
Bayesian learning for cooperation in multi-agent
systems

Mair Allen-Williams and Nicholas R Jennings

Abstract Multi-agent systems draw together a number of significant trends in mod-
ern technology: ubiquity, decentralisation, openness, dynamism and uncertainty. As
work in these fields develops, such systems face increasing challenges. Two partic-
ular challenges are decision making in uncertain and partially-observable environ-
ments, and coordination with other agents in such environments. Although uncer-
tainty and coordination have been tackled as separate problems, formal models for
an integrated approach are typically restricted to simple classes of problem and are
not scalable to problems with many agents and millions of states. We improve on
these approaches by extending a principled Bayesian model into more challenging
domains, using heuristics and exploiting domain knowledge in order to make ap-
proximate solutions tractable. We show the effectiveness of our approach applied to
an ambulance coordination problem inspired by the Robocup Rescue system.

1 Introduction

As computing power and ubiquity increase, the use of multi-agent technology in
large distributed systems is becoming more widespread. For example, sensors are
often now included in new buildings or vehicles. When these sensors are able to
sense intelligently and communicate with one another, they form a multi-agent sys-
tem Beyond sensing, mobile sensors may be able to make inferences about a sce-
nario such as a terrorist attack or a flood, and provide human teams with uncertainty
estimates and suggest actions. In situations where a human would be at some risk,
intelligent communicating machines may be deployed—for example, thousands of
UAVs (unmanned aerial vehicles) can collaborate to search over a wide area [32], or
robots may also act as intelligent agents, aiding or replacing humans to perform a co-

Mair Allen-Williams, Nicholas R Jennings
School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK.
{ mhaw05r, nrj } @ecs.soton.ac.uk

1

2 Mair Allen-Williams and Nicholas R Jennings

ordinated search of a burning building [33]. Consequently, as such systems develop,
the scalability of complex interacting systems becomes increasingly important.

In more detail, an autonomous agent is an entity which makes local perceptions
within an environment and processes these perceptions in order to decide how to
act on that environment, based on some internal goals. When many such agents are
acting within the same environment then the actions of one can affect the percep-
tions of others. This is then the essence of a multi-agent system and the reason why
cooperation is essential to its effective operation.

In order to provide a focus, and to motivate this work, we will consider the dis-
aster response domain as an example multi-agent system. Disaster scenarios form
rich grounds for multi-agent distributed problem solving, allowing us to explore sev-
eral features of complex multi-agent problems. While there are many characteristics
which may be present in disaster scenarios, we will find that there are two common
themes: uncertainty, and coordination.

The first of these, uncertainty, may concern the environment (“What’s going
on?”) and the agent’s position in the environment (“Where am I?”); it may be about
any other agents which might exist in the environment (“Who else is around? Where
are they?”) and their behaviour (“What are they going to do?”). In these uncertain
situations, each agent must do some form of discovery to determine the essential
characteristics of the scenario, including the agent’s collaborators, before and along-
side directly working to achieve its goals. This discovery phase in a multi-agent
system is tightly linked with the presence of other agents in the system. As well as
determining which other agents are present, agents may be able cooperate to search
over different regions, sharing information with each other as appropriate.

In addition to explicitly sharing information, observing the behaviour of the other
agents allows an autonomous agent to make inferences about the system. For exam-
ple, in a scenario involving a burning building, a rational agent will not enter the
building (although a specially designed robot or one which believes itself to be ex-
pendable may). Beyond discovery, there will continue to be interaction between the
agents in a multi-agent system, whether explicit via communications and negotia-
tions, or implicit through activity. Moreover, achieving some subgoals may involve
a collaboration between several agents, as in a rescue operation where two ambu-
lance members are required to carry a stretcher, or a driving team with a navigator
and a driver.

Now, this general problem of taking others into account, coordination, is the
second key issue we have identified for multi-agent systems. In uncertain or open
systems, fixed protocols for coordination must function against a background where
agents are not fully aware of the situation; that is, their environment, the resources
available to them, or the behaviour of the other agents. The negotiation of coordi-
nated behaviour in such systems is intertwined with the discovery phase, as agents
interact with one another, perhaps cooperating to determine properties of the situa-
tion.

In order to achieve such a comprehensive model for planning and acting, we
have built on existing techniques for cooperative decision making under uncertainty.
Now, the inherent dynamism in many of these problems calls for timely online re-

Bayesian learning for cooperation in multi-agent systems 3

sponses, rather than offline computation of strategies. For partially observable multi-
agent problems, recent work has advanced the state of the art for finding offline so-
lutions in systems of stationary agents, with solutions in systems containing at least
fifteen agents (where previously the maximum was five or six) [23]. Building on
this, we describe a related online approach which is suitable for complex dynamic
systems with mobile agents, and also scales to tens of agents.

Our algorithm explicitly models other agents, demonstrating a principled ap-
proach to cooperative behaviour in uncertain and partially-observable multi-agent
systems. Through empirical evaluation, we show that our approach, using learned
finite state machines to approximate the behaviour of others, is more efficient than
other principled approaches [14] and more effective than a state-of-the-art hand-
written strategy for the same scenario. In practical terms, this algorithm could be
directly deployed in systems such as collaborative mobile sensor networks or for
UAVs sharing a distributed search. In more human-led systems, such as a disas-
ter response, we anticipate that communicating sensors in both fixed networks (for
example, in buildings) and hand-held applications could suggest actions or action
sequences to human participants. While in the future we expect that robot teams
will be able to become increasingly autonomous with valuable contributions to such
scenarios, in this Chapter we think it best to consider our ‘agents’ to be computer-
advised humans.

Over the next sections, we provide a detailed background to our work (Section 2)
and motivate a cooperative approach using finite state machines to model agent be-
haviour. In Sections 3 and 4 we describe this approach in detail. In order to validate
our model we test it on a problem taken from the disaster response domain. Section
5 describes this problem and Section 6 compares the performance of our algorithm
with previous approaches to partially observable uncertain systems. In Section 7 we
conclude and describe directions for future work.

2 Background

In this Section we introduce the ideas which we will use in our algorithm, explain-
ing the way in which the multi-agent approach to partially-observable systems is
developed from single-agent decision theory, and justifying the decisions we have
made at each step. First, however, we introduce the disaster response domain as a
motivation for this work and identify its key characteristics.

2.1 The disaster response domain

We ground our work in the disaster response domain. After a disaster such as an
earthquake or a flood, the immediate situation and its environmental properties are
typically unknown to the rescue teams, and the complete situation cannot be atomi-

4 Mair Allen-Williams and Nicholas R Jennings

cally observed by a single agent. Rescue teams may come from different regions but
all must collaborate to search the area and rescue any disaster victims in a timely
fashion. However, communication lines may be unavailable or restricted so that this
collaboration is necessarily implicit or based on short one-way communications.

In more detail, we find that taking disaster response as our focus domain drives a
particular interest in collaborative multi-agent domains which include the following
properties:

Decentralisation: In these large and dynamic systems, providing a central con-
troller is likely to be infeasible. Firstly, there are unlikely to be sufficient re-
sources to allow communications between one central controller and every other
node. Secondly, one central controller is almost certainly not going to be able to
obtain a complete view of the system, and the potentially rapid changes as agents
enter and leave the system would be difficult to track.

Dynamism: Realistic systems are rarely static. For example, in disaster recovery
agents must adapt to changing weather conditions, any aftershocks, and unex-
pected events such as building collapse or fires. When taken together, this can
lead to a very dynamic environment.

Partial observability: Along with decentralisation, it is likely that no one agent is
able to see the complete system all the time. Although communication between
agents may extend a particular agent’s view of the system, the agent must con-
tinually make judgements based on an incomplete view.

Bandwidth-limited: Limited communication is a characteristic common to disas-
ter scenarios—for example, mobile phone networks often become jammed [24],
or time constraints can limit opportunities for communication. Thus, agents may
be able to exchange some information, but both time and bandwidth restrictions
will limit these exchanges.

Openness: The rescue agents are likely to be entering or leaving the disaster scene
throughout the rescue operation. Agents may be harmed at the scene and thence-
forth be out of action, while new agents may arrive late. A collaborative model
in a disaster response scenario must therefore be able to adapt to the continual
arrival and loss of agents.

Example 1 describes an earthquake scenario having many of these features.
Keeping these driving forces in mind, we begin with a description of the most
straightforward of this class of dynamic problems, the single agent observable
Markov Decision Process (MDP) (Section 2.2.1). Building on the single agent MDP,
we will generalise to partially observable (Section 2.2.4) and multi-agent environ-
ments (Section 2.3), discussing means of coordination among agents. We will not
discuss open systems in detail until the final Section (Section 7).

Bayesian learning for cooperation in multi-agent systems 5

Example 1 Earthquake scenario
An earthquake has damaged the small town of Tameugny (Figure 1), including its hospital and am-
bulance fleet. Buildings are still collapsing and there may be aftershocks (dynamism). Ambulance
teams from nearby towns converge on Tameugny, travelling through the damaged streets searching
for hurt victims among the rubble (partial observability). Although the ambulance dispatch stations
are able to communicate with one another, once the ambulances are on the road to Tameugny, they
find the communications networks are blocked (bandwidth limitations). They must therefore make
decisions independently (decentralisation), leaning out of their windows to warn other ambulance
drivers about damaged roads, exploring parts of town not yet marked by emergency services’ red
and white tape, or going to the aid of ambulance teams working in particularly damaged areas,
such as a collapsed office building. They also need to learn about the capabilities of ambulances
from other towns, who may be equipped differently or even have different goals—one apparent
ambulance turns out to be a concealed news team. As the ambulances come and go, the system is
open.

Fig. 1 Tameugny, after an earthquake

2.2 Single agent decision making

We begin with an introduction to decision making processes for a single agent act-
ing in a dynamic environment, going on to explain how the agent can learn about
uncertain environments via reinforcement learning, and introducing Bayesian rein-
forcement learning. We then extend these decision making techniques into partially
observable environments, again using Bayesian techniques.

2.2.1 Markov Decision Processes

In this most basic model, the agent perceives the state of the world through its sen-
sory inputs, and decides on its immediate action based on this state. Following the
agent’s action, the world transitions into a new state, and the agent may receive some

6 Mair Allen-Williams and Nicholas R Jennings

reward. This model forms the basis of Markov decision theory [36]. The fundamen-
tal feature of this theoretical model is the assumption that the immediate next state
is dependent only on the previous state and choice of action—this is the Markov
property. Although the Markov property may not fully hold, it is often a sufficiently
good approximation, and techniques which use this theory can get good results. This
is demonstrated by many practical examples [18] [35] [2]. With the Markov assump-
tion, if the models describing the transition and reward probabilities are completely
known to the agent then the system can be solved, using a pair of recursive equa-
tions [36] which determine the optimal action from each world state. These are the
Bellman equations. For large systems, there are efficient ways of approximating
these solutions—we do not go into these here, as we will not be dealing with known
MDPs, but refer the interested reader to [36], Chapter 9.

