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Abstract

We discuss ways of extracting information from data signals which have missing or incomplete data,
or when the information is hidden. We describe independent component analysis, and its limitations,
and then focus on techniques using the Fourier transform of the data or the power spectrum.

1 Introduction

Given a signal representing some data, it is frequently the case that in some way the signal doesn’t explicitly
encode the information we need to extract from it. The signal may be a combination of several input signals
we’d like to separate (the “cocktail party” problem), it may have missing data (for example, audio sources
taken from scratched media), or it may have been quantised at some point (as in JPEGs). In general,
we face a problem of deciding which of several possible underlying sets of data could have generated the
available signal. There are a number of techniques available for doing this, ranging from highly specialised
and domain specific to statistical methods which try and seek patterns in the data without using external
or domain-specific knowledge (although some prior information or assumptions may be supplied). We focus
on the latter, looking for methods which are extensible or as generally applicable as possible.

In general, the aim is to find some kind of structure, or pattern, in the data available in order to determine
which of the possible sets of underlying data was most likely. This usually means encoding some kind of prior
assumption into the algorithm. One way of doing this is independent component analysis (ICA). Leino [15]
describes the work done by Aapo Hyvarinen and Erkki Oja [12] on this, referring to the source separation (or
cocktail party) problem. Roweis [16] points out that this needs a number of samples, or sensors, and considers
an approach when there is only one sensor. Computer scientists taking advice from nature is nothing new,
and Roweis notes that amongst other things, humans use energy spectra when “solving” the cocktail party
problem. He discusses one technique for doing this. Bach and Jordan [3] suggest another. Moving on to cases
where data is missing, Storkey [19] describes a technique based on the fast Fourier transform—recall that the
power spectrum of a signal is the square of its Fourier transform, and so techniques which can be applied to
Fourier transforms could also be applied to power spectra. Gregory [8] describes a slightly different approach
to Bayesian analysis of a discrete Fourier transform. Storkey’s techniques are based on the use of spectral
priors, and in a joint paper with Allan [18] he discusses the use of such priors in reconstruction of quantised
data.

2 Independent Component Analysis

Leino Leino [15] gives a mathematical overview of the ICA algorithm. Given a vector x of observations,
we can write x = As. A is a mizing matriz; for example in the cocktail party problem it might depend
on the distances of the speakers from the sensor. The components of s are the independent components,
the original signals we wish to extract. ICA consists of finding A and s, subject to the constraint that the
components of s are independent. Given a collection of observations, x, we can treat the x; as random
variables, so that what we are trying to find is a probability distribution for the s;, given the distribution
that the observations appear to be a sample of.



The independence constraint is not sufficient to uniquely determine A and s; in particular, the variances
of s cannot be determined, since any multiplier of an s; can be cancelled by dividing column i of A by the
same value. Further, it is impossible to determine an order for the independent components; the columns
of A can be reordered along with any reordering of s. We set the variances to be 1 for simplicity, but note
that we still cannot determine the sign of the vector s. We can simplify calculations further by translating
the data linearly so that its mean is zero.

There is one final constraint; the independent components may not have Gaussian distributions, for the
practical reason that this results in a completely symmetric distribution, and it would be impossible to make
any inferences about the directions of the columns of A. This practical reason is supported by the principle
that the less Gaussian the components are, the more independent they are. This result is a consequence
of the central limit theorem, from which we can infer that the sum of two independent random variables
has a more Gaussian distribution than the original variables. We use this principle to seek the independent
components, attempting to find those components which are as non-Gaussian as possible.

Leino describes a number of measures of non-Gaussianity. Kurtosis, based on the fourth moment, is
simple, but non-robust. Negentropy, based on the information-theoretic notion that a Gaussian variable
has the largest entropy (carries most information) among all random variables with the same variance, is
accurate, but difficult to compute. Some approximation combining kurtosis and negentropy is frequently
used.

An example of ICA operating on sound signals is shown in figure 1. The FastICA! code package was
used for the example.

Hyvarinen and Oja Leino’s coverage of the mathematical principles is mostly accurate. However, Leino’s
overview does not include examples or experiments, although he refers to some of the uses of ICA. For more
examples, we look to Hyvérinen and Oja’s work [12]. Hyvérinen and Oja provide examples from medicine—
MEG data, cashflow analysis, and image denoising. They do not provide or describe quantities of test data,
merely some specific pictorial examples which clearly demonstrate the flexibility of the technique.

