search procedure, was slightly higher (7) for “Never-ending Story” than it was

for “Hometown Girl” (6). This may not be a sufficient difference to be significant,

but may suggest that “Never-ending story” is slightly more randomly distributed and

therefore slightly more appropriate for use as an “overall” parameter which attempts

to approximate an average over diverse files.

For the multivariate Gaussian, the “Never-ending Story” version sounds worse than

the overall version as clicks can be heard throughout the piece. These represent points

where the interpolation is too loud, as shown in figure 8.8.

Updating By the time we have repaired several seconds of a file, we should have

enough data with which to accurately estimate the parameters for this file. We exper-

imented with two settings for updating the covariance along a file: one weighted the

most recent blocks much more highly than the other. It was only sensible to do this for

the Gaussian distributions as determining t-distribution parameters requires maximum

likelihood estimation which is time-consuming.

It is clear that updating the parameters in this way had virtually no effect on the
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Figure 8.7: Effects of parameter set on t-distribution performance
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Figure 8.8: Multivariate Gaussian with Never-ending Story parameters
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Figure 8.9: Independent t-distribution on missing-384 problem



Chapter 8. Results and Analysis 110

Distribution Update rate MSE data MSE Fourier MSE power Diffs Variance

Independent Gauss None 0.0103 0.825 696.2 0.00312 0.0094

Independent Gauss Slow 0.0107 0.863 726.1 0.0024 0.00946

Independent Gauss Fast 0.0112 0.902 783.5 0.00192 0.0094

Multivariate Gauss None 0.0132 1.058 1391.443 7.94e-05 0.0096

Multivariate Gauss Slow 0.0132 1.056 1392.45 5.8e-05 0.0096

Multivariate Gauss Fast 0.0132 1.056 1391.29 5.5e-05 0.0096

(a) Missing-128

Distribution Update rate MSE data MSE Fourier MSE power Diffs Variance

Independent Gauss None 0.0157 5.88 20392.2 0.00602 0.00663

Independent Gauss Slow 0.0156 5.86 20377.7 0.00602 0.00663

Independent Gauss Fast 0.0157 5.87 20395.8 0.00601 0.00663

Multivariate Gauss None 0.0316 11.842 24111.05 0.000259 0.012

Multivariate Gauss Slow 0.0316 11.845 24113.21 0.00024 0.0121

Multivariate Gauss Fast 0.0316 11.84 24112.86 0.00024 0.0122

(b) Clipped-0.1

Table 8.2: Updating the parameters along the file
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outcome. There was also no discernible audible effect. This corresponds to the limited

effects of changing the parameters for the Gaussians shown in the previous section.

If it were practical to update the t-distribution parameters, the gain might be greater.

This is perhaps a result of the sparsity of the t-distribution; as we saw in the matrices

for Σ for the t-distribution and the scale of the eigenvalues, the available information is

better distributed within the Σ matrix, so the distinction between two files can be made

stronger.

These experiments were very brief; there is room for much more analysis of decay

settings.

8.1.3 Block size

We compared three block sizes: 512, 1024 and 2048.

Table 8.3 shows some of the metrics on the data points on the two independent

distributions. It appears that the block size hs little effect on the perceived quality,

although more so with the t-distribution than the Gaussian. However, in both cases

the squared errors are reduced as block size increases; the effects being particularly

noticeable with the t-distribution.

We do not show the results for the multivariate distributions as scaling difficulties

made it impossible to carry out any but the simplest tests with larger block sizes on

these distributions. We do not expect that the behaviour would be noticeably different,

because the same number of frequencies have significant values on the larger blocks as

the smaller ones. However, it would be interesting to experiment further when possible.

8.1.4 Type of damage

On both types of damage if there were large chunks of errors, we felt that fixing worked

best perceptually if the fix attempt was more conservative than the correct value, as it

was rare that an exactly correct match would be found.