2.2.2 Reinforcement learning

Example 2 Rescue worker in the old people’s home
A lone rescue worker searches Tameugny’s old people’s home after the earthquake. As she works
her way up the building, she takes increasing care how she treads, not knowing what structural
damage the earthquake may have caused—the environmental dynamics are uncertain. Some parts
of the building were more heavily populated than others—the dining area was full of both elderly
and waiters; most of the bedroom wings are almost empty, but the Violet Wing was being cleaned
by a team of a dozen cleaners. The rescue worker does not initially know how the building was
laid out or which areas were most crowded, and must discover this as she makes her way through
the building.

When there is uncertainty about the aforementioned models, as in Example 2, the
agent can learn the optimal actions through experimentation. To this end, reinforce-
ment learning techniques, such as Q-learning, TD(λ) and SARSA [36], provide
techniques for the agent to do this. There are two types of learning: model-based
or model-free. In the former, the agent aims to learn the system model, in this case
the underlying MDP, and then solve that model (using the Bellman equations, as
above) to decide an action. In the latter, the agent learns a direct mapping from the
state to the optimal action. Model-free learning typically involves simple updates at
each step and is consequently often more efficient for one-off problems. However, in
comparison, model-based methods can be used to carry out many simulation steps
alongside each real-time step, taking advantage of otherwise idle cpu cycles in rel-
atively slow-progressing problems. Another advantage of model-based methods is
the ability to bias the system towards a particular real model, using domain knowl-
edge. Models or parts of models can also be re-used in different problems. Given
this, we will focus on model-based methods particularly because of these two prop-
erties: in scenarios such as disaster response we will have initial beliefs about the
system based on the domain or similar disasters and would like to incorporate those
beliefs into our solutions.

Bayesian learning for cooperation in multi-agent systems 7

2.2.3 Bayesian reinforcement learning

In particular, we focus on Bayesian model-based learning. By comparison to most
model-based learning methods, which maintain a point estimate of the models, a
Bayesian learning method will maintain a probability distribution over all possi-
ble models, in the form of a belief state. This provides a principled solution to the
exploration-exploitation problem (Example 3): the decision an agent has to make
between taking the action it currently believes to be optimal, and taking an ex-
ploratory action. In general, the more certain the agent is about its current model, the
more likely it should be to take the currently optimal action. The Bayesian model
pins this intuition down precisely.

Example 3 Exploration-exploitation in the Tameugny earthquake
The river Tam runs to the East of Tameugny. As ambulances rush in to the rescue from the east,
they find that the earthquake has also destroyed several of the bridges across the river. An ambu-
lance arriving at the riverside early after the disaster is able to learn over the radio that there is
a bridge still standing two miles downriver. However, there is no data about the bridges upriver.
The ambulance driver knows that there is a bridge only half a mile away, if it is still standing, and
another a mile and half away, but then no more bridges for five miles. The decision the ambulance
driver must make about whether to travel in the uncertain direction, or head straight for the bridge
which is known to be standing, is an example of an exploration-exploitation problem.

2.2.4 Partially observable Markov Decision Processes

Now, reinforcement learning, combined with the Bellman equations, will allow a
single agent to solve any observable MDP which comes its way. However, although
MDP models will form the basis of our environment, in large or complex scenarios
it is common for an agent to make local observations which allow it to form infer-
ences about the current state (Example 4), without observing the complete state di-
rectly (although in multi-agent systems, local observations may be augmented with
communicated information). When the underlying process of moving from global
state to global state is still (assumed to be) Markov, the scenario is described as a
partially observable Markov decision process, or POMDP, and there are a host of
POMDP-solution techniques.

Example 4 Partial observability in the Tameugny earthquake
Two Tameugny ambulances which survived the earthquake immediately swing into action. How-
ever, beyond the strength that they felt the earthquake to be, they have no idea of the scale or the
detail of the situation. Elsewhere, as an office worker runs from a crumbling building, an approach-
ing ambulance calls out to ask how many people were in the building—the answer (an estimate) is
information which will remain local to that ambulance until much later. In other parts of town, other
ambulances will have their own local information. However, the big picture will not be completed
until much later on, if at all.

8 Mair Allen-Williams and Nicholas R Jennings

For example, when the underlying environmental model is known, the POMDP
can be converted to a continuous Markov decision process by defining a belief state
as a probability distribution over states. The resulting continuous MDP, from belief
state to belief state, can be solved using exact algorithms [7] or using approxima-
tions to make computation easier [3], [20]. If the underlying model is not known,
learning techniques must be used to refine a solution as the agent explores the sys-
tem. Model-free approaches, such as [1], have had some success in using learning
techniques to solve POMDPs. However, as discussed, we believe that model-based
approaches may again have benefits—for example, [34] demonstrates a model-
based algorithm which uses variable length suffix trees to address the fact that even
if state transitions are Markov, the observable process may not be. However, exist-
ing approaches rely on a number of approximations and assumptions about the state
space, hence are not entirely satisfactory. A principled approach may be to extend
the Bayesian model described previously into partially observable domains [30].

2.3 Coordinated decision making

Above, we have discussed agents reasoning about their environments. However, as
well as reasoning about their environment, agents in a multi-agent system will be
interacting with each other (Example 5). This interaction can be modelled by defin-
ing a (hyper)sphere of influence for each agent within the environment. Overlapping
spheres of influence indicate interactions between agents [41]. A model of how dif-
ferent spheres interact will form a part of the agent’s model of the system, as will
models of the behaviour of the other agents. Making decisions in the context of
these other agents is the fundamental principle of coordination [12]. Clearly, this is
a central part of a reasoning agent in a multi-agent system. Thus, in the following
sections we expand on how agents can reason about the behaviour of others and
incorporate that reasoning into their own behaviour.

Example 5 Ambulance traffic at the the Tameugny earthquake
Consider again the ambulance driver arriving at the River Tam after the Tameugny earthquake. If
he is the only ambulance approaching the scene, he may choose not to take the risk of having to
travel many miles upriver, and head straight for the bridge which is known to be standing. However,
if he knows that there is a fleet of ambulances following him, he may choose to head upriver so
that he can (subject to communication networks functioning) send back data about the status of
the bridges to later ambulances, enabling them to update their model without the travel costs. He
might also consider that if all the ambulances were to head for the one bridge, a traffic jam would
form there, perhaps wasting precious time.

Perhaps the simplest example: agents functioning in uncertain worlds among
other agents may include others’ behaviour in the Markov state transition model
they develop. However, by doing this they may form inaccurate assumptions about
the world, as agents adapt their behaviour to one another. Consequently, maintain-

Bayesian learning for cooperation in multi-agent systems 9

ing models of the world and of other agents separately provides greater flexibility
and may enable the agent to reuse a world model as agents come and go, or reuse
models built for known agents in fresh scenarios. Below, we outline three common
ways in which agents may develop and use models of the world to coordinate.

2.3.1 Coordination mechanisms

Three, potentially overlapping, coordination mechanisms are identified by [4]: con-
ventions, communication, and learning (Example 6). Firstly, conventions are typi-
cally the simplest form of coordination. In a convention-based coordination system,
there are a number of assumed “social rules” describing ways for agents to interact
when they are aware of other agents. Coordination by convention is typically sim-
ple, scalable and requires no setup time [16]. However, it is inflexible, and relies on
all participants knowing the conventions and complying with them. More complex
models using conventions include role-based structures [37] and self-organising
structures [39]. Secondly, communication is used for coordination in many kinds
of system. Coordination through communication has a small setup time and some
bandwidth costs. In most large systems there will be some form of communication in
order to share information between agents; it will be impossible for any one agent
to sense all the information it needs to function effectively in context [13]. How-
ever, we expect to make limited use of communication beyond information-sharing,
as the bandwidth and timeliness constraints will typically preclude it. Finally, it is
possible to extend single agent learning into the multi-agent domain. The uncertain-
ties of our target domain make learning techniques a natural approach to problems
within this domain. Learning techniques enable agents to evolve coordinated polices
within uncertain state spaces, either with a group of learners exploring the space and
converging towards an equilibrium (as in [10] and [22]), or by one agent explicitly
learning about the behaviour of others in order to adapt its own appropriately [8].

Example 6 Coordination mechanism examples
Consider the ambulance drivers approaching the Tameugny earthquake. They can use all three of
the above coordination mechanisms:

• By convention, they will drive on the left hand side of the road; they will use sirens to indicate
their approach; they will rescue the elderly, the mothers and the children first.

• They will communicate with the other ambulance drivers, calling things like “road’s gone up
there”, “I think someone needs to check out the North-East of the town”, “We need three more
people to help lift here”. By convention, sirens also communicate with others.

• As they work with other ambulance teams, they will learn which teams need the most help,
which areas of the city have been searched, and how a particular team tends to operate (for
example, whether they use one-two-lift, or one-two-three-lift)

10 Mair Allen-Williams and Nicholas R Jennings

2.3.2 Game theory

Distinct from the three approaches to coordination identified above, another research
domain which investigates coordination from a theoretical angle is game theory
[21]. In game-theoretic formulations, agents model the scenario as a game and try
and derive, either through exact evaluation or through learning, a best response to
the strategies of the other players in the game (Example 7). If all the players itera-
tively keep playing best responses, and if strategies are mixed (stochastic) the play
will converge to a (mixed) equilibrium, in which every player’s strategy is a best
response to every other player. One of the challenges of game theory is to direct the
play so that convergence is not just to any equilibrium but to an optimal one [10].

Within the domain of game theory, the form of multi-agent learning in which
the agents maintain explicit models of the other agents is described as learning in
stochastic games. One effective approach to extending single-agent reinforcement
learning into this setting is the win-or-learn-fast (WoLF) approach: an agent’s learn-
ing rate is adjusted according to its current performance, without explicitly mod-
elling the other agents [5]. However, WoLF techniques can be improved upon by
using a Bayesian model in which agents maintain beliefs about the behaviour of the
other agents, as well as a probability distribution over world models [8]. The need
for heuristically determined learning rates is then eliminated, while prior informa-
tion about agents can be incorporated.

Game theory is an obvious model for scenarios with heterogeneous and compet-
itive agents, but searching for the optimal Nash equilibrium is also a useful formu-
lation for cooperative problems. WoLF and related approaches are often applied in
such problems, with each agent gradually adjusting to the others so that the whole
system is incrementally improved. Although there is no guarantee that the optimal
equilibrium is found, the technique is effective, and in large problems it is often
sufficient to come up with a “good” solution rather than the optimal solution.