Limitations ICA is a powerful technique. It does not rely on any prior knowledge of the data or the
probability distributions involved. However, it can only be used if the sources are indeed non-Gaussian, and
if they are independent. Where there is dependence between signals ICA may find the underlying signals
which give rise to the dependent signals (figure 3). We could consider what happens with more complex
dependencies. An example is shown in figure 4; the analysis makes a brave attempt but fails to detect the
original harp signal. This could cause problems using ICA when we incorrectly assume independence.

Note also that the algorithm described above does not take noise into account. The algorithm can perform
with a small amount of noise, but the independent components it finds are also noisy (figure 2). Hyvérinen
and Oja [12] discuss some ways of denoising data. One in particular which takes advantage of the statistics
of the data is Sparse Code Shrinkage [11], which is a maximum likelihood estimation, closely related to ICA
(the same assumptions about the data are made as in ICA, with the addition of noise).

Another limitation of ICA is the necessity of providing sufficient sample data to extract useful statistics
- in general at least N samples are needed if N signals are to be separated via ICA. Choi, Cichocki and
Belouchrani [6] describe a technique which estimates A in the presence of white noise, and which works
even if the sources are Gaussian, provided that the signals are temporally correlated with time varying
variances. They present experimental data showing the success and robustness of their method on audio
signals; comparing it against a number of existing algorithms and demonstrating that it is at least as
effective as existing algorithms in the presence of several Gaussian signals, and more robust than the existing
algorithms in the presence of noise. As mentioned earlier, power spectra can form the basis of a powerful
alternative technique, relying on some prior information, but only requiring one sensor. We discuss this
below.

Other Work Knuth [14] derives an ICA algorithm from Bayesian principles, and demonstrates how the
Bayesian approach can be used to incorporate prior information. Wong et al. [20] describe and compare
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(a) Source signals: Left, a harp; centre, a tin-
kling sound; right, extract from Beethoven’s
fifth symphony

Mixed signals
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(b) Left: Signals mixed with a random mixing matrix giving three output
signals. Right: Independent components from the mix. The characteristics
of the individual signals are clear,

Figure 1: Independent component analysis of music
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(a) Left: The same musical signals mixed with a random mixing matrix
giving three output signals, with Gaussian noise of mean 0 and variance 1
added. Right: Independent components from the mix. The characteristics
of Beethoven’s fifth are still visible.

Figure 2: Independent component analysis with Gaussian noise



(a) Source signals: Left, a harp; centre, a
tinkling sound; right, combination of harp
and tinkle
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(b) Left: Signals mixed with a random mixing matrix giving three output
signals. Right: Independent components from the mix; the harp and the
tinkle.

Figure 3: Independent component analysis of dependent components

(a) Source signals: Left, a harp; centre, the
square of the harp signal; right, Beethoven’s
fifth mixed with harp
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(b) Left: Signals mixed with a random mixing matrix giving three output
signals. Right: Independent components found by ICA.

Figure 4: Independent component analysis of dependent components



several algorithms for performing ICA, and compare them with principal component analysis. Zibulevsky
and Pearlmutter [21] describe a separation algorithm based on sparsity of time signals.

3 Cocktail party using power spectra

3.1 Roweis

Roweis [16]’s work focuses on refiltering—extracting a single speaker from the sample. One can repeat
this process as many times as necessary to extract all the speakers. This method requires training on the
individual speakers before they can attempt to demix, and only applies to separation of known speakers.
Roweis also uses heuristics—“cues” based on features of speech. Examples of generic cues include continuity
(nearby points are likely to belong to the same signal) and common fate cues (various elements such as
offset/onset which have common time variation). Speech-related cues include pitch estimation. In addition to
hard-coding these features, Roweis discusses the possibility of unsupervised learning of such things. Although
such methods could not be used on data which didn’t have any features of this type, it seems likely that
unsupervised methods could be used to learn features of types of data other than auditory, this is not
discussed.

The primary technique in Roweis’ system is the use of hidden Markov Models, trained from individual
speakers. The mixed speaker model, called a factorial hidden Markov Model, consists of a combination
of independent individuals. A key part of using this model is the observation that the log magnitude
spectrogram of a mixture of sources is very nearly the elementwise maximum of the original spectrograms.
This holds if the original spectra are fairly distinct; becoming less true as they overlap more.