8.1.5 Summary

Looking at the various parameters on this file, it seems that
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Distribution MSE data: 512 1024 2048 MSE Fourier: 512 1024 2048

Independent Gauss 0.0103 0.00904 0.00842 0.825 0.733 0.683

Independent Gauss 0.0157 0.0151 0.0152 5.88 5.67 5.69

Independent Gauss 0.0134 0.0128 0.0129 2.71 2.55 2.46

Independent Gauss 0.0299 0.0258 0.027 0.46 0.404 0.422

Independent t 0.0127 0.00824 0.00394 1.02 0.669 0.323

Independent t 0.0205 0.0175 0.00557 7.68 6.55 2.09

Independent t 0.0164 0.0148 0.0133 3.41 2.61 1.88

Independent t 0.0234 0.017 0.0126 0.36 0.268 0.202

(a)

Distribution Diffs: 512 1024 2048 Perceived: 512 1024 2048

Independent Gauss 0.00312 0.00311 0.00338 9 9 9.5

Independent Gauss 0.00603 0.00638 0.0066 7 7 7

Independent Gauss 0.00123 0.00119 0.00139 7 7.5 7

Independent Gauss 0.0676 0.071 0.072 9.5 9.5 9.5

Independent t 0.00825 0.0101 0.0108 8 9 9.5

Independent t 0.00874 0.00986 0.0218 6 7 8

Independent t 0.00507 0.00682 0.00768 6 7 8

Independent t 0.0902 0.098 0.114 9.5 9.5 9.5

(b)

Table 8.3: Effect of blocksize
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Figure 8.10: Mean-squared errors% Very noticeable improvements can be made to badly clipped data% Using a joint distribution gains little and may in fact result in overestimation and

loss of accuracy% Increasing the block size can have some benefit, although given the way com-

plexity scales with in particular the quadratic programming optimisers we might

not consider the small benefits worth it for joint distributions% The Gaussian distribution is not very sensitive to the choice of parameters% The t-distribution is sensitive to the choice of initial parameters% The time-dependent Gaussian distribution tends to over-estimate the data

8.2 Evaluation metric

For the most part in the above section, we have included all the proposed metrics.

However, it is fairly clear that the three squared errors are proportional. Figure 8.10
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demonstrates this with scatter plots of the error rates. It is also clear that for most part–

although not in all cases–the MSE metrics are a reasonable metric for determining

the perceived quality. We therefore focus on the MSE of data points in the following

section. This means that when examining the results on real data, we have no better

metric than the perceived quality.

Figure 8.11 demonstrates an example where the audio quality does not match the

apparent accuracy of the restoration. The blue line represents the data clipped at a level

of 0.1. The red line represents the true data without clipping. The green line represents

the restoration attempt on the data. We can see that the green line for the t-distribution

more accurately follows the shape of the true data, and is a better approximation to in

terms of absolute value of the data points. It is therefore not surprising that the MSE

is lower for the t-distribution restoration. However, the Gaussian restoration sounds

much better than the t-distribution restoration—and much better than the broken data.

8.3 Evaluation on the problem set

Having examined some of the effects of the various parameters on a single file, we

broadened my experiments to the problem set as defined in chapter 7. Running tests

over a large number of files was necessary to thoroughtly compare the effects. How-

ever, it was not possible to listen to or view graphically all the repaired files; we rely

on the evaluation metrics to determine how well the system was performs, listening to

occasional files which appeared interesting or anomalous. We attempted to listen to at

least one repaired example associated with each of the original problem set files.

8.3.1 Distribution

The figures for the joint and time-dependent Gauss seem surprisingly small. For these

tests we used just five files from the problemset: “Caged”, “Moon River”, “Bells 1”,

“Ride of the Valkyries” and “Fur Elise”. The results are low because the performance

is particularly good for “Fur Elise” and “Ride of the Valkyries”. All the multivariate

distributions (t and the two Gaussian ones) performed particularly badly on “Caged”.

