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1 Introduction

Quantities of archived audio data exist in numerous
contexts; examples include radio recordings, record-
ings of concerts, home-made tapes. Some of these
may have been poor quality recordings, others may
have degraded over time or been damaged at some
point. We therefore consider techniques for improv-
ing the quality of audio data. Damaged data may
be noisy, clipped, poorly compressed, or have gaps or
clicks in the stream from damaged media.

There are some existing methods for doing this;
CD players commonly attempt resolution enhance-
ment; most audio editing tools include ‘noise removal’
functions of some quality. Various companies use pro-
prietary techniques to combine approaches, resulting
in effective noise removal. There is a wealth of cur-
rent research into audio restoration techniques, us-
ing techniques which range from simple interpola-
tions through statistical models to neural networks
and psychoacoustic analysis.

The nature of audio data is such that spectral
(frequency-domain) approaches are often appropri-
ate. I propose to extend existing techniques to form
a system based on the fast Fourier transform; the
graphical data structure which facilitates efficient al-
gorithms. By using conditional spectral priors based
on earlier states I hope to make use of temporal cor-
relations to improve on existing spectral techniques.

Archived data, particularly in formats such as au-
diotape, may suffer from decay over time. There is
therefore a clear application for an effective and ef-
ficient way of restoring large quantities of archived
data. At the same time, growing storage capac-
ities and reducing costs of technology mean that
more than ever home recordings are being made and
saved—possibly low quality, or in noisy conditions,
such as a video recording taken on a windy day by
a cheap digital camera. Widespread use of the inter-
net has created a niche for compressed audio and low
bandwidth transmission.

As well as practical applications, there will also

be research benefits: the efficient noisy FFT—which
can be used for a wide variety of applications besides
audio—, and the use of good prior representations for
audio data and error models. The techniques used
in the project will be extensible to other domains,
such as image restoration. The JPEG algorithm per-
forms a cosine transform on quantised datapoints.
Using spectral priors we can more accurately estimate
the original datapoints. Another audio application
is source separation, estimating the original signals
from a mixed signal. Fast and effective methods for
this problem are still lacking, as increasingly effective
techniques demand increasingly high computational
resources. Current techniques are typically limited
to perfect sources. Assuming perfect sources when
the truth is noisy results in separation into noisy
sources, while ideally we would like to remove the
noise as well as separating the signals. Beyond audio
applications, there are many other domains in which
a Fourier transform with noisy or missing data can
be applied: astrophysical data, image data, nuclear
magnetic resonance signals, and a range of other pe-
riodically varying signals.

2 Prior work

2.1 Audio restoration

Bayesian models Godsill and Rayner [10] give an
overview of Bayesian model-based approaches to re-
moval of clicks (in the time domain), hiss (in the fre-
quency domain) and other defects. These include the
popular Kalman filter [21]—based on a prediction of
later states from current states, Monte Carlo methods
such as the Gibbs sampler, the Wiener filter for hiss
reduction, and more sophisticated methods involving
the use of E-M in the interpolation of missing data.
Fong and Godsill [7] describe a way of exploiting
substructure in Monte Carlo techniques to improve
both efficiency and performance. Troughton [20] uses
Bayesian models with Monte Carlo sampling to re-
store quantised data. Godsill and Davy [6] describe
how to incorporate harmonics into a Bayesian model,
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and suggest that future audio restoration work could
make use of this information.

These statistical models give good results, but do
not handle non-linear distortion, for example clip-
ping. Godsill et al [9] touch on these in their gen-
eralised overview statistical model-based approaches,
describing the relevant models. Although their exper-
imental results on clipped and quantised data show
some improvement in the audio signal, they describe
the computational requirements as ‘prohibitive’ and
observe that they have had to make several simpli-
fying assumptions. Time-domain interpolations are
also not suited to filling in longer blocks of missing
data. [10] mentions an interpolation which operates
in the frequency domain and is suitable for filling in
longer blocks.

Neural networks Czyzewski [5] describes an ap-
proach to removing impulse noise based on learn-
ing a neural network. His approach uses two net-
works: one to detect the disturbances, and one to
recover the original data. The networks are trained
on both clean and distorted data. The disadvan-
tage of his approach is that training neural networks
is a time-consuming process, and distinct networks
must be trained—requiring a good body of training
material—for distinct classes of either audio signal
or impulses. Czyzewski develops the use of neural
networks further in [4], using the self-organising map
of Kohonen and a neuro-rough controller (one which
uses rough sets [13]—that is, creating approximations
of sets) to remove non-stationary noise. The com-
putational resources required for training remain an
issue. Cocchi and Uncini [3] describe a neural net-
work approach, operating in the frequency domain,
to interpolating large blocks of missing data. They
emphasize the advantages of non-linearity that neu-
ral networks provide. Their use of subband rather
than full-band analysis ameliorates the performance
difficulties somewhat.