2.3.3 Integrated learning and coordination

Considering these coordination techniques in the light of our domain requirements,
we believe that “acting” and “coordinating” in uncertain systems should be com-
pletely integrated. That is, rather than use an explicit coordination layer, agents
should include their beliefs about other agents’ behaviour in their action selection
mechanism, and adjust their own action according to their beliefs about the other
agents. By doing this, agents can smoothly make decisions about coordinated ac-
tions. Moreover, we believe that such an integrated approach should be based on
sound theoretical principles, allowing us to reason about the behaviour of agents.
In uncertain and dynamic domains, this motivates the use of multi-agent learning
models, since these provide a basis for such coordinated action selection and are
designed for uncertain domains. Furthermore, although in large domains it may
be impractical to learn a complete solution in real time, we have explained that
learning methods can be used on top of other coordination mechanisms to pro-

Bayesian learning for cooperation in multi-agent systems 11

Example 7 Game theory in Tameugny
Twin boys are standing near the old people’s home when the rescue workers leave it with all the
survivors. During the rescue several parts of the building have collapsed, and more may go at any
moment. The boys know that they can dart into the building to loot it for jewellery, but if they do,
that will be the signal to the rest of the gang to join them. If the rest of gang are not put off by the
risk of building collapse, they will surely all want to join in and claim some of the spoils—greatly
increasing the risk of building collapse for all. The twins must decide how likely the others are to
follow them in their dash into the building before deciding to make it. A possible set of outcomes
for the game is summarised below. In fact, each outcome is associated with some probability and
the twins will make their decision by considering all probabilities.

Outcome for the twins:
Twins

Loot Don’t Loot
Gang Loot BC; -100 S; -20

Don’t Loot J; 100 0

Outcome for the gang:
Twins

Loot Don’t Loot
Gang Loot BC; -100 J; 15

Don’t Loot 0 0

Outcome Buildingcollapse BC =−100

Outcome Jewellery 10 < J < 100

Outcome Losso f status S =−20

vide adaptability on top of known conventions or communication languages, to se-
lect between coordination mechanisms, or to use learning for some subproblem.
We therefore explore the application of multi-agent learning models to dynamic,
partially-observable domains. Finally, we observe that within model based learning
it is sensible for agents to maintain models of the other agents separately from the
environment, as these models need not be treated as Markovian. Therefore, the game
theoretic paradigm, computing “best responses” to agents within their environment,
is appropriate and more flexible than treating other agents implicitly.

2.3.4 Learning models of other agents’ behaviour

Given the aim of learning models of the environment, we have previously discussed
reinforcement learning. However, learning about other agents’ behaviour is typically
a different kind of task from learning about the environment. In a fully observable
domain with the Markov assumption, the optimal action will only ever depend on
the current state. Therefore, agents can learn simple models of the strategies of the
other agents, using multinomial distributions over actions (one for each state) and
updating these distributions either using a simple frequency count or using Bayes’
rule. In the situation in Example 7, this may mean the twins observing the state
(Home empty, Gang in alley) and deciding to loot, or observing the state (Home
empty, Gang at head of alley) and deciding not to risk it. This is known as fictitious
play [17]. Conversely, in scenarios where the full state is unknown to the agent,
simple fictitious play is not appropriate. Each agent may have knowledge of the

12 Mair Allen-Williams and Nicholas R Jennings

environment and a model of the current world state—but this is not sufficient to
respond optimally to the other agents. In a rescue scenario, some rescue tasks require
several agents, and so the agents must come to the same conclusions about when
these tasks are approached. If agents have differing views of the situation, they may
not make the same decisions about urgency, resulting in an ineffective dispersal of
agents. In Example 7, the twins may believe mistakenly that the gang will realise
how unstable the building is, and thus expect the gang to take more care than it does,
or they may not know how desperate one of the gang is for cash.

In principle, each agent can maintain and update a POMDP in which the un-
known POMDP “state” includes the world state, the other agents’ world models,
and behavioural models for the other agents. In practice, it is not tractable either to
update such a model or to determine a best response within it without performing
some approximations—for example, projecting just a small number of steps into the
future, and using a domain-specific heuristic to estimate the values of those future
states [14]. Even this heuristic approach relies on each agent being able to predict
the computations of the other agents—each must be initialised with the same ran-
dom seed. A different approach to approximation is to restrict the possible opponent
strategies to those which can be described by regular automata, often called finite
state machines or finite automata.

2.3.5 Finite state machines

An agent controlled by a finite state machine has a number of internal states, each
associated with an action (or a probability distribution over actions)—this tells the
agent how to act when it reaches this internal state. After taking an action, the agent’s
observations determine its movement to a new internal state. The finite state machine
captures the notion that an agent’s beliefs can be approximated, for the purposes of
decision making, by a variable but finite sequence of past observations, and exam-
ples such as [38] [6] demonstrate that it can be very effective. Furthermore, approx-
imate best responses to finite state machines can be computed efficiently [23].

Now, to date previous work using finite state machines focuses on offline so-
lutions to multi-agent problems, precomputing responses to every possible belief
state. However, it is impossible for every belief state to be reached: every belief
state which is visited narrows the space of possible future beliefs (at least within
a static environment). For offline solvers without tight time constraints, there may
be no problem in generating redundant information. Other approaches use the intu-
ition that the belief space need only be divided into sufficient chunks to determine
the next action, for example using principal components analysis on a discretized
state space [31]. The alternative to such techniques is to search for solutions online.
This is the only way of approaching very dynamic systems, or systems where the
problem parameters may not be known in time to perform a comprehensive offline
search—as is likely to be the case in our target domain. Online solutions will, of
necessity, be approximate, since any accurate solution projects infinitely far into the
future and thus is effectively an offline solution.

Bayesian learning for cooperation in multi-agent systems 13

In the next Section we expand some of these ideas and describe in detail an al-
gorithm for online cooperative action in partially observable multi-agent systems in
which agent communication is limited to information-sharing. Our algorithm uses
finite state machines to model the policies of the other agents and each agent com-
putes online a best response to its beliefs about these finite state machines.

3 Bayesian learning models

As outlined in the previous Section, we will use finite state machines to model in-
dividual agent policies in a multi-agent setting. In this Section we flesh out the
theoretical background behind this model, first outlining an exact theory and then
showing how this is approximated by a finite state machine model. Then in Section
4 we describe the finite state machine model in more detail.

3.1 Bayesian Learning

We begin by specifying our definitions. Throughout, we assume that there is some
underlying world state, s, which changes in response to the joint actions of the
agents. The progression of world states and joint actions forms an MDP. We as-
sume that agents are not able to perceive s completely, but make some observations
o from which they make inferences about the state. These observations may include
communications from other agents—we do not treat those distinctly in this work.
More formally, we will make use of the following definitions:

• S : {s0, . . .sns}, a set of states. A state will generally be described by a set of state
variables.

• I : {I1, . . . Ik}, a set of k agents
• L⊂ S = {L1, . . .Lk}, a location variable for each agent. These determine the view-

point from which agents make local observations.
• A = {a1, . . .ana}, the set of individual actions. A = Ak is the set of joint actions.

Thus, we differentiate between a single action a and a joint action a by using
bold for the latter, to emphasize that it is a vector. We may also use a−i to refer
to the vector a with the element corresponding to i removed, and a◦a′ to refer to
a with a′ integrated.

• O : {oo, . . .ono}, a set of observations
• Tf : Tf (st+1,s,at) = P(st+1|st ,at), the transition function from state to state,

where st+1,st ∈ S and a ∈ A.
• O f : An no-dimensional function where O f (st ,ot)i = P(ot |i,st), the observation

function for agent i, where ot ∈ O and st ∈ S.
• R : {r1,rnr}, nr ≤ ns, a set of possible rewards which an agent may receive

14 Mair Allen-Williams and Nicholas R Jennings

• R f : SxAxS → R, a reward function, specific to the agent. Typically, the reward
will be associated with the immediate state, but for some problems it may be
associated with the transition between states (for example, if actions have a cost).

When taken together, Tf , R f and O f describe the dynamics of the environment. We
may use θ = (Tf ,R f ,O f) to refer to these dynamics as a whole. An individual agent,
A, may also have:

• A (deterministic) policy π : (p,h,ot) → a where h defines all relevant histor-
ical information (observation sequences including communications from other
agents), p any prior or domain knowledge, ot ∈ O is the current observation and
a ∈ A is a single agent action. Typically, (p,h) will be compressed to contain
the sufficient statistics for a belief state (a probability distribution over states and
unknown parameters).

• Beliefs over unknown parameters: for some variable X taking values x1,x2, . . .,
b(xi) is the probability that X = xi, given the agent’s prior information and sub-
sequent observations.

• Models of the other agents’ behaviour: P(πi|p,h) where πi has the same form as
π above and (p,h) refer to the prior and historical information of the agent A.
To be clear, we assume that the other agents have deterministic policies, and our
agent maintains beliefs over these deterministic policies.

Taking these definitions, we go on in the rest of this Section to build up a for-
mal model of learning in multi-agent systems. The following Section (Section 4)
explains an approximation which can be used to make implementing this model
practical in a particular special case of interest to us. First, however, we introduce
Markov Decision Processes.

3.2 MDPs and POMDPs

The transition function Tf has the Markov property: the probability of future states
depends only on the current state and the action choices, and not on past state history.
Consequently, {S,A,T,R} defines a Markov Decision Process (Figure 2):

Fig. 2 Markov Decision Process progression

In choosing an action at time t = tT , the agent’s aim is to optimise the expected
discounted future rewards, defined by:

Bayesian learning for cooperation in multi-agent systems 15

Rγ
T = ∑

t
γ trt (t ranges from T to ∞) (1)

where rt ∈ R is the reward at time t. γ is a problem specific parameter which defines
the agent’s myopia; that is, to what extent it considers delayed future rewards to
be important. It balances the importance we place on future states with our need to
accumulate reward now. In practical terms it will be chosen to express the extent of
lookahead appropriate to the problem (consider chess as an analogy: for the most
part, say, 3 steps of lookahead are sufficient to play well). Typically, we will use
a γ value of around 0.8, making lookahead negligible after around ten steps into
the future—in a fragile disaster scenario we expect this to be sufficient for most
planning purposes. It is most common for reinforcement learning algorithms to set
γ between 0.7 and 1, although the choice will depend on the exact problem.

Now, in a fully observable world, O = S and P(ot |st) = (1 if ot = st ,0 otherwise),
i.e. the agent knows the complete state st at every timestep t. Given the Markov
property, its optimal policy therefore need depend only on the current state. We can
therefore define a policy in a fully observable MDP by π(s) = a, a function from
states to actions. Then, if the strategies of the other agents are known, the agent can
compute its own optimal policy by solving the large simultaneous equation known
as the Bellman Equations (2 and 3), via dynamic programming, and then taking the
policy π∗ described in equation 4.

In more detail, Qπ(s,a) is the (discounted expected) value of taking action a from
state s, and then working to policy π . Q∗(s,a) is the (discounted expected) value of
taking action a from state s, and then working to the optimal policy π∗. We will
use “best response” to refer to the optimal single-agent action, a maximising Q(s,a)
throughout this paper as we replace s with more complex models.