Looking more closely at “Fur Elise” and “Ride of the Valkyries”, it appears that
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Figure 8.11: Restoration of heavily clipped data. The blue line represents the data

clipped at a level of 0.1. The red line represents the true data without clipping. The

green line represents the restoration attempt on the data.
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Distribution MSE on missing-128 missing-384 missing-768 clipped-0.1 clipped-0.3

Independent Gauss 0.0022 0.00228 0.0155 0.00921

Independent t 0.0022 0.00231 0.0160 0.0155

Joint Gauss 0.00187 0.0187

Time-dependent Gauss 0.00183 0.00195 0.0175

Multivariate t 0.00211 0.00253 0.012772

(a) MSE

Distribution Variance on missing-128 missing-384 missing-768 clipped-0.1 clipped-0.3

Independent Gauss 0.0023 0.0022 0.0125 0.00817

Independent t 0.00228 0.0022 0.0137 0.0313

Joint Gauss 0.00217 0.0249

Time-dependent Gauss 0.00212 0.00195 0.024

Multivariate t 0.00147 0.00189 0.0201

(b) Standard Deviation

Figure 8.12: Results of different distributions on the problem set
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Figure 8.13: Fur Elise

Distribution Parameters MSE missing-128 missing-384 clipped-0.1 clipped-0.3

Independent Gauss Overall 0.0022 0.00228 0.0155 0.00921

Independent Gauss Group 0.0024 0.0027 0.018 0.0092

Multivariate Gauss Overall 0.00187 0.0187

Multivariate Gauss Group 0.0051 0.0424

Table 8.4: Effects of parameter choice for a Gaussian distribution

the performance is so good because these clips are themselves very quiet. Figure 8.13

shows a section from the “Fur Elise” multivariate Gaussian repair, with the true data

in red and the repair data in blue. It’s clear that the repair itself is not spectacular.

However, the amplitude of the data and therefore the possible amplitude of any error

varies between -0.08 and 0.08, a fraction of the possible space. The situation is similar

for “Ride of the Valkyries”; the particular sections tested on these two files happen to

be quiet.

8.3.2 Parameter choice

Some types of audio file responded more to the choice of parameters than others. For

example, using the Bells mean on a Bells file showed a noticeable improvement over

the overall mean; while the same effect was not evident for a song file.
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Distribution Parameters MSE missing-128 missing-384 clipped-0.1 clipped-0.3

Independent t Params 1 0.0022 0.0023 0.0159 0.0156

Independent t Params 2 0.0021 0.0023 0.0156 0.0153

Multivariate t Params 3 0.0022 0.0025 0.016

Multivariate t Self 0.0020 0.00234 0.0153

Table 8.5: Effects of parameter choice for a t-distribution

File Params 1 Params 2

daws-hometowngirl.mp3.wav 0.0084 0.0096

Bells 2 0.0220 0.0236

Dar Williams - 05 - This Was Pompeii.mp3.wav 0.0045 0.0061

Ride of the Valkyries.mp3.wav 0.0148 0.0163

Suzanne Vega - Marlene On The Wall.mp3.wav 0.0263 0.0322

Sugar Plum Fairies.mp3.wav 0.0087 0.0132

Frank Sinatra - Moon River.mp3.wav 0.0019 0.0019

Fur Elise.mp3.wav 0.0063 0.0063

Morning Mood.mp3.wav 0.0000 0.0000

Bells 1 0.0190 0.0184

Caged.mp3.wav 0.0393 0.0320

Spice Girls - Wannabe.mp3.wav 0.0398 0.0281

Table 8.6: Comparing the parameter sets for the test files on the clipped-0.1 problem
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Distribution 512 blocks 1024 2048

Independent t 0.0156 0.0161 0.0196

Independent Gauss 0.0155 0.0141 0.0172

Multivariate Gauss 0.0187 0.0143 0.015

(a) Effects of block size on Clipped-0.1

Distribution MSE on 512 blocks 1024 2048

Independent t 0.0023 0.0023 0.0023

Independent Gauss 0.0023 0.0022 0.0022

(b) Effects of block size on Missing-384

Figure 8.14: Effects of changing the block size on the MSE of the data points

From table 8.6 we can see that the “best” choice of parameter depends upon the file.

The table has been sorted so that all those files for which parameter set 1 is the best

are in the top half, and those for which parameter set 2 is the best are in the bottom

half. It is difficult to make judgements on such a small sample, and the variation is

rarely large. However, there do not seem to be any obvious audio characteristics which

identify a file as being more suited to one parameter set or the other: in particular, the

two “Bells” files, very similar in character, are in different parts of the table.

