Audio Data

e [.ots of audio files in the world

— Home recordings

— Recordings of concerts
- BBC archive data

Damaged audio data

* Audio files may be damaged

— Clicks

— Hiss

— Clipping

— Missing data

* So, estimate the original data: P(original | data)

Frequency or time?

 Can view an audio file as a time sequence

0.03

0.06 -

0.04

0.0z
ok

-0.02 -

-0.04 -

-0.06

1 1 1 1 | 1 1
1] 2000 4000 G000 aooo 10000 12000 14000 0 16000

Frequency or time?

* Or as a sum of frequency information

_15 1 1 1 1 1 1 1 1 1
0 100 200 300 400 s00 ®OO VOO 8OO 300 1000

* Describe with amplitude for each frequency.

Fourier Transforms

* The conversion from a time series to a frequency
series 1s called a Fourier transform

Flu)= (f(x)xexpliux)]
|
2 pi)

(recall exp(1x) = cos(X) + 1sin(x))

f(F(u)*exp(—iux)dx)

flx)=

Fourier Transforms

* On finite data, a discrete Fourier transform:
sum rather than an integral.

* Efficient algorithm for computing a discrete
Fourier transform (the list of coetficients F(u)):
fast Fourier transform (FFT).

Fast Fourier transform

e Fourier transform 1s the sum of an “odd” FT and
an “‘even’”’ FT

* Each of those can be divided again

* End up with a series of one point FTs:
this turns out to be the data in reverse bit order.

Reverse bit order

12 12
2 14
15 15
27 i
14 2
3 3
1 27
) 9

Fast Fourier Transform

e Can view the FFT as a network structure:

Fourier components
000

N
Data points

Belief propagation

* Techniques for finding the conditional
probability at a node of a belief network (here,
the Fourier components), given the prior
probability and the observed data (here the time
series data points)

Probabilistic FFT

* Method for restoring missing data:

— Supply priors on Fourier components

— Compute a probable FT transform given data which i1s
present, using the network structure for belief
propagation

— Use inverse FT to estimate missing data

Implementation

* Estimating FT given data:

— Conjugate gradient method

— Model 1s in form of gradient function for
P(FT | known_data, unknown_data)

* Conjugate gradients, FFT implemented in C

* Octave interface for loading audio files,
supplying data and gradient function

Beyond missing data

* Add a second layer: a model for the probability
of the true data given the observed data

 Handle clicks (similar to missing data), hiss,
clipping (large values likely to be clipped: broad
range of probabilities for original data, smaller
values likely to be accurate), ...

Models

* Where do we get the priors from?

— Look at real data

i
-2l -15 -10 -5 i i 10 13 i

10™ component First component

Done so far

* C code, octave interface to apply conjugate
gradient method when supplied with data and
gradient function

* Appears successtul if gradient function 1s very
simple (eg, Data — 4)

* Attempt with gradient of a Gaussian: gradients
blow up to -inf. To debug...

Still to do

* Script to load audio files: octave doesn't have
matlab's wavread()

— Or, translate to matlab

* Add layer to estimate P(truth | data)

 Experiment with different models for Fourier
components and P(truth | data)

* Report!