2.2 Spectral approaches to audio data

As well as the spectral methods touched on above,
there are a number of other spectral techniques for
manipulating audio data. data. Simple examples are
filters which remove unwanted frequencies; hiss re-
moval is usually performed in the frequency domain.
Scott and Wilson [16] use a multiresolution Fourier
transform to restore audio signals. Their approach
relies on the existence of a target or prototype signal,
possibly employing (for example) musicians to give a
rendering of a recorded piece which is being restored.

Away from audio restoration research, there is
work on using spectral techniques to improve audio
analysis. This work could be incorporated into audio
restoration techniques. For example, Cai et al [2] use
various feature structure patterns to distinguish dif-
ferent types of audio signal. They also mention the
use of principal component analysis in the frequency
domain for de-noising.

Roweis [15] describes an approach to the source
separation problem using a factorial hidden Markov
model on spectrograms (a spectrogram is a repre-
sentation constructed from the Fourier transform).
Bach and Jordan [1] also use a spectrogram-based
technique to solve the same problem. However, their
methods are computationally heavy and resource in-
tensive, involving large matrix calculations.

Operating in the frequency domain therefore looks
like a promising approach. However, as well as the
issues of efficiency mentioned, the algorithms refer-
enced above cannot handle missing data. There are
algorithms such as the time-series interpolation al-
gorithms mentioned previously which could estimate
the missing data. However, errors have a tendency to
compound; it is likely to be advantageous to manage
missing data as part of a unified model.

There has been some work on using a Bayesian
derivation of the Fourier transform to estimate the
transform of incomplete data. Gregory [12] describes
a method due to Jaynes [14], using both systems
with strong prior information and systems where the
only prior information is in the choice of model. An-
other interesting approach is that of Storkey [19]: this
method is designed to solve the efficiency problems
mentioned above, and handle noisy data as well as
missing data.

Storkey’s technique is based on incorporating the
model directly into the Fourier transform, exploiting
the graphical structure of the efficient fast Fourier
transform algorithm. The work is tested on missing
data only, but should also be applicable to noisy data
of other kinds.

2.3 Conclusions

There are two common ways of handling audio data:
in the time-domain, looking at the time series of the
data, and in the frequency domain, using the Fourier
transform of the data. The two approaches have
strengths for different kinds of error. Current state
of the art techniques generally use a series of proba-
bilistic techniques each operating on either the time-
series or the frequency transform, aimed at removing
different kinds of noise. Good models for handling
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non-linear distortions, and estimating longer blocks
of missing data are still needed: some work has been
done into neural network approaches, but this have
strong computational disadvantages.

Spectral approaches are a promising way of han-
dling various types of audio restoration, in particu-
lar clipping and large gaps which are not handled by
the current time-series approaches. Beyond spectral
models specifically aimed at interpolation of missing
data, current spectral techniques for handling audio
do not deal well with the absence of datapoints, and
some struggle with inefficiency. Storkey [19] proposes
a way of incorporating the noise model directly into
the Fourier transform, making use of the structure
of the efficient fast Fourier transform algorithm. It
seems likely that this will provide an efficient and
flexible way of handling noisy audio data.

2.4 Extensions

Source separation A mixed signal can be viewed
as a single signal with added noise. This single signal
could be extracted from data using the noise removal
approach. This extraction could be repeated on the
remaining data until the correct number of audio sig-
nals had been collected, leaving only noise. The ef-
fectiveness of such an approach would depend on the
quality of the model; in particular the use of condi-
tional priors will be important in identifying a single
signal from several plausible ones.

Image data The above FFT approach can also be
applied to images. Storkey and Allan [18] have done
worked on reconstructing compressed JPEG images
using spectral priors for the cosine transform. The
work could be extended to use conditional priors.
Another extension would exploit the fact that image
data is inherently two-dimensional, and looking for
patterns in the data as a single string of datapoints
is sub-optimal. The belief propagation technique de-
scribed above could be extended to multi-dimensional
versions of the Fourier transform.

3 Methods

3.1 Data sources

I will need three forms of audio data. The first,
which is more readily available, will be damaged
archive data, in the forms described above. Ex-
amples used in the work of Wolfe([22],[9]) and
Godsill([10],[11],[7]) are available from their websites
(http://people.deas.harvard.edu/~patrick/research/,

http://www-sigproc.eng.cam.ac.uk/~sjg/springer/,

Figure 1: Fourier transform as belief network

http://www-sigproc.eng.cam.ac.uk/~sjg/clipping/

). The second, which enables more accurate quan-
titative testing, is undamaged data. While perfect
data may not exist, high quality audio files can be
taken from CDs. These can be damaged in artificial,
controlled ways. Finally, I will use synthetic data—
manually created examples of simple features which
we wish to explore, and more complex examples.