8.3.3 Block size

Figure 8.14 lists the effects of the changing the block size on two of the problem set

files. It is clear that as was the case for Caged, changing the block size has little

effect on the overall error rate. There is some benefit in the case of the multivariate

Gaussian, going from a block size of 512 to 1024. It is not clear why there should

be any reason for this to be the case. These results contrast with our observations

on “Caged”, suggesting that some files may be better suited to larger block sizes than

others. In particular, “Caged” contains a variety of different instruments including bass

instruments—these especially may require larger block sizes to correctly determine the
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Distribution Clipped-0.1 Fraction too small Clipped-0.3 Fraction too small

Independent Gauss 0.33 0.28

Independent t 0.32 0.28

Table 8.7: Fraction of clipped data not estimated above the clip point

relevant frequency information.

8.3.4 Clipping

We stated earlier our intention of explicitly not including the clipping limits in the

model, in order to see to what extent the system correctly estimated data above the

level at which it had been clipped. Table 8.7 shows the results for the two independent

distributions. It is noticeable that the error rate is not very different between the two

clipping rates, although there is quite a lot of data between the levels of 0.1 and 0.3.

Both the Gaussian and the t distribution perform equally well in this respect, despite

our observations earlier that the t-distribution is likely to be less conservative about the

size of a data point.

8.4 Evaluation on real data

We experimented with several of the distributions on the real data files in the problem-

set, using blocks of 2048 points. For the data file containing bell music, we tested both

the Bells parameters from the original data set and the overall parameters. For the other

data files we merely the overall parameters (or, for the t-distribution, the parameters

we used in lieu of overall parameters). For simplicity we considered only the indepen-

dent distributions as these seemed to have been as effective as the more complicated

distributions.

For this data, evaluation by MSE measures is not possible. We measured the per-

ceived quality according to an unbiased listener. The listener was also supplied with

clips recorded from the same tapes, but without clipping, to suggest the maximum

achievable quality for the de-clipping process. Table 8.8 indicates the results.
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File Parameters independent t independent Gauss perceived quality clipped unclipped

Bells overall 7 6 6 8

Bells Bells 6 6 6 8

Westside Story overall 10 9 9 10

Children’s song overall 7 6 7 9

Table 8.8: Results on real data

The results show that very little real improvement has been made to these files. In

the children’s song, the errors come in two peaks which are particularly high notes in

the clip. Neither the t-distribution nor the Gaussian interpolates the high notes cor-

rectly, so the sound is blurred; slightly less of a “squawk” than in the original making

it fractionally more pleasant to listen to, but no better quality. For both the distribu-

tions, the results are less good with the bell-specific parameters than with the overall

parameters.

There is no need to be discouraged by the lack of improvement; the model we are

using to handle clipped data remains naive and there is scope for further improvement.

We might also obtain good results by incorporating the probabilistic FFT as just one

step in a restoration procedure. We need not expect it to achieve everything on its own.

8.5 Summary

In this chapter we have carried out the second part of our aim: the first part was to im-

plement the probabilistic FFT and the second part was to explore its use on audio data.

We have tested a number of models and found that the t-distribution may be a suitable

model for audio data. We have not demonstrated any conclusive benefits, but observed

effects which are suggestive and could benefit from further investigation. In particular,

we find that the t-distribution is senstitive to the choice of initial parameters. We have

noted that a block size of 512 points is sufficient to perform restoration as effectively

as we have succeed in performing it. Finally, we have shown that the probabilistic FFT

can be used in a practical application.
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8.6 Further investigation

There remains plenty of scope for further investigation within this simple missing-data

restoration application:% More general t-distributions should be investigated, computing the parameters

over several data files.% Different ν parameters for the multivariate t-distribution should be considered.