Q(s,a) = ∑
s′

P(s′|s,a)[r(s′)+ γV (s′)] (2)

V (s) = max
a

Q(s,a) (3)

π∗(s) = a such that Q(s,a) = max
a

Q(s,a) (4)

P(s′|s,a) = Tf (s′,s,a◦a−i) (5)
where a−i is the joint actions of the other agents as defined by their strategies

There are various ways of efficiently approximating these solutions in large prob-
lems, and for solving in continuous systems. Briefly, the equations can be solved
iteratively, and efficiency is achieved by (a) updating the states most likely to have
changed first, and (b) updating “nearby” states when a state is updated [36]. We do
not go into details of these solution techniques as realistically we are unlikely to
know all the necessary parameters. In the next Section we explain how this model
is extended into systems with unknowns.

16 Mair Allen-Williams and Nicholas R Jennings

3.2.1 Partially observable systems

It is often the case that the agent may not know (in the case of static parameters), or
be able to observe (in the case of state-related values) all the details of the MDP. If
the underlying state s cannot be observed, then the problem becomes a POMDP: a
“partially observable” Markov decision process (Figure 3). At each step, the MDP
proceeds behind the scenes, while the agent makes observations o derived from
the underlying state s, where o is insufficient for the agent to reliably determine s.
O f (s, i) describes the probability density function P(o|s) for agent i.

Fig. 3 Partially observable Markov Decision Process

To solve this POMDP, we can derive from it a secondary MDP—a belief MDP.
The multi-dimensional states of this secondary MDP have one continuous variable,
b(s), for every possible value s of the underlying state. The value of b(s) indicates
the probability that the underlying state is s, given the agent’s prior knowledge and
the history of observations and actions. The system proceeds from b to b′ at each
step using Bayes’ rule (equation 6) to update the state probabilities (Figure 4):

P(x|observations) ∝ P(observations|x)P(x) (6)

This belief MDP is, therefore, completely known, and although continuous and
high-dimensional has an exact solution describing the optimal action in any belief
state. This solution will inherently take into account the need for exploratory actions.
In principle, any general techniques for continuous MDP solutions can be used to
solve the belief MDP [36]. However, all belief-state MDPs fall into a particular class
of continuous MDPs, since each belief state restricts the possible future belief states.
More efficient solution techniques exploit the properties of these MDPs [28] [27].

Given this, we can extend the belief MDP idea further to consider cases where the
environmental dynamics, θ , are not known or are partially known. In these cases,
we can consider an underlying MDP which has the dynamics, θ , as one of its state
variables. This MDP has a known transition function: (s,θ)→ (θ(s),θ). The obser-

Bayesian learning for cooperation in multi-agent systems 17

Fig. 4 POMDP inducing a Bayesian belief state MDP

vations for the POMDP associated with this MDP will include state transitions as
well as the immediate observations. In principle, this POMDP can be solved exactly
as described above. Finally, the same model extends into the multi-agent world by
including the actions of other agents in the underlying state, and the behaviour func-
tions of other agents in θ . In a partially observable system, the behaviour of another
agent will depend on its beliefs about the state, and so we also add the beliefs over
states of the other agents to our own MDP state:

sMDP = {s,∀ j.(σ j),∀ j.(b j(s)),θ}

To date, existing work has studied some sub-cases of this general model: the
fully-observable case where the dynamics are unknown, for single agent problems
[11] and multi-agent problems [8]; and the partially-observable case where the dy-
namics are unknown for multi-agent problems [30]. All of these find online solu-
tions using appropriate approximation techniques. In particular, in solving the Bell-
man equations, typically these techniques will only refer to a small number of belief
states, beginning at the current one. Recall,

Q(s,a) = ∑
s′

P(s′|s,a)[r(s′)+ γV (s′)]

The belief-state version, writing b for the belief state and leaving s to refer to the
underlying state, is

18 Mair Allen-Williams and Nicholas R Jennings

Q(b,a) = ∑
s′

P(s′|b,a)[E[r(s′)|b]+ γV (b′)]

where b′ is the belief state resulting from the transition to state s′.
Finally, the case of particular interest to us, the partially-observable multi-agent

case with known dynamics (sometimes described as a partially observable stochas-
tic game, or POSG) has also been investigated. For example, in one online approx-
imate algorithm [14], each agent tries to compute the joint optimal action for that
step, then executing its own part of this joint optimal action. Providing that all agents
are initialised with the same information (in particular, they should share a random
seed), every agent can compute the approximately optimal action so that the actions
are truly cooperative. Although this algorithm is theoretically sound, it is computa-
tionally intensive and has only been tested on relatively small POSGs. More recent
work has investigated offline algorithms for a special case of much larger POSGs,
the networked POSG. In the case where the agents are networked according to a
specific structure—such as a sensor network—it is possible to exploit this structure
to develop more sophisticated strategies for agents located in critical parts of the
network, and simpler strategies for agents located in less critical regions [23].

An alternative technique for making approximate action choices is to gather to-
gether similar states, belief states or groups of observations, reducing the state space.
In particular, in problems where a notion of proximity can be defined between states,
an action can be decided for a new state based on experience of nearby states. Ex-
amples of the former include manual feature abstraction and hierarchies [15]. Ex-
amples of the latter include include neural networks [36], Kohonen maps [35] and
belief compression via principal components analysis [31]. We leave investigation
of such state aggregration to future work.

A further optimisation that has been used to good effect for modelling and re-
sponding to agents in partially observable domains is to restrict agent policies to the
class of policies which can be described by finite state machines (sometimes called
finite state automata or regular automata, and abbreviated to FSMs). Using this
class of policies, which we describe in more detail in the next Section, it has been
shown that it is possible to compactly represent good approximates to the optimal
agent policy [6] [9]. More recent work has used finite state machines to find offline
solutions in partially observable domains [23]. In the next Section we describe finite
state machines in more detail and develop an online solution strategy to partially ob-
servable problems, using finite state machines to model the behaviour of the other
agents.

3.2.2 FSMs

A finite state machine can be used to represent an agent’s policy. We have discussed
fully-observable MDPs in which the agent’s policy is decided on its immediate ob-
servations, and partially-observable MDPs in which the agent state is a continuous,
high-dimensional belief-state derived from its entire history. A finite state machine

Bayesian learning for cooperation in multi-agent systems 19

policy falls between these two: the agent state is based on a variable length history.
A fixed and finite number of agent states, more than the number of possible obser-
vations, are defined in the finite state machine and the agent moves from state to
state of the machine based on its observation. In the next Section we describe this
model in more detail and explain how representing agent policies with finite state
machines can be used to develop approximate online solutions in partially observ-
able multi-agent problems.

4 Bayesian learning approximation using finite state machines

In this Section we detail how to model agent policies using finite state automata
(4.1 and 4.2). In Section 4.3 we then explain how these models fit with the multi-
agent POMDP solution techniques described above, giving an algorithm for online
learning (4.4) and explaining how this model extends previous work in the area.
First, however, we begin with the definition of a finite state machine.

4.1 Definitions

A deterministic finite state machine has:

• A set of n nodes N = {n1, . . .nn}
• A set of m edges E = {e1, . . .en}
• For each node, an associated action a from the set of actions
• For each edge, an associated observation o from the set of observations

One of the nodes is designated as a start node, N0. We write Act(n) to refer to the
action associated with a node n.

An agent’s policy is determined by such a state machine (Algorithm 1): at each
node (or agent state), the agent carries out the associated action. The resulting ob-
servations determine the agent’s transition to a new node within the FSM.

Algorithm 1 A finite state machine policy
• The agent begins at the start node N0.
• The agent performs the action associated with the current node N.
• When all agents have performed their action, the system moves to a new world state s, supplying

agents with observations o.
• The agent moves along the edge associated with o, arriving at a new node N′.
• Repeat.

Now, in order to use finite state machines as representations of agent policies
in unknown multi-agent scenarios, we will do two things: (1) to learn the finite

20 Mair Allen-Williams and Nicholas R Jennings

state machine models over time, from the sequence of observed actions and state
observations, and (2) to derive an online policy as a best response to a set of (beliefs
over) FSM policies. We describe each of these in turn, bringing them together in
Section 4.4.

4.2 Learning FSMs

In principle, learning a deterministic finite state machine from a set of observations
can proceed as follows [6]:

• Base case: initialise the FSM with the single node N0, setting the associated
action to the first observed action

• Recursion step: given a FSM and an observation string, determine if the obser-
vation string is consistent with the FSM:

1. Find a node whose action corresponds to the first action in the string: if there
are no untested nodes remaining, FAIL

2. Follow the FSM as prescribed by the observation sequence until (a) the action
associated with a particular node does not match the action in the sequence:
FAIL, return to 1 or (b) the end of the sequence is reached: CONSISTENT

If the observation string is consistent, then no further action need be taken. If the
observation string is inconsistent, then we select a node from one of the failure
points, and expand the FSM to include the new string.

Then, given a FSM and a particular (short-term) observation history (after apply-
ing the above algorithm to the history), we can construct a list of possible current
nodes for the corresponding agent by considering each of the starting points consis-
tent with the observation history and following the FSM through to a current node
from each (abandoning any inconsistent nodes en route). The probability of each
resulting current node will be the total probability of all start nodes which reached
it, with that probability having been computed in a previous step.

However, there are two problems: one is that observation strings can be of indefi-
nite length, i.e. we may find ourselves storing the entire observation history in order
to accurately build the FSM. The second is that although the FSM is a deterministic
model, the behaviour it is modelling may be neither deterministic nor static. (A third
issue is that we do not in fact know the observation strings, but rather have proba-
bilities over them which are based on our own observations). We therefore wish to
adjust our learning strategy to take these facts into account.

A point to note is that although we do not know the strategies of others or their
optimal strategies, because we do know the MDP and the observation function, we
can make some judgements about how much observation history is likely to be im-
portant in making decisions, providing us with a way of judging the optimal size of
the FSMs.

Bayesian learning for cooperation in multi-agent systems 21

We propose to sample possible observation strings from our belief state, and
construct a candidate FSM for each sample, using the following tactics in learning
these candidate FSMs:

• Define a maximum number of nodes which can occur in the FSM
• Break the observation history into overlapping observation strings of length l
• Assign each observation string a likelihood based on the frequency of occurrence

and its sample probability, weighting more recent occurrences more highly. Dis-
card completely observation strings older than nt timesteps.

• Rather than resolve inconsistencies by always creating new nodes, resolve incon-
sistencies by appealing to the likelihood of each of the inconsistent strings, and
discarding the least likely

In the next sections we describe in more detail an algorithm for learning FSMs
from observation strings.