3.2 Models

I intend to explore approaches using different kinds
of model for the spectral priors and different kinds of
error model on the data. It will therefore be necessary
to write down a set of models which encode either
simple or more involved assumptions about both the
clean data and the errors in the data. The models
should also handle the cases where more than one
type of error has occurred, either in serial or parallel.

3.3 Core: Noisy FFT implementation

The fast Fourier transform can be viewed as a belief
network (figure 1). Values are assigned probabilisti-
cally to nodes and belief propagation techniques are
used to estimate the probability of values at unknown
nodes.

Belief propagation The chief issue in the FFT
implementation is the method of belief propagation.
The network defined by the FFT is not singly con-
nected which means that we cannot use exact propa-
gation methods. Storkey [19] used loopy propagation.
However, this has not been fully explored and suffers
from instabilities in certain cases. For simplicity I
propose to use a preconditioned conjugate gradient
approach. This is an exact optimisation technique
which is known to result in good approximations in
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reasonable time. Conjugate gradient methods [17]
are widely used and there are available implementa-
tions of both conjugate gradient methods and pre-
conditioners which I can use. Before starting work
on the project I will need to become familiar with
these techniques.

3.4 Baseline system

After writing and testing the core code to implement
inference in a FFT network, I will write code to ac-
cept audio data and uses the noisy FFT to try and
improve the audio quality using simple independent
Gaussian priors on the spectra.

3.5 Extended system

I will then extend the baseline system, relaxing the
assumptions of independence on the spectra, making
the priors conditional on the previous state (this has
some parallels with Roweis’ source separation work
using HMMs [15]). Next, the assumption of Gaus-
sianity can be relaxed. The choice of directions at
this take will be suggested by the evaluation of ear-
lier results; following the typical cycle of using an
error analysis to decide on the next step to take on
improving the system. It will be necessary to ensure
a broad range of coverage of types of data, types of
damage, and choice of models.

3.6 Outputs

The primary output of the system will be the mod-
ified audio data. I will also record analyses of how
the files were modified and the extent of the modifi-
cations.

3.7 Design

The core noisy Fourier transform code is time-critical;
this is likely to be the bottleneck in the system. I
therefore propose to use C for this part of the project.
For the rest of the code I propose to use Matlab,
which will allow simple and compact representations
of the data and mathematical operations. C and Mat-
lab are straightforwardly interoperable. I will need
to design the Matlab system so that audio files can
be partially read in and computations performed on
‘windows’ of data; memory requirements will other-
wise become an issue for large files.

Good software engineering practice will be vital
in keeping to timetables. The project is suited to
the waterfall method of development; fully designing,
building and testing each stage before proceeding to
the next stage.

4 Evaluation

Given an imperfect or damaged representation of an
audio signal, we will attempt to reconstruct the orig-
inal signal. Evaluation takes the form of measuring
how close our reconstruction is to the original, com-
pared with the damaged signal. I also proposed that
we could perform this transform efficiently. It will
therefore be necessary to measure the performance of
the system. Finally, the results should be compared
with those produced by existing methods.

There is no need to use complicated evaluation
methods. I will define a small number of simple mea-
sures and heuristics, which coupled with the quali-
tative measuring should give a fair estimate of how
well the system is doing. Canazza et al [8] give an
overview of some audio evaluation methods, using
factor analysis with subjective testing to determine
which errors are most disturbing to humans.

4.1 Undamaged and synthetic data

If there is an authoritative form of the data, then we
can define evaluation measures which compare the
‘repaired’ data with the undamaged data. For exam-
ple, we could simply compare the values of the data-
points, both in time-space and in Fourier space, and
compute the mean-squared error. Another possible
measure is the signal-to-noise ratio.

The focus of audio restoration is on making a signal
clearer to humans, and our error estimates should re-
flect this, for example by penalising errors more heav-
ily when they are compounded close together. An iso-
lated erroneous datapoint among accurate datapoint
would hardly be detectable and barely needs penal-
ising. In Fourier space, measures can also take into
account that some frequencies are less detectable by
humans than others. Wolfe and Godsill [22] employ
a cost function to incorporate perceptual information
into their model. Similarly, cost functions can be in-
corporated into the error model.

We can also compare Fourier space features in the
undamaged and the ‘repaired’ data. Roweis [15] de-
scribes continuity features, common fate features (el-
ements such as offset/onset with common time vari-
ation), and speech related features such as pitch es-
timation. Harmonic frequencies should travel along
with their major chord.