3.2 Bach and Jordan

Bach and Jordan [3] describe an approach using a spectrogram, a redundant representation constructed from
Fourier transforms of sections (windows) of the time-frequency diagram. The idea is to take this spectrogram
and segment it into R disjoint subsets. Having done this, it is possible to find R signals such that each of
the R spectrograms corresponds to one of the signals. In general, there is no one solution, owing to the
redundancy in the spectrogram representation. The classical solution is to minimise the Ly norm. Bach and
Jordan adopt this solution without further discussion of its merits.

In order to perform the segmentation, a number of cues, of the kind described above, are used to construct
a feature map, which takes the same shape as the spectrogram. By combining cues, segmentation can be
performed effectively. Bach and Jordan describe how to build orthogonal affinity matrices based on these
feature maps in order to define a segmenter. Such matrices tend to be very large, so for computational
practicality it is necessary to approximate the matrix in some way.

This approach requires a quantity of training data taken from individual speakers Unlike Roweis’ ap-
proach, the individuals need not be the speakers whose voices will be heard in the mix.

Bach and Jordan’s method has some limitations—for example, it is necessary that speakers have distinct
pitches, and that one pitch shouldn’t be too close to twice another. The cues they use rely on the fact
that they are operating on speech—in other words some domain-specific knowledge is built in. It should be
possible to define sets of cues for other domains, and have the method work just as effectively. Although
their techniques only need one sensor, the segmenter needs training data to run—still, it’s to be expected
that we have to feed some kind of information in to get anything useful out. They don’t discuss how much
training data is needed to construct an effective segmenter. Of course, this can to some extent be written
off as a one-off cost, since the same data can be used for a whole series of similar separation problem.

Another limitation of Bach and Jordan’s work is that it only applies to the separation of two signals.
Because of the reliance on speech-related cues, it’s not obvious that this can be applied to more than two
sources by separating off one at a time. However, it may be possible to extend the technique to separate all
the speakers at once. They also assume ideal conditions, in particular, no noise. Various de-noising solutions
exist which can be pre-applied to the data, but as mentioned in the discussion of ICA, solutions which use
features of the data would be preferred.



Bach and Jordan’s methods are still computationally heavy and resource intensive—as an example, they
took thirty minutes to separate four seconds of speech on a 1.8 GHz processor, with 1GB of RAM.

Comparison These spectrogram models have the advantage of only requiring one sensor; important for
many real-life applications where several sensors may not be available. This advantage, however, is mitigated
by the fact that both require training on individual speakers. Bach and Jordan’s model, although it must be
trained on some set of speakers, need not be trained on the same speakers as it is attempting to distinguish.
Since human speech contains some random fluctuations, it seems likely that Roweis’ method should be
able to achieve some results given unknown speakers, especially if their voices are ‘similar’ to the known
speakers. Experimentation would be interesting—if the speakers are very different from the input, can
Roweis’ technique achieve anything at all? It seems possible that the model, based on distinct Markov
chains, would break down completely if a signal seemed to be “hopping” from one chain to the other. Roweis
implies that since his techniques can involve almost entirely unsupervised learning, and training data is
readily available, it is unnecessary to be concerned about this. Another shortcoming in Roweis’ model is the
use of the assumption that the log magnitude spectrogram of a mixture of sources is nearly the elementwise
maximum of the original spectrograms, meaning that the system fail to work if the speakers are tonally
similar.

Furthermore, both approaches rely to some extent on features which are specific to audio processing,
hence cannot immediately be applied to other fields. By defining equivalent feature sets it should be possible
to migrate the approach to the separation of, for example, astronomical signals. Roweis argues that a
“good” learning algorithm given sufficient data should be able to learn these cues, so that the method could
be extended to any field, given sufficient data.

Neither paper includes a great deal of quantitative test data, although both include figures showing the
systems at work. It would be interesting to see Roweis comparing different kinds of Markov model and
seeing what extent of similarity in the speakers can be tolerated, and how much the speakers can vary. As
discussed, there is also scope for more example data from Bach and Jordan. It would be interesting, too,
to see performance comparisons over different types of audio data—Roweis introduces his paper with an
analogy of many pianos playing, but mainly discusses speech. Could the cries of babies be distinguished?
The barks of dogs? As discussed earlier, extensions to other fields, both supervised and unsupervised, would
also be of interest.