4.2.1 A polynomial FSM learning algorithm

For any set of agent behaviours, there may be several possible FSMs. The least
compact FSM for a finite time period has a distinct node for every time step. The
minimal FSM for an agent’s behaviour has the smallest number of nodes neces-
sary to describe the behaviour exactly. Now, finding the minimal FSM is an NP-
complete problem and cannot be approximated by any polynomial-time algorithm
[6]. However, it is possible to learn compact FSMs in polynomial time, for many
practical problems. The US-L* algorithm [6] has polynomial running time and has
been shown to be effective at finding compact models of agent behaviour on small
agent coordination problems—we propose to test it on larger problems.

This algorithm models the FSM using a table, with rows corresponding to ob-
servation string prefixes s, columns corresponding to string suffixes e, and the table
entries corresponding to actions σ . The alphabet of possible observations is Σ . The
table is then partitioned into equivalence classes:

C(s) = row(s)|row(s′) = row(s)

The table must be constructed in such a way that it describes a FSM: that is, it must
be

• consistent: ∀s1,s2 ∈ S, [C(s1) = C(s2)→∀t ∈ Σ ,C(s1t) = C(s2t)].
• closed : ∀s ∈ SΣ ,∃s′ ∈ S,s ∈ S,C(s) ∈C(s′)

From such a consistent and closed table a deterministic FSM can be described.
Specifically, US-L* marks entries in the table as either hole entries or permanent

entries. The former are those which can be reassigned as the algorithm tries to re-
adjust the table for consistency. Only when no hole entries can be reassigned is a
new test added to the table. Permanent entries correspond to a fixed action.

The algorithm proceeds by:

22 Mair Allen-Williams and Nicholas R Jennings

• Take a set of observation strings
• Initialise the table so that all the prefixes of the observation strings have an asso-

ciated row in the table, and there is just one column with the empty string.
• Fill in the table entries using the observations, marking entries as hole entries if

they are not supported by previous examples or permanent entries if they are are
supported by previous examples. In order to bound the size of the automaton,
we specify a maximum number of times a hole entry can be changed, basing
the maximum on domain knowledge if it is available: the maximum should de-
pend on the dynamism in the system (since an entry will change if the system is
changing) and on the uncertainty in the system. In our work, we may adjust the
maximum over time using learned domain knowledge.

• Adjust the table to make it consistent, adding new columns to the table where
necessary (adding a new column enables the separation of one equivalence class
into two—this adds at least one new state to the corresponding automaton).

• Adjust the table to close it, adding new rows where necessary.
• Take the next set of observation strings and loop.

This algorithm is designed to be used as an online algorithm for an adaptive agent
to learn models of opponent behaviour, although Carmel and Markovitch only ap-
ply it to repeated two-player games. We will be investigating its application in our
domain, specifying in advance a maximum size for the automata. Now, in order to
make use of these finite state machine models of agent behaviour, our agent (main-
taining these models) must be able to find an optimal response to what it believes to
be the current situation. Referring back to our generic Bayesian model, this means
evaluating Q(b,a) for a belief state b which includes beliefs over finite state ma-
chines. The next Section explains how this is done.

4.3 Online solutions: Best response

Previous work [38], [6] has considered fully-observable, but non-Markov, repeated
games. In such scenarios finding a best response is straightforward, since the state
and consequently the reward can be computed for every step.

By contrast, in our work, the state is not known. This adds to the complexity of
the situation (as previously discussed), since even if the policies of the other agents
are known, we do not know what observations they may make and consequently
cannot determine their actions. We consider first this idealised case where the poli-
cies of the other agents are known. Now, we can compute a best response to any
belief-state b using the Bellman equations, as discussed in Section 3:

Qi(b,a) = ∑
s′

P(s′|b,a)[r(s′)+ γV (b′)] (7)

where P(b′(s′)|b,a) = ∑
nj,s′,s

P(b′(s′)|s,a◦Act(nj))P(nj,s|b) (8)

Bayesian learning for cooperation in multi-agent systems 23

and P(b′(n′j)|b,a) = ∑
n j ,o′,s

P(n′j|o′)P(o′|s,a◦Act(nj))P(nj,s|b) (9)

where P(o′|s,a◦Act(nj)) = ∑
s′

P(s′|s,a◦Act(nj))P(o′|s′) (10)

(P(n′j|o′) is 1 or 0.)
In an online algorithm, Qi(b,a) can be approximated from the current belief state

by projecting k steps into the future. On the kth step, we replace V (b′) in equation
7 with some heuristic value. Possible heuristics include 0, a QMDP-based heuristic
[19] or some domain-specific heuristic (for example, the expected distance from
any agent to a goal, or visible future rewards such as victims which can be saved,
in a disaster problem). Algorithm 2 outlines this best response solution. Such finite
horizon algorithms have been used in related belief-state problems in many cases: in
observable problems with unknown parameters (the heuristic is to assume that the
current parameters are correct, and solve the corresponding MDP [8]), in finding
offline solutions for networked POMDPs [23], and in online partially observable
stochastic games [14].

Algorithm 2 Finite-horizon best response
• At timestep t, agent i has beliefs b over the state and the nodes n j of the other agents j, and

knows policies n j → a j for these agents.
• For some k, compute Qk(b,a) for each possible action a, using

– Qk(b,a) = ∑s′ P(s′|b,a)[r(s′)+ γVk−1(b′)]
– Vk(b) = maxa Qk(b,a)
– V0(b,a) = ∑s′ P(s′|b,a)Vheuristic(s′)

• Execute the action a which maximises Qk(b,a)

In our partially observable setting, where the agent does not in fact have knowl-
edge of the policies of the other agents, but rather has beliefs over these policies,
we propose to estimate the best response to the belief state by sampling from the
possible policies to obtain a selection of sets of FSMs, F = {F1, ...Fm}. For each
sample FSM set Fs (containing a FSM for each other agent), the agent computes a
best response action BRi(Fs,b). The action decision is then given by:

a = maxai

m

∑
i=1

Pi.δ (BRi(Fs,b) = ai)

(where δ (A = B) = 1 if A = B and 0 otherwise).

24 Mair Allen-Williams and Nicholas R Jennings

4.4 An online learning algorithm

We conclude this Section with a complete description of our algorithm, which brings
together several of the techniques described above. This is an algorithm imple-
mented by a single agent who is aiming to adaptively find a best response to the
behaviour of the other agents in the system. Our intent is that when all agents
are implementing this algorithm, adapting to each other, they should converge on
a “good” solution for the problem. This algorithm, as described below, maintains
approximate models of the other agents in the form of finite state machines. A set of
possible models is held in a belief state which is updated using Bayesian learning.
At each step, the agent uses its observations to update each of the possible models
and to update its beliefs about the world. It then computes the finite-horizon best
response to each of these possible models and weights the possible responses with
its belief in the corresponding model to decide on its action.

• An agent maintains a current belief state, b(X), with beliefs over the variables
X = (s,{o,F,n}) where s is the current state, and {o,F,n} describes a set of
triples: in each triple, o is an observation history and (F,n) are the induced FSM
and current node in the FSM. The belief state contains one such triple for each
other agent in the system. The agent also maintains historical information about
b(s) over a fixed number of steps.

• Several parameters are fixed initially: Fmax the maximum number of nodes in
any FSM, γ the myopia of the agent, nt the horizon length to use in computing
an approximate best response, ol the observation window length. nt may be de-
termined based on γ: roughly, for a state n steps into the future, sn contributes
γn.r(sn) towards the discounted future reward. Thus with γ = 0.8 (a common
myopia value), after 10 steps less than 10% of the reward will be contributing
towards the estimates of the future reward. This may be a small enough value to
ignore. If γ is increased to 0.9, then it will take 21 steps before the fraction of the
reward under consideration is reduced below 10%.

• initialise:
The belief state is initialised: b(s) is initialised either to uniform beliefs or biased
based on domain knowledge. The observation strings o are all empty, and the F
have a single node with uniform probabilities over all actions1

• at each step:

– The agent observes the actions of the others and makes observations about the
state: these observations are used to update b(s) using Bayes’ rule.

– The observation samples o are extended into the current time frame to obtain
o′, reweighting as appropriate. This is achieved by sampling from the expected
observations of the other agents, given the current observation samples and
b(s). When the length of an observation string exceeds ol , the earliest obser-

1 It would be possible to initialise with a more sophisticated set of F corresponding to shared
conventions relating to the domain, for example encapsulating the knowledge that agents will run
from a burning building. We leave that possibility to future work.

Bayesian learning for cooperation in multi-agent systems 25

vations are dropped. If a sample’s likelihood falls below probability threshold
ps, the sample is discarded, and a new string sampled using b(s) and the stored
history of b(s) over ol previous steps.

– For each observation sample o′, update the FSMs F associated with the sample
with the new information in o′ using US-L*. The weighting given to the FSM
F is the probability of the associated observation sample.

– For each sample FSM, compute an approximate best response, and thus decide
the maximum likelihood best response action a from the FSM weightings as
described in Section 4.3.

– Perform the action a
– Repeat

To reduce computational requirements, rather than doing all of this every step, we
may prefer to collect behavioural samples over several steps and update our model
less frequently. The best response is still computed every step.

Thus, in this Section we have outlined a theoretical model for the online solution
of partially observable multi-agent systems, based on the POMDP model, and then
shown how we can approximate a particular (challenging) case of this model using
finite state machines to model agent behaviour. In order to demonstrate the effec-
tiveness of this model, we have implemented it on a rescue problem. In the next
Section (5) we outline the problem before going on to describe our results (Section
6) and how they compare with the state of the art.

5 Model instantiation

In order to test the algorithm on a challenging problem, we implemented a rescue
scenario involving coordinating ambulances. We compared our algorithm with a
current state of the art algorithm and a hand-written solution for this problem. In
this Section, we specify the problem as a multi-agent POMDP and explain how we
simplify the observation space.

In more detail, in the rescue problem we have an n by m gridworld. k agents can
move left, right, up or down (constrained, of course, at the edges of the grid). In the
gridworld are buried victims, described by two parameters: D and R. D (‘deadness’)
is a measure of the proximity of the victim to death. When it reaches a maximum
level the victim is dead and subsequently ignored for the purposes of the rescue
problem. R (‘rescue needed’) is a measure of the depth at which the victim is be-
lieved to be buried. Agents digging can reduce R. If R reaches 0 before the victim
dies, then the victim is assumed to be safe. The urgency of the victim therefore
increases with increased D and with increased R, unless R is sufficiently large com-
pared with D that the victim can be considered a lost cause. Figure 5 shows one step
on the grid for a 4x4 grid with three agents.

Specifically, taking the model of Section 3, the various parameters are instanti-
ated in the following way:

26 Mair Allen-Williams and Nicholas R Jennings

Fig. 5 One step of the rescue problem on a 4x4 grid with three agents

States: A state of this world is described by using a pair of variables for each of
the grid squares, characterising the D and R values in the square (we make the
simplifying assumption that there can be at most one victim in the square), and
a variable for each agent, identifying its current square. We use ld and lr discrete
levels to describe D and R, so for each square there are ld*lr possible states, and
for each agent there are m * n possible states, making a total of ((ld ∗ lr)(m∗n))
possible states.