It seems likely that ideally ν will be larger than the value of 1 we used.% For the independent t-distribution, varying ν with the particular component could

be investigated. This should have a limited effect on the outcome.% For the t-distribution in particular, more experimentation with initial parameters

would be useful.% Ways of updating the t-distribution throughout the restoration could be investi-

gated.% A univariate time-dependent distribution could be investigate. It seems likely

that this will be more practical than the multivariate time-dependent distribu-

tion and may have some benefits, while not being subject to the overestimation

problems encountered with the multivariate time-dependent distribution.% For random missing data, it should be possible to create models for estimating

the parameters modelling the data file from the clean parts of the data. Whether

this approach would be useful is not certain: one of the primary causes of missing

data is streaming audio over a low bandwidth connection; in such an application

waiting until the whole file is available might not be appropriate. (Such a con-

sideration is to some extent academic, since our system is not fast enough to

perform a repair in real time in any case).% The effect of the scale of clipped data on the restoration could be investigated,

in particular in the context of real-world clipped data.



Chapter 8. Results and Analysis 123% The optimisation methods could take into account the bounds on the unknown

data points (
� �M� 1 for missing data; � �

cor � c, where c is the clip point, for

clipped data.% Ways of modifying the models based on knowledge about audio perception such

as Fletcher-Munson curves could be investigated.% The error rate over the course of a file should be examined.
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Future work

9.1 Noisy model

9.1.1 Flexibility in the data points

The first extension to this system is to treat all the points as noisy; both known and

unknown, with some prior probabilities on the points. For the unknown points the prior

probabilities will have a broad distribution; for the known points the prior probability

should encapsulate the fact that the true data point is likely to be within a small value

of the observed data point.

These priors can then be updated as before to generate a posterior distribution over

the data set, and a maximum likelihood value over the full data set computed.

9.1.2 Detecting noise

The next step is to attempt to determine from the data what parts of the data are noisy.

Identifying missing or clipped data is straightforward, and we have been doing that

throughout the project. There are known Bayesian techniques for identifying clicks

in the datastream which could be incorporated into the system to attempt to provide a

better model for the data points. Kalman filter methods could also be applied to the

data stream to modify the model.

124



Chapter 9. Future work 125

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) Speaker 1

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) Speaker 2

Figure 9.1: Gaussian covariances for two different male speakers

9.2 Other kinds of data

Speech One important application involving speech data is source separation: break-

ing a single signal up into a number of signals representing the distinct speakers who

contributed to the overall audio effect. This is commonly known as the “Cocktail Party

Problem”. The probabilistic FFT technique described here could be extended to the

source separation problem, for example by treating a signal as a “pure” signal, corre-

sponding to a single speaker plus “noise”, corresponding to the rest of the speakers.

The noise removal approach proposed above would then separate the two signals. The

approach could be applied recursively if there are more than two speakers.

It is not clear how effective such a technique would be. From the examination of

audio data, we have observed that the covariance matrices which represent voice data

are often similar. similar. However, figure 9.1 shows two the Gaussian covariance

matrices for two different speakers reading from the Bible. While there are obvious

similarities, seems plausible that with a sufficiently detailed model, a signal modelled

by a combination of these could be separated. Figure 9.2 shows the covariance matrix

for a signal used as a benchmark for the source separation problem, containing signals

from two speakers simultaneously. It is possible to visibly identify the frequency com-
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Figure 9.2: The covariance matrix for a signal containing two simulataneous voices

ponents belonging to the two speakers, and it should be possible to build a system with

a probabilistic FFT core which can separate these two signals.

In [24], Roweis describes a hidden Markov model approach to source separation

in which he focuses on spectral properties of the signal and spectral cues. Roweis’s

approach only works well if the original speech signals are distinct (a male and a

female, for example). In our work we have also seen that the parameters for signals

containing, for example, female voice, are all very similar; it is possible that any source

separation based on simple Fourier priors will suffer from similar difficulties.

However, something we have investigated in this project which has not been much

examined is the use of the t-distribution to model audio frequency components. It

may be that the t-distribution would be better able to distinguish the minor frequency

differences between similar speakers.

Another problem in Roweis’s system is the necessity of training the model on the

speakers themselves. It is possible that a source separation system based on the prob-

abilistic FFT would have a similar problem; distinguishing between “male” and “fe-

male” might be straightforward, but distinguishing between two similar voices would

be better done given prior knowledge of the specific frequencies in the voices.

Image The JPEG algorithm performs a cosine transform on quantised datapoints.

Using spectral priors we can more accurately estimate the original datapoints, as de-
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scribed in [26]. A two-dimensional extension of our probabilistic FFT could be used

in an approach similar to this.