Finally, the heuristic and qualitative evaluation
measures used below will be vital in sanity-checking
and supplementing these measures.
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4.2 Damaged data

Heuristics to estimate ‘goodness’ of audio samples
will include features similar to those described above.
Qualitative testing along with examination of the
data can be used to suggest other heuristics, using
the undamaged data to test them. I will aim for a
broad coverage with these heuristics; it should be the
case that if an audio file scores highly on this heuristic
testing it does actually sound good.

All tests should also compare the repaired data
with the original damaged data; it’s no good having
a wonderful rendition of the Moonlight Sonata if the
original file was the Spice Girls’ Wannabe. In general
we can assume that most of the points in the original
file will not vary much.

Perhaps the most important evaluation measure in
an application to make audio data ‘sound’ better will
be qualitative testing: listening to the results and de-
termining ‘how they sound’. Several second opinions
will be useful; I will enlist other humans, asking them
to scale how ’good’ the cleaned audio sounds, and
average the results. It will also be important to get
specific comments on which of the remaining errors
are more noticeable. As well as being informative in
itself, this kind of human-based testing alongside the
above testing will help justify the choice and imple-
mentation of quantitative measures.

4.3 Models

The outputs can only be as good as the models. Part
of the evaluation will report which models are more
effective on which kinds of data. This will mean eval-
uating the results of different models on the data. For
the synthetically damaged data, the correct model
will be known; for the rest we will have to estimate.

4.4 Efficiency

Performance measures include cpu usage, running
time, memory usage. While I will comment on mem-
ory usage, I will focus on speed. I will consider the
running time for variously sized files and error models
on a fixed machine, and comment on the feasibility
and the comparison with previous tests (taking into
account the specifications of the relevant machines).

4.5 Comparison with other methods

In order to determine whether the system is practi-
cally useful or not, we should compare it with other
solutions of the same problem. The samples available
on the websites of Springer and Wolfe include the re-
stored versions. I can compare with these, comment-

ing on both speed and effectiveness. The broad cover-
age of the evaluation measures is vital here, and it will
be important to use the qualitative, human-based,
testing for these comparisons to justify any claims
of ‘better’ performance suggested by the quantitative
evaluation. I will also compare with published results
in the papers I have described above.

5 Further work

Two extensions to the system could be made if the
project moves along unexpectedly fast. It is unlikely
that there will be time to implement these extensions.

We can use the core system to perform noisy source
separation, extracting one signal at a time. Similar
sets of priors can be used. The same set of evalua-
tion metrics are appropriate, evaluating each output
against each input.

The core system could also be used to accept im-
age data. Similar Matlab code to that which reads in
the audio data would read in image files and pass it
to the FFT code. The choice of priors would need to
be modified to model image data, although the base-
line system of independent Gaussian priors would be
much the same. An extended version of the core,
handling two-dimensional Fourier transform could ex-
ploit the two-dimensional nature of images. These
image restoration systems would use a similar set of
evaluation metrics, but a different set of heuristics.

6 Resource requirements

I will need sufficient storage for a comprehensive col-
lection of audio data. In order to process large num-
bers of audio files it will also be necessary to make use
of considerable cpu and memory resources. I will have
access to several clusters of machines in the DICE
system. I will also need several people to perform
qualitative testing.

7 Deliverables

From the above, the following list of deliverables can
be extracted. I do not reiterate the details.

• Tested noisy FFT core code.

• Tested baseline system for improving audio data.

• Tested improved system for improving audio
data, using non-Gaussian and conditional spec-
tral priors.

• A report on the work (dissertation), including
an evaluation of the system on different types of
damaged data.
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2. Core noisy FFT code
3. Baseline system
4. Improved system
5.Full report on the work

MILESTONES:

1. Understanding of related issues. Suitable store of data

Week  1:  May 30−−June 3

Week  2: June  6−−June 10

Week  3: June 13−−June 17

Week  4: June 20−−June 24

Week  5: June 27−−July 1

Week  6: July  4−−July 8

Week  7: July 11−−July 15

Week  8: July 18−−July 22

Week  9: July 25−−July 29

Week 10:  Aug  1−−Aug 5 

Week 11:  Aug  8−−Aug 12

Week 13:  Aug 22−−Aug 26

Week 12:  Aug 15−−Aug 19

Amassment
of data

Mastery of
techniques

Coding and
testing core
system

Coding and
testing
baseline
system

 Extending
 baseline
 system Writing

up
Evaluation
and collation

of results,

suggestion
of
further 

approaches

1

2

3

4

5

Figure 2: Work plan

8 Workplan

Figure 2 shows the timetable for the work, with mile-
stones corresponding to the preliminary work and
deliverables marked on it. The waterfall nature of
the bulk of the system can be clearly seen, with the
writeup running alongside. We allow some flexibil-
ity in the final module in the system, using feedback
and error analyses from the earlier results to sug-
gest directions for later work to take. I expect to be
continually improving both the system and the error
models at this stage.
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