Agents: We assume that the number of agents, k, is fixed throughout each problem
and known to each agent.

Locations: The location variable for each agent is its current square.
Actions: Agents may take Move actions (left, right, up or down), or Dig actions

in their current square.
Observations: An agent observes some subset of the state variables, so there is

one observation variable for each state variable. The values taken on by observa-
tion variables are those of the corresponding state variable, plus “null”.

Transition function: Move actions move the agent one square in the requested di-
rection, unless this is impossible in which case the action has no effect. Each
square transitions (D,R) independently of other squares, so it is sufficient to de-
fine the transition function for one square. We use two global probabilities, pd
and pr, to specify the probability of the D level changing (this is a constant prob-
ability independent of the action) and of the R level changing if there is a Dig
action. If there is no dig action, R remains unchanged. We assume that if there
are k digs in a square, they are concatenated. Finally, if a square is empty, we

Bayesian learning for cooperation in multi-agent systems 27

use a further parameter, pa, to define the probability that a victim will appear in
that square. If a victim does appear, the (D,R) levels it has are determined with
uniform probability (greater than 0).

Observation function: Agents are able to see the squares (deadness, rescue-level,
and any other agents in the square) to the left and right, and above and below
them, as well as their own square. Additionally, we define a problem-specific
parameter, v, for the visibility. For every other square, the agent will be able
to see the agent-deadness D in that square with probability v and the rescue-
level R in the square with independent probability v. Since all agent actions are
fully observable, we assume that we can also observe all agent locations. This
‘visibility’ parameter could be justified as some level of communication with a
centralised observer, say a helicopter viewing the scene. We assume no error in
the observation: either a variable is completely and correctly observed or it is not
observed at all.

Reward function: The reward function is a function of both the previous state and
the current state. For each square, if a victim disappears because they have died,
then the reward is decremented by one point. If a victim disappears because they
have been saved, then there is no change to the reward. Consequently, for this
problem rewards will always be less than or equal to 0.

The above definitions allow us to define beliefs over the values (D,R) of a square
(and thus over the state, since locations are observable), and beliefs over the obser-
vations of other agents, given their locations:

Agent locations: We are certain for all squares how many rescue agents they con-
tain / for all agents where they are located

The square is observed: We are certain of both its parameters
The square is not observed and has not been observed for i timesteps: for each

property sq which may take values x,

P(sqt = xt |sqt−i = xt−i) = ∑
x

P(sqt = xt |sqt−1 = x)P(sqt−1 = x|sqt−i = xt−i)

where the 1-timestep probabilities depend on pd , pr, pa as appropriate, and the
dig observations in that square.

The square has never been observed: This is just as above, but with P(sq0 = x0)
set to the problem-specific prior probabilities. Here, we assume that all squares
are empty to begin with.

The above equations describe our beliefs about the world state: that is, the D
and R values of the squares and the locations of the other agents. Similarly, we must
define our beliefs about the observations of the other agents. Just as our beliefs about
the state of each square are multinomial, the other agents’ beliefs about the state of
the square will be multinomial. Therefore, in the full POMDP model, our beliefs
about other agents’ beliefs over the state of the square would take on corresponding
Dirichlet distributions. However, we are not trying to maintain beliefs about the
other agents’ belief states, only about their observations. Now, our own beliefs about

28 Mair Allen-Williams and Nicholas R Jennings

the state of the square define exactly what we believe other agents will see if they
see that square, as the observation function is deterministic and consistent for all
agents. Because we know the location of the agent, we know of the (up to) four
surrounding squares it definitely sees. Finally, we know that there is a v probability
it will see any other square. Using this model, we investigate the behaviour of our
algorithm on the rescue problem.

6 Experimental evaluation

In order to test our strategy, we compare it against two other online algorithms: the
state of the art for online partially observable stochastic games is the Bayesian game
approximation using the finite-horizon approximation technique [14], described in
Section 3 (“POSG”). However, for large dynamic problems, this algorithm, which is
exponential in the number of agents, proves to be very inefficient and we find that
for all but the smallest variants of the rescue problem, POSG is too slow to be useful.
Previous work on large dynamic rescue problems of a similar form [26] compares
with a handwritten strategy (“smart”) tailored to the problem, and we do the same
thing. Our handwritten strategy is the strategy that was used by the AladdinRescue
team for ambulance distribution in the Robocup Rescue competition, which inspired
this problem. The algorithm uses a greedy strategy to allocate ambulances to victims
and is optimal in scenarios where (1) no new victims are arriving and (2) visibility is
perfect [29]. It is therefore not an optimal strategy for the problem as we have stated
it, but is a good approximation, thus providing a good target for our algorithm to
meet.

Comparing against these two algorithms, and using the null policy in which
agents move randomly, but never dig and so never effect any rescues (“null”)
as a baseline, we investigate our algorithm, “best response” over different pa-
rameter settings on the rescue problem, and then focus on the scaling properties of
the algorithm. Next, we identify the fixed parameters and then go on to our results.

6.1 Experimental setup

Following experimentation, we fix the following parameters: ld = lr = 4, pd = 0.15,
pr = 0.4, pa = 0.05, v = 0.5. In particular, we felt that the choice of four health and
burial levels was sufficient to make the problem interesting without making the state
space too huge. The other parameters were selected to generate scenarios requiring
cooperation: victims were not arriving so fast that simply digging out the nearest
was appropriate, victims might require more than one agent for rescue, and victims
could survive long enough to be reached by agents some distance away.

We vary m,n and k as specified. We also experimented with increasing pa towards
problems where “dig nearby” becomes a viable strategy, and varying v. Finally, in

Bayesian learning for cooperation in multi-agent systems 29

the belief-state based algorithms, we must take samples from the belief state. We
define the sampling rate as the number of samples taken for each variable, initial-
ising it at a rate of 35 (for comparison, previous work on a single agent problem
found that 20 samples was sufficient for good solutions [11]).

In every experiment, we carried out several runs of the problem, varying the
initial placement of civilians and randomising their arrival and visibility. The same
random seed was used to initialise each of the test algorithms in each run. The error
bars included in the results show the 95% confidence intervals around each point.
The rest of this Section discusses our key results.

6.2 Examining the learning rate

To begin with, we compared the algorithms over the course of 1000 steps on a
7x7 grid, with three agents. We found that the POSG algorithm, which is exponen-
tial in the number of agents, did not complete in any reasonable time (we consider
one minute per step to be “reasonable”) on this size of problem, taking ten min-
utes for one agent to complete a single step. Figure 6 shows the performance of
the smart policy with our algorithm over 1000 steps. Our aim was to examine the
performance of the best response algorithm on a challenging problem, focus-
ing on any changes in its behaviour over time. To this end, we have used two dif-
ferent sampling rates for the best response policy, comparing how the agent
learns when sampling very little information (samplerate = 10) or more informa-
tion (samplerate = 50). We expect that the agent will both perform better, and learn
faster at the higher sampling rate.

It is immediately clear from Figure 6 that the best response algorithm is
outperforming the smart policy for these parameters. Now, if our algorithm (best
response) is benefitting from learning, we expect to see that the advantage the
best response algorithm has over the smart (handwritten) policy is increasing
over time. From Figure 6(a) it is not clear that there is a large improvement in
this advantage—that is, the lines are fairly straight. However, Figure 6(b) shows
a closeup comparison of the two different sampling rates, showing the way in which
the lower sampling rate is able to match the performance of the higher sampling
rate after around 800 steps. We therefore see that with better information, the best
response algorithm is able to perform well on this problem even without accurate
models of the other agents, but when the sampling rate is very low, the best response
algorithm is able to compensate for this by learning.

Consequently, it seems that the best response algorithm is performing well
primarily on the basis of the sampled best response, rather than accurate estimates of
the behaviour of the others being critical. In order to investigate further, we compare
the algorithms on some smaller problems which the POSG algorithm is able to run
on, first looking at the effects of changing sample rates in more detail, and then
varying two parameters relating to the character of the problem (visibility and victim
distributions). This allows us to gain insights into the performance of our algorithm

30 Mair Allen-Williams and Nicholas R Jennings

20

40

60

80

100

120

0 200 400 600 800 1000

re
w

ar
d

(s
ca

le
d)

time step

smart
best response, samplerate=10
best response, samplerate=50

(a) Algorithm performing over 1000 steps at two different rates

100

90

80

70

60

50

40

0 100 200 300 400 500 600 700 800

re
w

ar
d

(s
ca

le
d)

time step

best response, samplerate=10
best response, samplerate=50

(b) Closeup of the first 800 steps

Fig. 6 Comparison of two algorithms over time on a 7x7 grid with 3 agents. Note that we use a
log scale to show more clearly the differences between the algorithms, and the rewards are scaled
up to > 0 for the log scale.

Bayesian learning for cooperation in multi-agent systems 31

as the problem nature is changed. We also investigate parameters relating to the scale
of the problem (number of agents, and size of grid). For each of these experiments
we compare the total reward after 150 steps—from Figure 6 we can see that this is
sufficient to show the differences between the algorithms or settings.

6.3 Varying the sampling rate

In order to examine how the best response algorithm will perform on chal-
lenge problems such as those we identified in our domain requirements, we will
consider the effects of scale both on solution quality and on the computational re-
quirements. Linked to the solution scales is the number of samples taken in esti-
mating beliefs. The sensitivity of the solution to the number of samples is therefore
relevant in considering the effectiveness of the algorithm.

For the POSG algorithm, on a 3x3 grid with two agents, table 8(a) shows the
time/sample-rate ratios for 100 steps (to the nearest minute). Since our cut-off was
one step per minute, we did not run any tests on the POSG algorithm beyond a
sample rate of 75, the null policy and the smart policy do not do any sampling.
For our own policy, which does not need to iterate over all joint policies, the scaling
factor was much better: table 8(b) shows the equivalent rates. The POSG algorithm
is exponential in the number of agents, since it iterates over all joint actions. It
therefore scales badly as the number of agents is increased. By contrast, table 8(c)
shows the times for the best response algorithm running on the larger problem
of a 7x7 grid with three agents. Even on this larger grid the times are well within
the range of acceptable. We next investigate whether there is truly a need for higher
sampling rates, since our earlier investigations indicated that the best response
algorithm is able to perform quite well even at low sample rates.

To this end, Figure 7 shows the effect of changing the sample rate. As expected,
neither the null policy nor the smart policy are susceptible to changing sample
rates. However, the performance of the best response policy also does not
vary much with the changing sample rates. It is also worth remarking that the error
does not reduce noticeably as the number of samples is increased, suggesting that
the same actions are selected with as few as ten samples. By contrast, the POSG
algorithm performs noticeably better as the number of samples is increased, and the
error around the points reduces.