3.3 Further work

Cai, Lu, Zhang and Cai [5] describe a method of feature extraction based on wavelets. They also mention the
use of principal component analysis on the frequency spectrum in de-noising. Godsill [7] discusses techniques
for Gaussian noise reduction and signal enhancement based on Bayesian computations using a Markov chain
Monte Carlo simulation. His techniques exploit the fact that the signal is highly non-Gaussian while the noise
is Gaussian. Smaragdis [17] describes an approach based on information theory, operating in the frequency
domain.

We can also compare these approaches to the human ear. Sitting at a dinner table, humans can usually
pick out one speaker from those immediately nearby. In speech separation problems, human processing is
able to use transition probabilities—the likelihood that one word will be followed by another—as well as
lower level cues [1]. It seems that humans also use cues similar to those described by Jordan and Bach. A
baby recognises its mother’s voice long before it learns the meaning of words. Like Jordan and Bach, humans
require training data.

4 Missing data

4.1 Gregory

In both the work of Roweis, and that of Bach and Jordan, a Fourier transform is used in moving from
a frequency-time representation to an energy spectrogram, against which a feature map can be matched.
In some cases, however, the traditional Fourier transform is impossible because there is missing data. An



Figure 5: The belief network corresponding to the fast Fourier transform [19]

example is an audio signal emanating from a scratched medium. Gregory [8] describes a technique (due to
Jaynes [13], in 1987) or estimating a Fourier transform with missing data, given prior probabilities. Jaynes’
technique is based on a Bayesian derivation of the Fourier transform. Gregory describes various extensions
to Jaynes’ work. He refers to Bretthorst’s work given strong prior information, and his own work on dealing
with systems with no prior data. If there is no known prior information then we must at least assume a
model; it is impossible to extract information from nothing. Gregory uses a family of histogram models to
detect signals of unknown shape, backing up his work with examples from astronomy.

Gregory does not set out to discuss missing or inaccurate data, but rather to describe the reformulation
of the traditional problem in Bayesian terms. Gregory’s paper is mainly an overview, and so does not
include details of the tests he refers to. However, he mentions several sets of results [9] [10] which seem to
demonstrate that Bayesian methods are effective for spectral analysis.

Gregory’s work does not say how well the system deals with noisy or missing data, although the as-
tronomical examples would suggest that he can handle at least some noise. The work is clearly broadly
applicable—he also mentions Bretthorst’s applications within NMR [4], and one can imagine that it can be
applied to any kind of signal. Gregory does not discuss the efficiency of his methods. In the next section we
describe a technique for handling missing data, specifically designed with efficiency in mind.

4.2 Storkey

Storkey’s treatment, also Bayesian, exploits the graphical structure of the Fast Fourier Transform (FFT),
treating the FFT graph (figure 5) as a belief network. Probabilities can then be propagated through the
network. Once again, we cannot analyse out of a vacuum. While the algorithms of Bach and Jordan or
Roweis require individual signals to learn from, here we require prior information about the likelihood of the
power spectra. There is no learning involved once we have these priors, and there is no domain restriction
for the application of the algorithms.

Given a stream of data and the priors, Bayes’ rule can be applied to estimate the likelihood of finding
a particular data point at a particular point in a stream. Jordan and Bach mentioned efficiency as an
important criterion in their analyses, struggling to find a balance between accuracy and efficiency. Storkey’s
graphical representation is intended to be efficient. He doesn’t go into detail about the theoretical accuracy;
the approach appears to work on real world data, but there is no discussion of borderline or pathological
cases.

The main subtlety in this approach is deciding on a suitable belief propagation technique, particularly
given that the graph contains loops. Storkey describes an iterative message-passing algorithm which he
asserts (with the support of tests) tends to converge fairly well in practice, although convergence cannot be
guaranteed. It is possible to resort to damping if the method doesn’t seem to converge.