Other series data There are many other forms of series data; spectral approaches

are appropriate to any series applications which exhibit some form of periodicity.

This may include astrophysical data, medical data, geoscience data, economic data,

or many others. The probabilistic FFT approach could be used for any application

where frequency-based models are suited to encapsulating information about the data.
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Conclusions

We experiment with a number of different optimisation techniques in order to imple-

ment a system which could practically and effectively perform a probabilistic FFT on

audio streams with missing or clipped data. We find that applying this technique effi-

ciently requires some care in the choice of optimiser and in handling the near-singular

covariance matrices which occur with Gaussian priors. We experiment mostly unsuc-

cessfully with eigenvector techniques to improve efficiency.

We apply a number of different models for the Fourier component priors to the

system, comparing independent, joint, and time-dependent Gaussians, and indepen-

dent and joint t-distributions. We find that in general the joint distributions did not

perform well on practical audio problems; this may be a consequence of the form of

audio data. The t-distribution behaves slightly better on audio data than the Gaussian

distribution, but the effect is not large.

We find that for many practical problems this technique did a poor job as a stand-

alone audio restoration application, but for problems with small amounts of unknown

or clipped data good results could be achieved. It seems likely that including percep-

tual characteristics of audio data in the model might improve matters. Audio data is

sensitive to the scale of errors; “loud” errors are more noticeable than “quiet” errors,

and often data at about the right volume which looks plausible sounds wrong. This

behaviour may be different on other forms of data.

We experiment with a number of evaluation heuristics for audio data. It was hard

to find metrics which are a reliable judge of perceived quality; most of the time the

128
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mean-squared errors were sufficient. We find that the mean-squared errors in the data

and the Fourier domains can be treated equivalently and provide as much information

about the perceptual quality of the data as any other metric we considered.

Finally, we suggest a number of directions for future work both within our simple

audio restoration application and for the probabilistic FFT in general.
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Appendix A

Audio Data

Those mentioned in the text have been marked with a * and highlighted in blue. The

remainder were used to contribute to the statistics.

A.0.1 Bells: from the Swan Bells, Perth

File Content

*1 Rounds and Call Changes on 16

2 Rounds and Call Changes on 12

3 Grandsire Caters on the back 10

*4 Stedman Triples on the back 8

5 Plain Hunt Maximus on the light 12

6 Call Changes on the light 10

*7 Little Bob Major on the middle 8

8 St. Martins Bob Doubles on the G# 6

9 Grandsire Triples on the light 6

10 Double Court Bob Minor on the front 6

11 Plain Hunt Sixteen

134
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A.0.2 Songs

Name Artist

16 going on 17 Sound of Music

A winter’s tale Davis Essex

America Simon and Garfunkel

American Pie Madonna

*As Cool As I Am Dar Williams

As Time Goes By Frank Sinatra

Bananaphone Raffi

*Beautiful Morning Boo Radleys

Beautiful Stranger Madonna

Birdhouse in Your Soul They Might Be Giants

Blonde Over Blue Billy Joel

Blowin’ in the Wind Bob Dylan

Bridge Over Troubled Water Simon and Garfunkel

Bring It All Back S Club 7

*Caged Within Temptation

Climb Ev’ry Mountain Sound of Music

Colours of Day Philip Heak

Cool Cat Garfield

Cow Town They Might Be Giants

Daddy Sang Bass Johnny Cash

Diamonds Are Forever Shirley Bassey

*Dressed for Success Roxette

February Dar Williams

Girls Just Wanna Have Fun Cyndi Lauper

Goodbye To Love Carpenters

Gypsy Suzanne Vega

*Hometown Girl Dave Allen-Williams

How Can I Keep From Singing Enya

How Could You Say No Julie Miller
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*I am Cow Unknown

I Had No Right Dar Williams

*I Vow to Thee My Country Unknown

Ice Queen Within Temptation

Imagine Beatles

In The Eye Suzanne Vega

Iowa Dar Williams

Jerusalem Unknown

Just Wanna Make Love to You Etta James

*Kebabulous Dave Allen-Williams

*Last Christmas Wham!