These results indicate that similar actions are selected even with a small number
of samples, perhaps because the best response can be estimated well, and the best
response performs well with small sampling rates, making it possible for the
algorithm to be very efficient. This compares favourably with the POSG algorithm
which approaches optimality at high sampling rates but performs very badly at low
sampling rates, at least for this type of problem. We do not investigate the POSG
algorithm in the larger version of the problem (Figure 7(b)) but we see that as for
the larger problems above, the best response algorithm slightly outperforms

32 Mair Allen-Williams and Nicholas R Jennings

-20

-15

-10

-5

0

0 20 40 60 80 100

re
w

ar
d

sample rate

smart
null

best response
POSG

(a) 2 agents on 3x3 grid

-30

-25

-20

-15

-10

-5

0

10 20 30 40 50 60 70

re
w

ar
d

sample rate

null
smart

best response

(b) 3 agents on 5x5 grid

Fig. 7 Effects of changing the sampling rate with two and three agents

Bayesian learning for cooperation in multi-agent systems 33

3x3 grid, 2 agents
Sample rate Time

10 12 minutes
20 19 minutes
35 38 minutes
60 67 minutes
75 113 minutes

(a) POSG algorithm

3x3 grid, 2 agents
Sample rate Time

10 7 seconds
30 18 seconds
50 27 seconds

100 50 seconds
500 4 minutes

(b) best response
algorithm

7x7 grid, 3 agents
Sample rate Time

10 18 seconds
35 48 seconds
60 5 minutes

(c) best response
algorithm

Fig. 8 Time taken to complete one run of 150 steps

the smart policy, due to its better handling of imperfect visibility. The next Section
investigates the effects of visibility in more detail.

6.4 Varying the visibility

As the visibility increases and all agents have a better view of the scenario, we ex-
pect that the performance of all algorithms will improve. However, we expect the
probabilistic algorithms (POSG and best response) to be at less of a disadvantage
than the handwritten policy for the lower visibilities—this is because the handwrit-
ten policy always behaves as though the visibility is 100% thus does not do any
exploration actions.

Figure 9 demonstrates the effects of varying visibility on a 3x3 grid and on a 7x7
grid, each with three agents. In Figure 9(a) we see the performance of the POSG
algorithm is much worse than either the smart policy or the best response
policy and fluctuating at lower visibilities, but noticeably improving as the visibility
is increased. However, both the smart policy and the best response policy do
reasonably well even at the lower visibilities, but there is no discernible difference
between them. This is because three agents on a three-by-three grid can do fairly
well using the very simple strategy of digging where they see victims and can prob-
ably directly observe most of the grid between them. By contrast, Figure 9(b) shows
the performance on the larger grid. We do not show the slow POSG algorithm on
this problem; the baseline of the null policy is at around -90. Here, we see that as
expected the best response policy does outperform the smart policy at lower
visibility levels, with the smart policy approaching the performance of the best
response policy as the visibility increases, although the best response pol-
icy continues to outperform the smart policy.

34 Mair Allen-Williams and Nicholas R Jennings

-20

-15

-10

-5

0

5

0 0.2 0.4 0.6 0.8 1

re
w

ar
d

visibility

smart
best response

POSG

(a) 3x3 grid

-20

-15

-10

-5

0

0 0.2 0.4 0.6 0.8 1

re
w

ar
d

visibility

smart
best response

(b) 7x7 grid

Fig. 9 Effects of varying visibility

Bayesian learning for cooperation in multi-agent systems 35

-60

-50

-40

-30

-20

-10

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

re
w

ar
d

arrival rate

smart
null

best response
POSG

(a) 2 agents on 3x3 grid

-300

-250

-200

-150

-100

-50

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

re
w

ar
d

arrival rate

smart
null

best response

(b) 3 agents on 7x7 grid

Fig. 10 Effects of varying victim arrival rate

36 Mair Allen-Williams and Nicholas R Jennings

6.5 Varying the victim arrival rate

As well as varying the visibility, we can vary the problem by adjusting the victim
density. We expect that increasing the rate at which victims arrive, pa, and thus the
overall density of victims, will make the problem easier, as agents can do well with
the simple strategy of digging out the victims around them. The reward for the null
policy drops sharply—this is because there are more victims dying.

As the victim density increases, the optimal strategy approaches the very simple
strategy of digging if there are any nearby victims. The point at which the simple
strategy becomes optimal is indicated by the point where the smart policy stops
making improvements over the null policy: between the 0.1 and 0.5 arrival rate on
the small problem. The best response policy has matched the smart policy,
and the POSG policy also catches up by the 0.5 data point. On the larger problem
(Figure 10(b)), the smart policy and best response policy continue to im-
prove across the graph, indicating that there is some sophistication needed in the
strategies even at the high victim densities. As expected, on the larger problem, the
best response policy slightly outperforms the handwritten strategy due to its
better handling of the imperfect visibility.

For the next sections, we fix the visibility at 0.5 and the arrival rate at 0.05,
as discussed in Section 6.1. We go on to investigate the scaling properties of the
algorithms.

6.6 Varying scaling factors

The difficulty of the rescue problem scales exponentially with the size of the grid and
the number of agents, which are related to the number of states and the number of
joint actions respectively. Furthermore, in our implementation, all the agents were
running on the same machine as one another and the environment; consequently,
the memory requirements of the implementation scaled linearly with the number
of agents. Nonetheless, we were able to test our algorithm on grids of up to 12x12
(2173 states), and with up to 7 agents (80,000 joint actions).

Now, although 7 agents is not a huge number for an algorithm which we would
like to scale into dozens of agents, the primary limiting factor was the memory
requirement for our implementation. Figure 11 shows the effect of increasing the
number of agents on two larger grids, a 7x7 grid and a 9x9 grid. We observe that
on the 7x7 grid as the number of agents is increased, the smart policy appears
to saturate while the best response policy continues to improve. The results
are similar for both the 7x7 and the 9x9 grid, although the smart policy does not
saturate so much on the 9x9 grid—the larger problem space provides more room
for improvement. Future work should involve a more efficient implementation, di-
viding the agents among several machines. We expect that the best response
algorithm will then scale well as the number of agents is increased.

Bayesian learning for cooperation in multi-agent systems 37

-60

-50

-40

-30

-20

-10

0

10

2 3 4 5 6 7

re
w

ar
d

number of agents

smart
null

best response

(a) 7x7 grid

-100

-80

-60

-40

-20

0

20

2 3 4 5 6 7

re
w

ar
d

number of agents

smart
null

best response

(b) 9x9 grid

Fig. 11 Effects of increasing the number of agents on the results for two large grids

38 Mair Allen-Williams and Nicholas R Jennings

-150

-100

-50

0

3 4 5 6 7 8 9 10 11 12

re
w

ar
d

grid size

smart
null

best response

(a) 3 agents

-150

-100

-50

0

3 4 5 6 7 8 9 10 11 12

re
w

ar
d

grid size

smart
null

best response

(b) 5 agents

Fig. 12 Effects of changing the grid size on the results for 3 and for 5 agents

Bayesian learning for cooperation in multi-agent systems 39

The best response algorithm also performs well on the large grids with
many millions of states: with five agents nearly all the victims are rescued (the re-
ward does not fall far below 0) even on the largest (12x12) grid. The smart policy
falls away by comparison. This reflects the results we have seen earlier where the
best response improves over the smart policy more as the grid size increases,
a consequence of the way in which the best response policy incorporates un-
certainty and the need for search on larger grids. The results are very similar for both
three agents (Figure 12(a)) and five agents (Figure 12(b)) although, as expected, five
agents are able to make more rescues than three agents (the lines are slightly flatter).

Thus, we have observed that the best response algorithm performs well
by comparison with a handwritten strategy designed for the same problem, and
requiring much less sampling than the POSG algorithm to achieve this perfor-
mance. Although the best response algorithm typically has similar performance to
the handwritten strategy, it is consistently outperforming it. Furthermore, the best
response algorithm scales well, solving problems with many states and increas-
ing numbers of agents and improving on the handwritten strategy for these large
problems. Since in general we anticipate our algorithm to be useful in scenarios
where no good handwritten strategy is available, especially as the problem scales,
the best response algorithm seems promising. Further improvements are dis-
cussed in the next Section.

7 Conclusions and Future Work

In summary, we have considered the problem of agent coordination in uncertain
and partially observable systems. We developed an approach to this problem using
a Bayesian learning mechanism, extending previous work on learning models of
other agents, and demonstrated its effectiveness on a cooperative scenario from the
disaster response domain. To emphasize, the novelties in this work lie in an exten-
sion of online model-based learning techniques into partially observable domains,
using finite automata. As part of our theory, we outline a general Bayesian model
of which our model forms a specific instantiation and show how other techniques,
such as POMDPs and Bayesian learning, fit into this same model.

We have examined the performance of our algorithm on a rescue problem with
respect to differing problem parameters, finding that its performance consistently
outperforms a handwritten strategy for this problem, more noticeably so as the num-
ber of agents and the number of states involved in the problem increase. We also
observe that reducing the sampling rate of our algorithm has only small effects on
its performance, indicating that the best response calculation is the most important
feature—this is encouraging, as it enables us to use the best response algorithm with
few samples, resulting in greater efficiency. However, we have commented that the
limiting factor in running our algorithm, particularly as the number of agents in-
creases, is the memory usage of our implementation, rather than the per-step time
required. We therefore propose that future work should investigate more efficient

40 Mair Allen-Williams and Nicholas R Jennings

implementations, and ways of distributing the problem across several machines—
this is in any case a more accurate model of the problems of interest to us.

Although the work described above is encouraging, there remain a number of
areas in which improvement can be made. As well as scaling the model into higher
numbers of agents and larger state spaces, using a more efficient implementation for
the environment and agents, and running the agents on distributed machines, there
are improvements which can be made to the model. We discuss each of these in turn
below.

Firstly, we propose to improve upon the learning of the FSM, using automatic
state clustering. In the rescue problem, and in many other problems, groups of states
can be considered equivalent by the agents. As a simple demonstration, note that
there are several symmetries in our example problem: at every step the grid can
be rotated until our agent is towards, say, the bottom right, dividing state space
into equivalence classes with four states in each class, one corresponding to each
rotation (90o,180o,270o,0o). More generally, we need only as many abstract states
as there are joint actions, associating every underlying state with its optimal joint
action. However, in practice, particularly if we plan to re-use parts of our model,
reducing it purely to joint actions will be too abstract. An appropriate abstraction
algorithm should be adaptable, allowing us to change our mind about which action
is associated with a particular state, should allow us to update clusters incrementally
and should not tie us to any predefined set of clusters. We propose to use a form of
statistical clustering based on that described in [18] for this purpose.