Storkey does not go into theoretical detail about the limitations of his approach, but provides tests and
examples. In particular, because neighbouring nodes in the network are not in general directly connected to
neighbouring input or output data, continuity features of the data may not be picked up on by this system.
However, the approach worked well on some real world audio samples of laughter with missing data. Given
that this approach is intended to be fairly generic, it would be interesting to see it tried on examples other
than audio data—image data, for example, which contains different types of features. It may also be worth



trying to combine this approach with the feature map systems, considering whether there’s some way of
spotting a “gap” in a feature. If this were possible, it might help to compensate for the limitations of the
belief propagation methods.

Although the FFT has good scaling properties, Storkey mentions that the number of iterations needed
for the the belief propagation to converge depends on the data size, affecting the efficiency of the technique.
His investigations suggest that it does not scale badly, but more tests will be needed to determine the scaling
factors. He also recommends further investigation into propagation algorithms. Finally he suggests that
priors on phase information or Fourier coefficients could be investigated. Further work could also be done
on applying the technique to noisy data—estimating the likelihood of a particular point being erroneous, for
example.

Accurate estimation of priors is also important here. Storkey doesn’t discuss techniques for learning or
inputting priors. We assume that they can be decided manually, or learnt (unsupervised) from “clean” data.
It should also be possible to use the gappy or inaccurate data to learn priors—more useful in situations
where pure data may not be available.

4.3 Other work

Bayesian analysis using spectral priors is used in other cases where there is missing or potentially inaccurate
data. The JPEG algorithm uses the discrete cosine transform—a Fourier transform on an odd function. After
performing the DCT, the data is quantised, sometimes causing artifacts at decompression time. Storkey and
Allan [18] discuss how to use information about spectral priors on the quantised data to estimate the original
DCT coefficients. Atwal and Bialek [2] discuss the use of priors given noisy data.

5 Conclusions

5.1 Summary

We describe the ICA technique for performing separation of signals and explain why it is not optimal in some
cases. Inspired by nature, spectrogram-based approaches can be used. However, these techniques assume
a complete data set. We describe a technique for estimating the missing data when performing a Fourier
transform, based on Bayesian analysis. We also mention the use of Bayesian analysis in handling missing or
noisy data in other cases.

Accurate testing of separation work is difficult—what’s a quantitative measure of a recognisable speech
signal? However, visual observation of results can usually determine whether a method is working or not. It
is also possible to evaluate methods based on their applicability to other fields. ICA is generally applicable
anywhere where the key assumptions (independence, non-Gaussianity, appropriate mixing matrix) are rele-
vant. The separation techniques of Bach and Jordon and of Roweis (a) need training data (but if learning
is unsupervised, one can simply acquire the relevant training data and feed it to the algorithm) and (b) use
heuristics based on voice data; this could be extended to other fields by finding equivalent heuristics. One
could also consider the effectiveness of the techniques without the use of such cues. Roweis’ Markov model
might work, whereas Bach and Jordan’s algorithm relies on cues for separation. Storkey’s FFT algorithms
are generally applicable to anyone working with Fourier transforms. We describe a variety of applications
for Gregory’s Bayesian techniques.

5.2 State of the art and future work

Spectrogram-based approaches provide a good way of analysing signals. However, these approaches are
frequently resource-intensive. Storkey investigates an efficient approach to Fourier-based analysis with miss-
ing data. In general the best approaches to the separation problem involve domain-specific knowledge. In
the work described this takes the form of finding features in the data. Given sufficient data, unsupervised
learning technqgiues can be used to find good features so that pre-existing domain knowledge is not necessary.

Future work should investigate learning techniques for features and for spectral priors. Algorithms exist
which handle noisy data, but they focus on de-noising so are not generally applicable for missing or quantised



data. More work could be done on combining algorithms since it is often beneficial to perform the de-noising
or other analysis in combination with the signal analysis in order to make the best use of the available
information. Storkey’s or Gregory’s work on estimating missing data could possibly be adapted to estimate
the noise on the data. It might also be interesting to consider how Bayesian analyses of missing or noisy
data could be extended to the signal separation problem, although there isn’t a way of doing so directly.
Further work should also be done on improving the efficiency of algorithms such as Bach and Jordan’s, either
by finding more efficient techniques or by determining good approximating assumptions. There is scope for
creating new efficient algorithms such as Storkey’s. In a slightly different direction, it would also be possible
to investigate the extension of Storkey’s FFT algorithm to two or more dimensions.
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