Like A Virgin Madonna

Little Boxes Pete Seeger

Love Me for a Reason Boyzone

Man I Feel Like a Woman Shania Twain

Manic Monday Bangles

Maria Sound of Music

*Marlene On The Wall Suzanne Vega

Material Girl Madonna

May The Road Rise To Meet You Northumbrian Community

Mercedes Benz Janis Joplin

Milk And Toast And Honey Roxette

*Moonlight Shadow Suzanne Vega

*Moon River Frank Sinatra

Morning Has Broken Neil Diamond

*Never-Ending Story Within Temptation

Oops I did it again Britney Spears

Party Generation Dar Williams

*Pre-text Dave Allen-Williams

Puff the Magic Dragon Carpenters

Puppet on a String Sandie Shaw
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Rainy Days and Mondays Carpenters

Remember You’re A Womble Wombles

Rotterdam Beautiful South

Seek Ye First Maranatha! Singers

Silver Rainbow Genesis

Sing Carpenters

*Solitude Standing Suzanne Vega

Somewhere Over The Rainbow from The Wizard of Oz

Southern California Wants to be Western New York Dar Williams

Stop Smoking Dar Williams

Stop! Spice Girls

*Streets of London Cat Stevens

The Bare Necessities from The Jungle Book

The Christians and the Pagans Dar Williams

The End of the Summer Dar Williams

The Pointless Yet Poignant Crisis of a Co-Ed Dar Williams

The Wombling Song Wombles

There’s a Kind of Hush Carpenters

*This Was Pompeii Dar Williams

Top of the World Carpenters

Tragedy Steps

Uptown Girl Billy Joel

*Venus Bananarama

Viva Forever Spice Girls

*Wannabe Spice Girls

We didn’t start the fire Billy Joel

What’s up 4 Non Blondes

Wiggle It Two In A Room
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A.0.3 Classical

File Composer

Air on a G-string Bach

*Allegro Con Brio Beethoven

Blue Danube Strauss

Bolero Ravel

Canon Pachebel

Carmina Burana Orff

Cello Concerto Unknown

Dance of the Knights Prokoviev

Eine Kleine Nachtmusik Mozart

Flower Duet Delibes

*Fur Elise Beethoven

*Hall of the Mountain King Grieg

Hallelujah Handel

Jesus Bleibt Mein Freund Bach

Jupiter Holst

Mars Holst

*Minuet in G Bach

*Moonlight Sonata Beethoven

*Morning Mood Grieg

Nessun Dorma Puccini

Ode to Joy Beethoven

*Pomp and Circumstance Elgar

Radetsky March Strauss

Rhapsody in Blue Gershwin

*Ride of the Valkyries Wagner

Rigoletto Verdi

Rondo alla Turca Mozart

*Sarabande Unknown

Sugar Plum Fairy Tchaikovsky

Suiten fur Violoncello Solo Unknown

Dance of the Merlitons Tchaikovsky

The Magic Flute Mozart

The Marriage of Figaro Mozart

The New World Dvorak

Toccata and Fugue Unknown
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A.0.4 Real

File Artist

*Bells Bells of St. Mary Redcliffe, Bristol (12 bells)

*Children’s Song Children’s tape, unknown

*Westside Story Westside Story, Bernstein
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Covariance matrices

Figure B.1 demonstrates a formula for computing covariance matrices incrementally.
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Consider the element Ci j of the covariance matrix:
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Hence the covariance can be computed incrementally. Suppose now that we have N+M

data points:
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Finally, consider the case where M � N:
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It is easy to see that this will extend to more than two covariance matrices. Therefore

the covariance matrix of a large quantity of datapoints is the mean of the covariances

of some partitioning of the datapoints. This theorem [ ! ] is valuable in computing the

covariance matrix over several files, or when there is too much data to reasonably load

into MATLAB all at once.

We should bear in mind, however, that these equations assume that the mean for the

whole data is known in advance, while MATLAB’s covariance routines compute the mean

from the data. We therefore modified the MATLAB’s covariance routine to take the mean

as an input (since in most cases the mean is approximately zero, there is in reality little

need for this).

Figure B.1: Computing the covariance incrementally