A second area of improvement is to better exploit the information available to
agents. We are investigating a complex problem domain in which some domain
knowledge can be assumed. We may also be able to assume some level of rationality
in the other agents (akin to coordination conventions). As we develop our models of
the agents, we have discussed how we can use these models to improve our beliefs
about the agents’ observations, applying Bayes’ rule. However, it may be possible to
make more sophisticated belief updates by considering the observations which we
make and the observations which other agents will make to be correlated streams
of information. Techniques such as the Kalman Filter [40] are able to operate over
correlated streams of information to make more accurate estimates about the value
of any particular point and to estimate missing data [25]. These techniques could be
applied (with caution) to our estimates of the observations of the other agents and
of the current state.

Thirdly, we propose to move beyond the scope of the current work, considering
cases in which the environmental dynamics are unknown or are changing, and in
which agents are able to enter and leave the environment as the problem progresses.
As discussed in Section 3, the algorithm we have presented can in principle be used
to learn fixed parameters such as parts of the environmental dynamics, by treating
these parameters as a part of a “grand state” from which observations are made.
Indeed, related work [8] [30] has done this for some special cases.

In this context, given the uncertainties of our domain, it is clear that if the be-
haviour of the other agents is completely unknown, and the current state is un-
known, and the environmental parameters are completely unknown, an agent must

Bayesian learning for cooperation in multi-agent systems 41

stumble around “in the dark” for some considerable time before it can begin to
get a handle on good or optimal behaviour. However, in the typical scenarios moti-
vated by our example domain of disaster response, an agent will have strong prior
information about some or all of the unknown parameters. For example, the other
agents may be assumed to be rational and cooperative, thus likely to behave in a
near-optimal way. In our example problem, the form of the transition function may
be known, but not the exact values of every parameter. By incorporating all the
information available to the agent into its model, and particularly by correlating in-
formation, we anticipate that our model will be able to handle problems in which
the environmental dynamics are not completely known using the theoretical form
laid out in Section 3.

Following on from this, our model will easily handle scenarios in which the num-
ber of agents changes (but is known to our agent) over time. Since the best response
is computed at each step, there will be no difficulty in computing a best response
over a subset of the other agents, or in adding a new agent model to the collection.
Our agent will adapt continually during the problem run. Similarly, if the agent is
learning the environmental dynamics, and those dynamics change, the agent should
adjust its model smoothly.

With these improvements, we anticipate that the model of Section 3 can be used
as the basis of an algorithm capable of solving medium-sized distributed collabo-
rative problems in the real world, such as traffic management, controlling search
robots in a building after a fire, or distributing ambulances during a disaster. Similar
algorithms could also be included in software which could be loaded onto handheld
devices to aid human decision-making during critical situations such as war or a
large-scale disaster.

Acknowledgements Thanks to Georgios Chalkiadakis and Zinovi Rabovich for discussions on
the early versions of this work.

References

1. D. Aberdeen and J. Baxter. Scaling internal-state policy-gradient methods for POMDPs. In
Proceedings of the 19th International Conference on Machine Learning, volume 2, pages 3–
10, Sydney, Australia, 2002. Morgan Kaufmann.

2. O. Abul, F. Polat, and R. Alhajj. Multiagent reinforcement learning using function approxi-
mation. In IEEE Transactions on Systems, Man, and Cybernetics, Part C, volume 30, pages
485–497, 2000.

3. C. Amato, D. S. Bernstein, and S. Zilberstein. Solving POMDPs using quadratically con-
strained linear programs. In Proceedings of the fifth international joint conference on Au-
tonomous agents and multiagent systems, pages 341–343, New York, NY, USA, 2006. ACM
Press.

4. C. Boutilier. Planning, learning and coordination in multiagent decision processes. In Pro-
ceedings of the 6th conference on Theoretical aspects of rationality and knowledge, pages
195–210, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

5. M. Bowling and M. Veloso. Rational and convergent learning in stochastic games. In Inter-
national Joint Conferences on Artificial Intelligence, pages 1021–1026, 2001.

42 Mair Allen-Williams and Nicholas R Jennings

6. D. Carmel and S. Markovitch. Learning models of intelligent agents. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, volume 2, pages 62–67, Portland,
Oregon, 1996.

7. A. Cassandra, M. Littman, and N. Zhang. Incremental pruning: A simple, fast, exact method
for partially observable Markov decision processes. In Proceedings of the 13th Annual Confer-
ence on Uncertainty in Artificial Intelligence, pages 54–61, San Francisco, CA, 1997. Morgan
Kaufmann.

8. G. Chalkiadakis and C. Boutilier. Coordination in multiagent reinforcement learning: a
Bayesian approach. In Proceedings of the second international joint conference on Au-
tonomous agents and multiagent systems, pages 709–716, New York, NY, USA, 2003. ACM
Press.

9. A. Clark and F. Thollard. PAC-learnability of probabilistic deterministic finite state automata.
Journal of Machine Learning Research, 5:473–497, 2004.

10. C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. In Proceedings of the fifteenth national/tenth conference on Artificial intel-
ligence/Innovative applications of artificial intelligence, pages 746–752, Menlo Park, CA,
USA, 1998. American Association for Artificial Intelligence.

11. R. Dearden, N. Friedman, and D. Andre. Model-based Bayesian exploration. In Proceedings
of the 15th Annual Conference on Uncertainty in Artificial Intelligence, pages 150–15, San
Francisco, CA, 1999. Morgan Kaufmann.

12. E. H. Durfee. Practically coordinating. AI Magazine, 20(1):99–116, 1999.
13. P. S. Dutta, S. Dasmahapatra, S. R. Gunn, N. Jennings, and L. Moreau. Cooperative informa-

tion sharing to improve distributed learning. In Proceedings of the AAMAS 2004 workshop on
Learning and Evolution in Agent-Based Systems, pages 18–23, 2004.

14. R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Approximate solutions for
partially observable stochastic games with common payoffs. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems, pages 136–
143, Washington, DC, USA, 2004. IEEE Computer Society.

15. F. Fischer, M. Rovatsos, and G. Weiss. Hierarchical reinforcement learning in communication-
mediated multiagent coordination. In Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 1334–1335, Washington, DC, USA,
2004. IEEE Computer Society.

16. D. Fitoussi and M. Tennenholtz. Choosing social laws for multi-agent systems: Minimality
and simplicity. Artificial Intelligence, 119(1-2):61–101, 2000.

17. D. Fudenberg and D. K. Levine. The Theory of Learning in Games. MIT Press, 1998.
18. J. Hoar. Reinforcement learning applied to a real robot task. DAI MSc Dissertion, University

of Edinburgh, 1996.
19. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-

able stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.
20. Y. Kim, R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Exploiting locality of inter-

action in networked distributed pomdps. In Proceedings of the AAAI Spring Symposium on
“Distributed Plan and Schedule Management”, 2006.

21. D. Leslie. Reinforcement learning in games. PhD thesis, University of Bristol, 2004.
22. M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In

Proceedings of the 11th International Conference on Machine Learning, pages 157–163, New
Brunswick, NJ, 1994. Morgan Kaufmann.

23. J. Marecki, T. Gupta, P. Varakantham, and M. Tambe. Not all agents are equal: scaling up
distributed POMDPs for agent networks. In Proceedings of the Seventh International Joint
Conference on Autonomous Agents and Multiagent Systems, 2008.

24. National Research Council. Summary of a Workshop on Using Information Technology to
enhance Disaster Management. National Academies Press, 2005.

25. M. A. Osborne, A. Rogers, S. Ramchurn, S. J. Roberts, and N. R. Jennings. Towards real-
time information processing of sensor network data using computationally efficient multi-
output gaussian processes. In International Conference on Information Processing in Sensor
Networks, pages 109–120, April 2008.

Bayesian learning for cooperation in multi-agent systems 43

26. S. Paquet, L. Tobin, and B. Chaib-draa. An online POMDP algorithm for complex multiagent
environments. In Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pages 970–977, New York, NY, USA, 2005. ACM Press.

27. J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. In International Joint Conference on Artificial Intelligence, pages 1025 – 1032,
August 2003.

28. P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete bayesian rein-
forcement learning. In Proceedings of the 23rd international conference on Machine learning,
pages 697–704, New York, NY, USA, 2006. ACM.

29. K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed scheduling of tasks with dead-
lines and resource requirements. IEEE Transactions on Compututers, 38(8):1110–1123, 1989.

30. S. Ross, B. Chaib-draa, and J. Pineau. Bayes-adaptive POMDPs. In Neural Information
Processing Systems, page In press, 2008.

31. N. Roy and G. Gordon. Exponential family PCA for belief compression in POMDPs. In
S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing,
pages 1043–1049, Vancouver, Canada, December 2002.

32. P. Scerri, E. Liao, Y. Xu, M. Lewis, G. Lai, and K. Sycara. Coordinating very large groups of
wide area search munitions. Theory and Algorithms for Cooperative Systems, 2005.

33. P. Scerri, K. Sycara, and M. Tambe. Adjustable autonomy in the context of coordination. In
AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, 2004. Invited
Paper.

34. G. Shani, R. I. Brafman, and S. E. Shimony. Model-based online learning of POMDPs. In
European Conference on Machine Learning, pages 353–364, 2005.

35. A. J. Smith. Dynamic generalisation of continuous action spaces in reinforcement learning: A
neurally inspired approach, 2002. Ph.D. thesis, Division of Informatics, Edinburgh University,
UK.

36. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.
37. M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G. A. Kaminka, S. Marsella, and I. Muslea.

Building agent teams using an explicit teamwork model and learning. Artificial Intelligence,
110(2):215–239, 1999.

38. T. Vu, R. Powers, and Y. Shoham. Learning against multiple opponents. In Proceedings of
the fifth international joint conference on Autonomous agents and multiagent systems, pages
752–759, New York, NY, USA, 2006. ACM.

39. F. Wang. Self-organising communities formed by middle agents. In Proceedings of the first
international joint conference on Autonomous agents and multiagent systems, pages 1333–
1339, New York, NY, USA, 2002. ACM Press.

40. G. Welch and G. Bishop. An introduction to the Kalman filter. Technical report, University of
North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.

41. M. Wooldridge. An Introduction to Multi-agent Systems. Wiley, 2002.

Index

AladdinRescue, 28

Bayesian learning, 1–39
Bayesian reinforcement learning, 5, 7
Bellman equations, 6, 7, 15, 17, 22

coordination, 1, 2, 4, 8–11, 21, 39, 40

decentralisation, 5
Dirichlet distribution, 27
disaster response, 3, 4, 6, 39, 41
dynamic programming, 15
dynamism, 5, 22

finite state machine FSM, 3, 12, 13, 18–21,
23–25, 40

Kalman Filter, 40

Markov decision process MDP, 4, 6–8, 13–17,
20, 23

belief, 16
fully observable, 18
partially observable, 18
partially observable POMDP, 7–39

multi-agent systems, 1–25
bandwidth limited, 4
decentralisation, 4
dynamism, 4
openness, 4
partially-observable system, 4

partially-observable system, 3, 11, 17, 18

Robocup Rescue, 28

uncertainty, 1, 2, 6, 22, 39
unmanned aerial vehicles UAVs, 1, 3

45

